
Geroge Danezis—Ed. (UCL)
Ania Piotrowska (UCL)
Helger Lipmaa (UT)
Michal Zajac (UT)
Claudia Diaz (KUL)
Tariq Elahi (KUL)
Benjamin Weggenmann (SAP)
Aggelos Kiayias (UEDIN)

Design, modelling and analysis
Deliverable D3.1

31st October 2016
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

Ref. Ares(2016)6212183 - 31/10/2016

http://www.panoramix-project.eu

Revision History

Revision Date Author(s) Description

0.1 2016.06.22 AP (UCL) Intial draft

0.2 2016.06.22 GD (UCL) Initial review, edits and comments

0.3 2016.06.22 GD, AP (UCL) Reconstruction

0.4 2016.06.26 VM (UCL) Review and comments

1.0 2016.06.29 GD (UCL) Final review - submission to the EC

1.1 2016.10.24 GD (UCL) Revision after first periodic review

1.2 2016.10.24 GD, AP (UCL) Restructure of the document after consultation
with project partners

1.3 2016.10.25 GD, AP (UCL) Unifieing the report and describing the results of
research outputs

1.4 2016.10.25 GD, AP (UCL) Added surveys about existing anonymous com-
munication systems and shuffle protocols

1.5 2016.10.25 GD, AP (UCL) Describing relevance between research outputs
and project tasks

1.6 2016.10.25 VM (UCL) Review and comments

1.7 2016.10.28 HH (GH) Review, edits and feedback

1.8 2016.10.31 AP (UCL), TZ,
AK (UEDIN)

Final editing after consultation with project
partner

2.0 2016.10.31 AK (UEDIN),
TZ (UEDIN),
GD (UCL)

Revisioned final version and submission to the
EC

Executive Summary

Deliverable 3.1 presents the report of activities and outputs of PANORAMIX WP3, which aims
to investigate and propose technology options for building PANORAMIX mix-networks. In de-
liverable D3.1 we survey the existing shuffle based techniques and compare their functionalities,
properties and limitations as well as discuss how those techniques may support PANORAMIX
project. D3.1 presents also a report of the first year research outputs from WP3 and out-
lines their relation to the commitments described in the project proposal. We present the
new design options investigated by research partners in WP3 and outline how they can sup-
port PANORAMIX. This deliverable presents also how the novel techniques proposed by WP3
support other work packages in PANORAMIX project.

Contents

Executive Summary 5

1 Preface to Deliverable D3.1 9
1.1 A brief introduction to mix networking . 10
1.2 Outline of the deliverable . 11
1.3 WP3 objectives and mapping to D3.1 deliverable 12

I Existing mix and shuffle protocols 17

2 A Survey of Anonymous Communication Protocols for Messaging 19

3 A Survey of Shuffle protocols 59

II Initial design options for mix-nets 71

4 Efficient Culpably Sound NIZK Shuffle Argument without Random Oracles 75

5 Prover-Efficient Commit-And-Prove Zero-Knowledge SNARKs 91

6 Perfectly Anonymous Messaging via Secure Multiparty Computation 111

III Definitions of privacy 137

7 AWARE - Anonymization With guaranteed privacy 139

8 Empirical Evaluation of Privacy via Website Fingerprinting 157

D3.1 - DESIGN, MODELLING AND ANALYSIS

1. Preface to Deliverable D3.1

The aim of the PANORAMIX project is to develop a wide-spread infrastructure based on robust
mix-networks (WP4), which guarantees privacy and anonymity properties for a number of
high-impact applications. The PANORAMIX project targets three main use cases: (1) privacy-
preserving and anonymous messaging systems (WP7), (2) private electronic voting protocols
(WP5), (3) privacy-friendly surveying, statistics and big data gathering protocols (WP6).

PANORAMIX WP3, and the deliverable D3.1, aims to investigate and propose technology
options for building mix-networks. It provides the necessary background and design options for
our collaboration partners in WP4, as well as in support of in terms of new research findings
for our partners and their use-cases in WP5, WP6 and WP7. WP3 focuses on the design of
the secure and efficient mix network protocols and conducts the theoretical and experimental
security analysistasks that require original research and advanced development. Therefore,
WP3 presents new research provoked by the PANORAMIX project and the requirements of
the partners. First, note that as WP3 is focused on research and is so experimental and risky,
it is important that components of this deliverable by published as papers, as peer review may
catch errors and problems that the PANORAMIX partners could not catch by themselves.
Second, this deliverable is the most difficult to read by a non-expert of any deliverable, but
the mathematical machinery presented is necessary in order to verify that these new designs
provably satisfy the security and properties, as well as properties around verifiability, latency,
and anonymity as discussed in D4.1. Therefore, readers who do not have a mathematical
background may want to focus on Chapter 1 as well as the surveys of Chapter 2 and 3, but
for the rest of the papers may feel free to skim the proofs and focus on the conclusions of
these chapters. It is not expected that each partner understand the research fully, but instead
that the academic partners will provide options in the design for each partner and the core
PANORAMIX infrastructure, as well as support in writing the initial code. The industrial
partners can chose between the design options in WP3 and then they can, with the help of
the academic partners, make sure the code they have developed can be matured for industrial
use-cases.

As discussed in WP4 as well as WP7 and WP5, the requirements listed by the partners in
terms of a “real world” mix networking infrastructure have opened a number of novel research
questions. For example, both e-voting and messaging require lower latency and scalability than
the existing mix networking solutions can provide, leading to work investigating paradigms
to improve scalability in terms of secure multi-party computation. Furthermore, e-voting has
need for verifiability. In this deliverable we present designs for both low latency shuffling
that also satisfies the verifiability requirements in Part 2 by designing new shuffle protocols
needed for e-voting that are not based on unrealistic “random oracle” assumptions and that
are succinct (i.e. do not take up too much space). Due to the difficulty and time consuming
nature of cryptographic work, we did not capture all the requirements. For example, in the
secure messaging use-case from WP7, a system is needed where clients can go offline, and this
requirement will lead to future work in D3.2.

This document presents a report of the research and other outcomes from WP3 in the first
year of the project, and in line with the deliverable as outlined in the PANORAMIX project

– 9 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 1.1: A mix net example

proposal. First, we overview the relevancy of the research to mix networking in section 1.1. In
section 1.2 we outline the structure of this deliverable in relation to the commitments in project
proposal; in section 1.3, we map each chapter of this deliverable to the objectives and tasks of
WP3 as described in the original project work plan.

1.1 A brief introduction to mix networking

While encryption can make the encrypted message itself unlinkable to the plaintext message (i.e.
unlinkability in terms of bits), it is much harder to eliminate what has been termed metadata of
the message, i.e. the patterns such as timing, length, and network-level identifiers that can be
used to identify who is communicating to whom via techniques from traffic analysis. Although
cryptography itself has firm mathematical foundations, it deals with only a small, if crucial,
component of anonymous communications. Other techniques such re-scheduling (i.e. sending
a group of messages at the same time), re-packetizing (i.e. sending a messages that are all
the same length), and re-routing (i.e. destroying patterns in the underlying network itself) are
needed in order to defeat traffic analysis and so have anonymous communications.

The first practical method for anonymous communicating proposed by David Chaum (a
member of the PANORAMIX Advisory Board) is mix networking. In mix-networking, a message
is sent to different nodes. Each node collects the messages, and outputs them, re-encrypting
them and making sure they are uniform in size and re-sending them at the same time in a
random order as shown in Figure 1.1.1 In this figure, three senders are trying to send messages
to three receivers via a small mix network of only three mix nodes (𝑀). In the figure is also
given the probability that a receiver has received a message that can be determined by a global
adversary who is observing the traffic flows.

A number of problems should be apparent. First, a determined global adversary can still
de-anonymise people using the network if, for example, during a given time period no message
is sent to a person via an output node that no-one else is using (see Figure 1.2 for an example.
In this case, dummy traffic, i.e. fake packets that are the same size as the other messages, may
be needed, which increases the amount of bandwidth. More importantly, sending a message
through a mix net requires the messages to be mixed using a shuffle in order to determine which
message should be sent to which other mix node. Ideally, we should be able to prove that a mix
node is not malicious by verifying their shuffle, and zero knowledge proofs are one technique for
doing this. Also, the messages must all be sent at the same time, which requires work (to be

1Thanks to Carmela Troncoso (IMDEA) for sharing the following three illustrations from her “Traffic Analysis:
or... encryption is not enough” slides at https://software.imdea.org/~carmela.troncoso/talks/CTroncoso_
TrafficAnalysis_Croatia2016.pdf.

– 10 of 187 –

https://software.imdea.org/~carmela.troncoso/talks/CTroncoso_TrafficAnalysis_Croatia2016.pdf
https://software.imdea.org/~carmela.troncoso/talks/CTroncoso_TrafficAnalysis_Croatia2016.pdf

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 1.2: A mix net example with one route missing

done in the future in either D3.2 or D3.3) on flushing (batching) the messages. Lastly, as we
need to send the message via several nodes, we have higher and higher latency, and this requires
work to be one to make the technique more efficient.

Although the examples have so far been simple, in reality a mix network like PANORAMIX
will have many, many nodes in order to send messages between a realistic number of senders
and receivers of messages, as shown in Figure 1.3.

Due to the number of mix nodes, efficiency is very important and a single inefficient compo-
nent can make the entire system unusable for real-world applications. Also, historically different
use-cases such as messaging have had each mix net nodes that decrypt, shuffle, and store are
called decryption mix-nets while e-voting tends to use re-encryption mix nets that blinds in-
puts. All the work in this deliverable creates state-of-the art solutions for efficient shuffling
with zero-knowledge proofs as well as state of the art techniques for helping the privacy for the
input and output nodes. We also compare mix networking with more popular techniques such
as onion-routing that are not resistant to a global passive adversary as they do not shuffle, avoid
timing attacks, or use dummy traffic and show how techniques like secure multi-party computa-
tion can also provide anonymity that can complement mix networking. Therefore, in addition
to surveys of state of the art, the rest of this deliverable focuses on improving shuffling and
other efficiency guarantees in terms of scalability that would be needed for real-world deploy-
ment of mix networking for the PANORAMIX use-cases. Until these hard research problems
are tackled, we will not see a real-world mix networking system like PANORAMIX reach the
usage of alternative onion-routing systems like Tor.

1.2 Outline of the deliverable

The deliverable D3.1 is described in the project proposal as comprising:

Deliverable D3.1 (Initial report) [M10] Modelling and Design elements.
Describes

- some of the existing shuffle protocols (WP3.2),

- initial design options for mix-nets (WP3.1),

- definitions of privacy (WP3.3)

Subsequent chapters in this deliverable are organised to closely match the description of
deliverable D3.1 above, and are divided in 3 parts to clarify the distinctions given in the deliv-

– 11 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 1.3: A more realistic mix networking case

erable’s legally binding Description of Work.
Part I provides a survey of the existing anonymous messaging and shuffle protocols in two

chapters: Chapter 2 presents previous work on re-encryption mix-nets and Chapter 3 describes
decryption mix-nets that use shuffling.

Part II presents the initial designs options for building anonymous communication network
and more efficient yet secure non-interactive Zero-Knowledge shuffle protocols in 3 chapters:
Chapter 4 describes an improved shuffle protocol; Chapter 5 better techniques for proving the
correctness of shuffles; and Chapter 6 a proposed shuffle based on multi-party computation.

Finally, Part III presents the privacy definitions and methodologies: Chapter 7 presents
differential privacy definitions relating to location privacy supporting WP6; and Chapter 8 de-
scribes an empirical evaluation methodology for evaluating the security of low-latency anonymity
systems to support WP7 designs.

1.3 WP3 objectives and mapping to D3.1 deliverable

In this section we relate each chapter of this deliverable to each of the tasks of WP3, and
summarise their key contributions to the PANORAMIX project in terms of what other WPs
and requirements from the partners they address:

T3.1 Mix-nets. We also performed research supporting Task 3.1. First off, we present a sur-
vey, that thoroughly studies all key mix-net designs, shuffle protocols and anonymity
systems and categorises them in terms of their path selection procedures and other
structural and security characteristics. This directly informs the design options for the
PANORAMIX WP4 mix-net.

∙ Chapter 2 - Existing shuffle protocols: A Survey of Anonymous Communication
Protocols for Messaging

This chapter surveys the existing designs and solutions for anonymous communica-
tion, including re-encryption mix-nets, and their performance, as well as technologies

– 12 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

relating to decryption mix networks. The survey delivered by PANORAMIX partners
compares the existing solutions and introduces a taxonomy which classifies the exist-
ing anonymous protocols to allow compare them in terms of routing characteristics,
performance and scalability. The presented summarization serves as a background
information for our partners in PANORAMIX WP6 and WP7.

The introduced taxonomy extends the previous routing characteristics defined by
Feeney, which were not supporting several anonymous communication networks. This
novel definition of different criteria groups allows to widely investigate existing so-
lutions and find the thresholds between the security, scalability and performance as
well as to support the future designs.

This chapter is led to a partner technical report on the topic and is currently under-
going peer review at scientific venue:

[SSA+16] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael
Backes, and Claudia Diaz. A survey on routing in anonymous communication pro-
tocols. Technical report, KU Leuven Technical Report, 2016

T3.2 Zero-Knowledge proofs of correct shuffle / mix verifiability. We deliver work sup-
porting PANORAMIX WP3.2. We present designs of efficient yet secure non-interactive
Zero-Knowledge shuffle protocols; each of the works also presents the state of the art of
shuffle protocols on which the new proposed designs build, and a comparison of their
performance and characteristics. Closer to the messaging use-case, we also present a new
design for anonymous messaging that uses secure multi-party computation for shuffling
messages. This option is based on requirements in terms of scalability to support the
PANORAMIX WP7 messaging use-case and may work well not only by itself, but as a
system for each messaging server to run in WP7.

∙ Chapter 3 - Existing shuffle protocols: A Survey of Shuffle protocols

This chapter describes the existing shuffle protocols, compare the interactive and non-
interactive shuffle arguments and discuss their efficiency. It provides a wide overview
of cryptographic shuffles, namely those that come with a proof that the shuffling was
correcti.e., no elements were added or removed. This supports and informs directly
the design of the PANORAMIX WP4 mix-net, as well as the election use-case in
PANORAMIX WP5.

∙ Chapter 4 - Initial design options for mix-nets: Efficient Culpably Sound NIZK
Shuffle Argument without Random Oracles

Zero-knowledge shuffle arguments enable the prover to prove, that she mixed the
ciphertexts correctly, without revealing how they were shuffled or any other secrets.
As such, shuffle arguments are crucial in the design of mix-nets for e-voting where one
has high security requirements for ballot secrecy and unlinkabilitya key requirement
of PANORAMIX WP5 (Election use-case). Thus, in order to develop secure yet effi-
cient and practical mix-net implementations PANORAMIX partners need to develop
and deploy a provable and secure high-performance non-interactive ZK shuffle proofs,
with significantly lower overheads than previous approachesas the one suggested in
this chapter.

Most of the well known efficient non-interactive shuffle arguments are constructed in
the random oracle model — that is, by assuming the existence of an hypothetical “to-
tally random function” that everybody has access to. Since such functions cannot be
efficiently implemented, random oracle model arguments only offer heuristic security

– 13 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

guarantees. Thus, the partners studied the existing non-interactive zero knowledge
proofs and proposed in the chapter the most efficient known zero knowledge shuffle
argument that does not use random oracles. This is therefore much more likely to be
a secure basis for real-world usage of PANORAMIX than other existing shuffle tech-
niques, and this shuffling approach will likely be adopted by the core PANORAMIX
to be used across all the use-cases.

This chapter resulted in a partner peer-reviewed publication on the topic:

[FL16] Prastudy Fauzi and Helger Lipmaa. Efficient Culpably Sound NIZK Shuffle
Argument Without Random Oracles, pages 200–216. Springer International Publish-
ing, Cham, 2016

∙ Chapter 5 - Initial design options for mix-nets: Prover-Efficient Commit-And-Prove
Zero-Knowledge SNARKs

SNARKs are “succinct non-interactive arguments of knowledge”. By using a SNARK,
one can efficiently prove (i.e. verify) in zero knowledge that some property holds,
without the verifier getting extra information. This allows to develop a e-voting ap-
plications based on mix-nets (relevant to the PANORAMIX WP5 election use-case)
which obtain almost ideal security, universal verifiability but at the same time being
efficient in terms of performance.

Two crucial properties of SNARKs are non-interactiveness (the same proof can be
generated once and then verified by many different verifiers without each one inter-
acting with the verifier) and succinctness (the proof should be short and efficient to
verify). This design proposes the most prover-efficient known SNARKs for several
interesting problems, including solving NP-complete problems like Subset-Sum but
also a new range proof. Range proofs are in particular needed in e-voting. The
techniques developed in this chapter advice the partners in WP5 how to develop and
construct efficient zero knowledge proofs for secure and private e-voting applications
and so extends the previous designs in PANORAMIX on new shuffling techniques for
some of the more stringent privacy requirements of e-voting in terms of verifiability.

This chapter resulted in a partner peer-reviewed publication on the topic:

[Lip16] Helger Lipmaa. Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs,
pages 185–206. Springer International Publishing, Cham, 2016

∙ Chapter 6 - Perfectly Anonymous Messaging via Secure Multiparty Computation

Going beyond zero-knowledge shuffling for PANORAMIX, this chapter presents ‘XYZ’,
a new design of an anonymous messaging system that provides perfect anonymity and
can scale in the order of hundreds of thousands of users, via a shuffle based on an
efficient formulation of secure multi-party computation. It is possible that this XYZ
design could be used for the Greenhost case of messaging in WP7 if mix network-
ing by itself and the other shuffles cannot handle the requirements of its messaging
use-case. Although this is hard research problem and work will continue in D3.2 to
deal with the problems of churn in messaging clients and the details of the needed
latency, this initial design has many remarkable properties by virtue of building on
a different research framework than traditional mix networking systems, i.e., secure
multi-party computation.

In brief, it isolates two suitable ideal functionalities, called dialing and conversation,
that when used in succession realise anonymous messaging. With this as a start-
ing point, we apply secure multi-party computation (SMC) to instantiate them with
information theoretic security in the semi-honest model. Using a parallelization tech-
nique scales them to a large number of users, without sacrificing privacy, and provides

– 14 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

a degree of forward security on the client side and can be instantiated in a variety of
different ways with different SMC implementations overall, illustrating how SMC is
a competitive with traditional mix-nets and DC-nets for anonymous communication.
Although PANORAMIX is focused on mix networking for the backbone, Greenhost
and WP7 will consider a SMC-based solution for their problem in terms of client-
server anonymity if a design closer to the mix networking system used by the core
PANORAMIX infrastructure cannot be found.

T3.3 Differential Privacy mechanisms and mix-net applications. Finally, we studied sup-
porting WP3.3. Our work on private statistics collection uses novel definitions of privacy
inspired from differential privacy and traditional game based cryptographic definitions;
the same work evaluates the utility that can be achieved despite different levels of privacy
protection. Similar privacy metrics have been successful in measuring attacks on websites
and Tor, and thus we believe these metrics will be useful to use with PANORAMIX’s core
infrastructure and messaging clients.

∙ Chapter 7 - Definitions of privacy: AWAREAnonymization with Guaranteed Pri-
vacy

In this chapter SAP presents the assumptions and goals of the SAP Product Security
Research project AWARE “Anonymization With guARantEed privacy”, relevant to
PANORAMIX WP6 use-case on private statistics and telemetry . The main goal is
to provide a framework for the data protection officer to apply anonymization with
measurable and reliable guarantees. Many previous existing anonymization methods
fail at providing these goals since they do not provide any formal privacy guarantee
and are vulnerable to attacks that re-identify the originators of the anonymised data.
This report investigates a differential privacy definition, that does provide a formal
privacy guarantee, and examines how it performs at simultaneously protecting the
privacy of the users and providing good utility for analysis. This chapter provides the
results of experiments in which the differentially private anonymization mechanisms
was applied to protect different types of sensitive data. The results indicate that
when applied properly, differentially private mechanisms can protect privacy while
still providing utility with sufficient accuracy for further analysis.

This chapter is based on a partner (SAP) technical report that was created in re-
sponse to their requirements for surveys and statistics using PANORAMIX:

[KKHB16] Florian Kerschbaum, Mathias Kohler, Florian Hahn, and Daniel Bernau.
Aware: Anonymization with guaranteed privacy. Technical report, SAP Internal
Product Security Research Technical Report, 2016

∙ Chapter 8 - Definitions of privacy: Empirical Evaluation of Privacy via Website
Fingerprinting

This chapter is focused on defining privacy in a manner relevant to PANORAMIX.
The presented taxonomy and analysis supports the partners in PANORAMIX WP6
and WP7 in development of secure protocols for gathering statistics and messaging.
While mix networking has well-understood privacy on the mix nodes, attacks will
generally happen on the messaging client, which is usually a client accessed via a
website or a native application that calls a Web-enabled API, as done in WP4. This
chapter presents new web fingerprinting attacks and their empirical evaluation. These
attacks should be applied to the PANORAMIX low latency mixing system and are
very relevant to PANORAMIX statistics and messaging use-cases, as we show these
attacks can be prevented with much better performance than the current state of the
art solutions. Given that PANORAMIX core infrastructure is still being developed,

– 15 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

this attacks were done via an analysis of ordinary websites, although attacks on
web-enabled messaging clients or input nodes will have the same properties.

Website fingerprinting has emerged as a serious threat to anonymity of internet users.
Even despite using the privacy preserving technologies, website fingerprinting attacks
may enable an adversary to infer what website a user visits. It has been shown, that
an adversary by passively observing the size and timing of packets can infer with
varying degrees of certainty what websites a user is visiting.

The existing state-of-the art solutions apply some supervised or semi-supervised
learning techniques to track when and if a user visits a small number of websites,
however this technique is unrealistic as most users can visit any website they choose,
and are not restricted in a small fixed set. As a result, current research solutions
achieve worst results, in an open world environment.

In this chapter, the designed fingerprinting solution collects data and uses ML clas-
sifiers that do not degrade in accuracy when the number of websites we wish to
fingerprint is scaled up. We used hashing techniques that are most often employed
in computer vision and image processing research to train on a much larger scale
of websites. This will allow to fingerprint websites in an open world environment
with a much higher confidence of success than current existing techniques. Proper
investigation of fingerprinting attacks has a crucial role in designing and building se-
cure and anonymous communication in PANORAMIX. Thus, thanks to investigating
this type of attacks we can understand the security problems which the low-latency
anonymity systems developed in PANORAMIX WP4 will face and develop a better
solutions resistant to this type of attacks.

This chapter resulted in a partner peer-reviewed publication on the topic:

[HD16] Jamie Hayes and George Danezis. k-fingerprinting: a robust scalable website
fingerprinting technique. USENIX Security Symposium 2016, August 2016

– 16 of 187 –

Part I

Existing mix and shuffle protocols

D3.1 - DESIGN, MODELLING AND ANALYSIS

2. Exisiting shuffle protocols: A Survey
on Routing in Anonymous Communi-
cation Protocols

In this chapter, we survey previous research on designing, developing, and deploying systems for
anonymous communication, comparing their security, performance and scalability properties. We
provide a taxonomy for clustering all prevalently considered approaches (including Mixnets, DC-
nets, onion routing, and DHT-based protocols) with respect to their unique routing characteristics,
deployability, and performance. The presented taxonomy and comparative assessment provide
important insights about the differences between the existing classes of anonymous communication
protocols, and to clarify the relationship between the routing characteristics of these protocols,
and their performance and scalability, in order to deliver neccassery background information about
design options to support partners in WP5, WP6 and WP7 of PANORAMIX project.

2.1 Introduction

The Internet has evolved from a mere communication network used by millions of users to a
global platform for social networking, communication, education, entertainment, trade, and po-
litical activism used by billions of users. In addition to the indisputable societal benefits of this
transformation, the mass reach of the Internet has created new powerful threats to online privacy.

The widespread dissemination of personal information that we witness today in social media
platforms and applications is certainly a source of concern. The disclosure of potentially sensitive
data, however, not only happens when people deliberately post content online, but also inadver-
tently by merely engaging in any sort of online activities. This inadvertent data disclosure is
particularly worrisome because non-expert end-users cannot be expected to understand the dimen-
sions of the collection taking place and its corresponding privacy implications.

Widely deployed communication protocols only protect, if at all, the content of conversations,
but do not conceal from network observers who is communicating with whom, when, from where,
and for how long. Network eavesdroppers can silently monitor users’ online behavior and build up
comprehensive profiles based on the aggregation of user communications’ metadata. Today, users
are constantly tracked, monitored, and profiled, both with the intent of monetizing their personal
information through targeted advertisements, and by nearly omnipotent governmental agencies
that rely on the mass collection of metadata for conducting dragnet surveillance at a planetary
scale.

Anonymous Communication (AC) systems have been proposed as a technical countermeasure
to mitigate the threats of communications surveillance. The concept of AC systems was introduced
by Chaum [1] in 1981, with his proposal for implementing an anonymous email service that aimed

– 19 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

at concealing who sent emails to whom. The further development of this concept in the last decades
has seen it applied to a variety of problems and scenarios, such as anonymous voting [2,3], Private
Information Retrieval (PIR) [4], censorship-resistance [5, 6], anonymous web browsing [7], hidden
web services [8], and many others.

Public interest in AC systems has strikingly increased in the last few years. This could be
explained as a response to recently revealed dragnet surveillance programs, the fact that deployed
AC networks seem to become (according to leaked documents1) a major hurdle for communications
surveillance, and to somewhat increased public awareness on the threats to privacy posed by modern
information and communication technologies.

The literature offers a broad variety of proposals for anonymity network designs. Several of
these designs have been implemented, and some are successfully deployed in the wild. Of the
deployed systems, the most successful example to date is the Tor network, which is used daily by
about two million people [9].

Existing designs take a variety of approaches to anonymous routing for implementing the AC
network. Routing determines how data is sent through the network, and it as such constitutes the
central element of the AC design, determining to a large extent both security and performance of the
system. These approaches rely on different threat models and sets of assumptions, and they provide
different guarantees to their users. Even though survey articles on AC systems exist [10–18], we
still lack a systematic understanding, classification, and comparison of the routing characteristics
of the plurality of existing AC approaches.

The purpose of this survey is to provide a detailed overview of the routing characteristics
of current AC systems, and to examine how their features determine the anonymity guarantees
offered by those systems, as well as its overall performance. To this end, we first identify the
routing characteristics that are relevant for AC protocols and provide a taxonomy for clustering
the systems with respect to their routing characteristics, deployability, and performance. Then, we
apply the taxonomy to the extensive scope of existing AC systems, in particular including Mixnets,
DC-nets, onion routing systems, and DHT-based protocols. Finally, we discuss the relationship
between the different routing decisions, and how they affect performance and scalability.

Section

2.2 Anonymous Routing Protocol Characteristics

This section first introduces the routing characteristics considered in our taxonomy, and then
discusses deployability, and performance metrics for AC networks.

2.2.1 Routing Characteristics

Generally, routing in a communication network refers to the selection of nodes for relaying communi-
cation through the network. Routing schemes, however, require some essential design components.
For anonymous communication, we consider four building blocks that are relevant to routing in
AC networks. These building blocks are node management, transfer/retrieval of node information
to/by the routing decision maker, path selection, and forwarding or relaying; where path selection
is the main design component of routing schemes for AC protocols.

Several taxonomies and classifications for routing protocols have been proposed in the litera-
ture [19–21]. However, AC networks aim to conceal the metadata of communications and thus have
security requirements that make them fundamentally different from other networks.

1https://wikileaks.org/

– 20 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

In this section, we present a classification for anonymous routing protocols. Our classification
(see Tables

1. Communication model describes whether the communication is based on single-channels or
multi-channels.

2. Structure describes whether or not nodes are treated equally.

3. State information describes where the topology information is maintained.

4. Scheduling describes whether the information about routes is maintained at the source or is
instead computed on-demand.

This taxonomy does not address several relevant design features of AC networks, such as prob-
abilistic node selection for constructing circuits, and security considerations for protecting routing
information from different network adversaries. In addition, not all the characteristics identified by
Feeney are relevant to AC routing. For example, the distinction between single- and multi-channel
features is not relevant in overlay networks, which constitutes a standard design choice for many
AC networks.

We redefine Feeney’s criteria to account for design choices that are relevant to anonymous
routing protocols. We distinguish three groups of features inspired by Feeney’s categories: network
structure, routing information, and communication model :

1. Network structure describes the characteristics of the anonymous relays, the connections
between them, and the underlying network topology.

2. Routing information describes the network information available to entities deciding on the
route of an anonymous connection.

3. Communication model defines the entities that make the routing decisions and describes how
these decisions are made.

In what follows, we describe these features in more details, including their various sub-features and
corresponding notation symbols used to denote individual feature instantiations. We refer to Table

Network Structure

We consider first the network features that are relevant to anonymous routing. These are, specif-
ically, features relating to: (a) the topology of the network, which describes how nodes are con-
nected; (b) the connection type, describing the characteristics of the connections between nodes;
and (c) symmetry, describing whether the entities participating in the network are all similar, or
if they can take on different roles and responsibilities for routing data through the network.

a) Topology. The topology describes the arrangement of various elements of the network, such as
routers and communication links between those routers. We only take the logical topology of the
network into account, which determines how data flows within it. We note that physical topology
characteristics, such as the geographical location of computers, sometimes matters in anonymous
routing decisions, for example when considering adversaries that control an Autonomous System
(AS) [22,23].

– 21 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 2.1: Overview of the Protocol Routing Characteristics
Feature Name Description Instantiation and Symbols

N
e
tw

o
rk

S
tr
u
c
tu

re

Network topology Degree of node connectivity in the network � (fully) � (mostly) @ (partially)

Connection
type

Direction Data flow in connections → (unidirectional) ↔ (bidirectional)

Synchronization Timing model for connection establishment and data sending 6= (asynchronous) ∼= (synchronous)

Symmetry

Roles Users operating as relays
•· · ·•· · ·• (peer-to-peer) •· · ·• (client-server)

•· · ·◦· · ·• (hybrid)

Topology Node topology for routing · · · (flat) D (hierarchical)

Decentralization Degree of decentralization for non-routing services � (semi decentralized) # (fully decentralized)

R
o
u
ti
n
g

In
fo

Network view Network view necessary for making routing decisions (complete) G# (partial)

Updating Triggers for routing information updates � (periodic) (event-based)

C
o
m
m
u
n
ic
a
ti
o
n

M
o
d
e
l

Routing type Node selection per route •· · · (source-routed) · · ·•· · · (hop-by-hop)

Scheduling Prioritization of traffic ≡ (fair) (prioritized)

Node
selection

Determinism Determinism of node selection 3 (deterministic) 7 (non-deterministic)

Selection set Permissible set of nodes per route
ª (all) ! (restricted, security)

m (restricted, network) , (user-based)

Selection probability Node selection probability per route
� (uniform) � (weighted, static)

k (weighted, dynamic)

P
e
rf
o
rm

a
n
c
e
,

D
e
p
lo
y
a
b
il
it
y Latency Protocol latency

L (low-latency) H (high-latency)
M (mid-latency)

Communication mode Longevity of connections (connection-based) B (message-based)

Implementation Implemented 3 (yes) 7 (no)

Code availability Open source 3 (yes) 7 (no)

We consider the network as a graph in which the routers are represented by graph nodes. An
edge between two nodes exists if the routing strategy allows those two nodes to be directly
connected as part of the same anonymous circuit.

The connectivity of nodes varies widely across AC network designs, and the advantages and
disadvantages of high and low levels of connectivity have been the subject of debate for over a
decade [24].

Restricted routing proposals [25] have shown that for high-latency applications, partially con-
nected networks with certain topological characteristics (e.g., based on expander graphs) provide
optimal anonymity and latency trade-offs and mitigate certain attacks. These results further
emphasize the impact of network connectivity features for anonymous routing.

We classify anonymity networks into three categories according to their connectivity: fully
connected, mostly connected, and partially connected networks.

• We consider a network to be fully connected (�)2

2In parenthesis, we define the symbol or the keyword that is used in the comparative Tables
when nodes can potentially connect to most (or all) other nodes (our rule of thumb is that a node on average

should be able to connect to at least 95% of the other nodes; this allows us to include systems that only exclude a
small number of connections in order to prevent certain special cases from occurring).

• We call a network mostly connected (�) if its nodes can potentially connect to at least half the other nodes.

• Finally, in partially connected (@) networks nodes only connect to a relatively small subset of the whole network.

Higher connectivity in the network topology leads to better resilience (availability) against node failure, such as
Denial of Service (DoS) attacks, such resilience might have in turn a positive influence on anonymity [24].
On the other hand, eliminating connections that might induce security problems, such as the connection between two
nodes from the same IP family that may be easier to control by an adversary, but can be beneficial to anonymity.
The same holds for eliminating connections that would induce higher latency, which would, in turn, improve the
performance of the system.

– 22 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

• Connection Type. Here, we consider the direction and synchronization of connections. As far as the direction is
concerned, we consider the following options:

– A connection is unidirectional (→) if the data flow between two entities can only be in one direction.

– A connection between two entities is bidirectional (↔) if data can flow in both directions and the same con-
nection is used for sending back the response to a received message.

Typically, interactive applications, such as web browsing, require bidirectional channels, while non-interactive appli-
cations, such as email, can just close the connection as soon as the message has been forwarded. In the first case,
short-lived session keys can be setup to achieve forward secrecy properties; however, in non-interactive applications,
such as email, forward secrecy is harder to achieve.
Bidirectional circuits have the advantage that they induce less overhead in terms of circuit construction. Unidirectional
connections have the advantage that they are less vulnerable to timing attacks, as a malicious node can only observe
data flowing in one direction, which is less informative than bidirectional connections in which patterns of requests
and response are visible to all nodes in the path. However, note that in unidirectional connection, a larger number
of nodes are going to be involved in relaying the communication between a sender and a receiver.
Further, we consider whether the anonymity system involves connection synchronization:

– A connection is asynchronous (6=) if the establishment of connections and relaying of messages is initiated by
a user without any timing coordination with other participants.

– Connections are synchronous (∼=) if they begin and end at specific timings and messages are also relayed at
specific moments in time, based on some timing coordination between network entities.

Asynchronous systems are conceptually simpler as they impose fewer constraints on the activity of network partici-
pants. However, the distinct timing of actions leaks information valuable to perform traffic analysis and, for example,
reveals long-term communication patterns [26] or perform end-to-end correlation attacks [27–29].
Synchronous systems are often more difficult to engineer and come with a performance or usability penalty; more-
over, secure and reliable time becomes an additional dependency of the system, and a possible point of failure or
vulnerability to attack. However, synchronization constitutes a very powerful design feature to offer robust anonymity
guarantees in the presence of powerful adversaries because it disables trivial end-to-end correlation attacks based on
start and end times of connections [30], and other timing data that synchronization makes less granular, enabling
the aggregation of participants, connections, and events in anonymity sets. Synchronous anonymity systems were
proposed in the early 1990s by Pfitzmann et al. to anonymize ISDN telephony calls [31]. These proposals were both
feasible from an engineering perspective (compatible with the network requirements and introducing a low-efficiency
cost), and clearly spelled-out anonymity guarantees as well as full unobservability for local calls.

• Symmetry. We consider symmetry in the roles of the network entities. An anonymity system is intuitively “more
symmetric” when all the participating entities have similar roles and responsibilities, and “less symmetric” if there
are different roles, capabilities, and trust assumptions among the entities that participate in the routing.
We thus first examine the overlap between the roles of end-users who initiate communications and relaying nodes.
We distinguish three types of systems.

– We classify a system as peer-to-peer (•· · ·•· · ·•), when end-users are expected (often even obliged) to operate as
relaying nodes in order to use the AC network.

– At the other end of the spectrum, in client-server (•· · ·•) systems, users are not expected (often even forbidden)
to operate as relaying nodes on order to use the system.

– We call a system hybrid (•· · ·◦· · ·•) if it combines characteristics of both peer-to-peer and client-server systems,
i.e., end-users may or may not operate as relaying nodes.

These different levels of symmetry come with advantages and disadvantages [24]. Peer-to-peer systems can better
scale as the number of users grows, because new users also increase the capacity of the network. Further, peer-to-
peer networks are more resilient to node failures and have better availability properties. In client-server architectures,
however, it is possible to run nodes more reliably and securely (as nodes are not necessarily run by laymen end-users),
which in particular helps in handling liability issues with respect to complaints. Having end users run just client
software has a lower cost for end-users in terms of resources, and offers opportunities for simpler, and thus often more
usable, client software.

– 23 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Routing Information

We now consider the information available to the entity (or entities) that decides on the route
of a connection, and how that information is made available.

a) Network View. This determines the completeness of information available to establish a
route.

• The routing decision-maker has a complete view () of the system if routing information
about all nodes is available to her.

• The decision maker has a partial view (G#) of the system if the routing information
available to her only covers a subset of the nodes that form the AC network.

A complete view allows the decision maker to choose among the full set of nodes. However, a
partial view improves the scalability of the network, as the distribution of routing information
for the full network may consume significant bandwidth and network resources. There are
also some attacks that become possible when the routing decision makers only have a partial
view of the network. For example, route fingerprinting attacks [32, 33] are possible if each
user knows different subsets of routers. In these attacks, the initiator of a connection can be
identified by the nodes that make up the route, since typically a very small number of users
will know a certain combination of network nodes.

b) Updating. This determines how frequently routing information is updated.

• Routing information is updated periodically (�) if it is updated in predefined time
intervals.

• Routing information is updated event-based () if the updates are triggered by events
in the network other than timeouts.

• No updating mechanism is in place (7).

Second, we distinguish whether nodes are organized in a flat or a hierarchical structure with respect to routing. We
call the resulting feature the topology :

– A network has a flat (· · ·) structure if every node has the same importance and rank when making routing
decisions.

– A network has a hierarchical (D) structure if nodes have different capabilities and priorities towards the routing
algorithm.

Hierarchical structures are often introduced to improve efficiency and performance. However, a non-flat hierarchy
can make the network less resilient to attacks, as the failure of a node that is placed high in the hierarchy has a severe
impact on the performance of the network.
The third and last dimension of symmetry addresses the degree of decentralization of network services other than
(but auxiliary to) the routing itself. Note that we are not considering centralized models because they are a single
point of failure for surveillance and insecure by design.

– A network is semi decentralized (�) if it includes one or a small number of entities performing a service critical
to routing (e.g., compiling and distributing network directory information). This accounts for the fact that
especially high levels of trust placed on these entities, which constitute more of a point of failure than a simple
relay.

– A network is fully decentralized (#) if the system design does not include entities that have to be especially
trusted for the provision of functionalities that enable the routing. Fully decentralized systems have a better
distribution of trust.

– 24 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Communication Model

We finally consider features that describe the creation of anonymous routes.

a) Routing Type. This refers to the selection of nodes to determine a route.

• The routing decision is source-routed (•· · ·) if the initiator of the communication selects
the set of nodes that will form the anonymous route.

• The routing decision is hop-by-hop (· · ·•· · ·) (also called “random routing”) if the initiator
only selects the first relay node, which in turn picks the second, and so on, until the
message reaches its final destination.

Source-routing enables the initiator to pick nodes she trusts, and prevents adversaries from
biasing the node selection towards compromised nodes. A variation of the basic source-
routed model is found in some systems that provide receiver anonymity. In these systems, the
initiator and the receiver select, respectively, the first and second halves of the route, which
are joined in the middle at a rendezvous point. An advantage of hop-by-hop routing is that
even if the initiator only knows a subset of nodes, her connections might be routed throughout
the whole network, mitigating route fingerprinting attacks [32]. In literature, other node
selection strategies have been proposed, which we have not taken into consideration such
as dynamic routing schemes using distance vector routing (i.e., [?]) and link-state routing
(i.e., [?]). Such algorithms are often disregarded for AC networks because of the predictability
they offer, which is in conflict with anonymity.

b) Scheduling. This refers to the way a node serves incoming scheduling requests.

• Fair (≡) scheduling means that all types of connection are treated same.

• Prioritized () scheduling means that certain connections are given priority over others.

Prioritized scheduling can improve performance and reduce congestion. However, differential
treatment of traffic may undermine anonymity as the traffic of different priorities would be
distinguishable and thus not conform a single (larger) anonymity set. An example of prior-
itized scheduling is when the scheduling follows an economic model, which might mitigate
flooding attacks [34].

c) Node Selection. This refers to the protocol features that determine which nodes are
selected to be part of an anonymous route. The number of nodes that are selected to form the
anonymous connection can either be fixed (deterministically) or be computed probabilistically
according to some distribution.

• Node selection can either be deterministic (3) or non-deterministic (probabilistic) (7).

To characterize node selection, we consider the selection set that determines which nodes are
eligible for being on the route, and the selection (probability) distribution that describes the
likelihood of each of the nodes in the selection set being chosen for a route.

• The selection set may contain all nodes (ª) of the network.

• It may contain a security-restricted subset (!) of all network nodes, i.e., a subset that
is selected according to some security-restrictions, for example establishing that all the
nodes in a route must be in different /16 IP subnets.

– 25 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

• It may contain a network-restricted subset (m) of all network nodes, e.g., a subset aimed
at guaranteeing the quality of the communication, by for example avoiding congested
links and nodes.

• And finally, the selection set may be user-specific, considering user preferences and trust
assumptions (,).

We are left to define the selection probability with which individual nodes are chosen.

• The probability distribution that describes how nodes are selected may be uniform (�).

• The probability distribution is statically weighted, i.e., weighted based on general, static
parameters (�), for example the bandwidth of the nodes.

• The probability distribution is dynamically weighted based on state-specific dependencies
(k), for example the nodes’ response time.

Even for general parameters, weighted selection often requires frequent updates so they
reflect the current state of the network. In other words, we consider parameters that are
calculated in real-time to be dynamic biases, and parameters based on routing information
that is unchanged until the next periodic update to be static. Uniform selection typically
offers better anonymity levels, while weighted selection often improves performance.

2.2.2 Performance and Deployability

In addition to the routing characteristics identified before, we finally identify the following list
of metrics that can be used to evaluate performance and deployability characteristics of AC
protocols.

(a) Latency. In the literature, AC protocols are usually classified into two performance cate-
gories:

• Protocols with low-latency (L) incorporate no latency to the communication and typi-
cally support applications that require real-time communication (e.g., web browsing).

• Protocols with high latency (H) do not require real-time communications and support
applications that can tolerate a certain delay between requests and responses (e.g., email
communication).

• Protocols with mid latency (M) introduce a random delay and may induce a restricted
latency; hence, these protocols support applications that can tolerate a restricted delay
between requests and responses (e.g., file sharing).

(b) Communication Mode. We distinguish two kinds of communication modes, depending
on the longevity of individual connections.

• We classify protocols as connection-based () if routes between senders and receivers are
maintained for a certain amount of time and used for exchanging multiple data transfers.

• If routes are created just to send a message and no state is maintained for further
exchanges, then we classify a protocol as message-based (B).

(c) Implementation and Code Availability. This indicates whether or not a prototype of
the protocol has been implemented, and if the code is publicly available, respectively. In
both cases, the answer is either yes (3) or no (7).

– 26 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

2.3 Routing Classification of AC Protocols

In this section, we present a categorization of AC protocols. We have classified these proto-
cols into four main families: (1) Mixnet-based protocols, (2) Onion Routing-based protocols,
(3) Random Walk and Distributed Hash Table (DHT)-based protocols, and (4) DCNet-based
protocols (5) Miscellaneous, containing a few protocols that do not fit into the aforementioned
categories. A few protocols are presented in the most representative category, albeit they can
technically fall under other categories as well, e.g., Octopus and Torsk are DHT-based, but
they also use onion routing. We summarize our classification of the routing aspects in two
comparative tables (namely Table

We now discuss the AC protocols individually, starting with Mixnet-based protocols (from
Section

2.3.1 Mixes

The idea of anonymous communication was originally proposed by David Chaum in 1981 [1] and
initiated a new field of privacy research. The central concept proposed by Chaum is the use of mix
nodes, or mixes in short. Mix nodes cryptographically transform messages so that they cannot be
traced based on their content. Further, mixes shuffle (“mix”) input messages and output them
in a reshuffled form. Thereby, they hide the input-output relation between individual messages,
such that an adversary is not able to establish a correlation between input and output messages.
In Chaumian mixes, the mix node does not output the messages immediately upon arrival, but
instead collects a certain number of messages (up to a threshold) into a so-called batch, which
introduces a delay in message transmission. The mix shuffles input messages within a batch and
flushes them out ordered lexicographically.

2.3.2 Mix Selection Strategies

In order to distribute trust, Chaum proposed to relay messages through a fixed sequence of mix
nodes3 called a mix cascade. Chaum proposes a deterministic node selection without specifying
how the nodes are selected (node selection strategy) for mix cascades. He only suggests that
certain factors such as the networks topology and user’s trust can be used for mix node selection.
In a mix cascade, messages are successively encrypted (in a layered fashion) with the public key
of each mix in the cascade (see Figure

Figure 2.1: A mix cascade with two mixes

As the message is transferred from one mix to the next, the current mix peels off (decrypts)
the corresponding layer (i.e., remove one layer of encryption with its private key), obtains the
inner layer together with the corresponding address of the next destination, and sends the

3In the literature, a sequence of mixes is usually referred to as path or route.

– 27 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

message to that destination. This procedure is repeated until the last mix delivers the data to
its final destination. In order to receive replies for messages while staying untraceable (to obtain
recipient anonymity [80]), return addresses are used. Chaum proposed to encrypt the address of
the recipient of replies separately so that the respondent only needs to append the untraceable
return address to her replies. The anonymous replies are also sent similarly in a layered fashion
to the respondent. From now on, we refer to the encrypted return address block as the reply
block. Note that in the case of the anonymous replies, the recipient of the reply is the routing
decision maker.

In order to overcome a single point of failure in availability of mix cascades, free-route mix
networks have been proposed. In free-route mix networks, the route is not fixed and any se-
quence of nodes from the network can be used for relaying messages. An important aspect in
mix cascades and free-route mix networks design is how mixes are selected. Selecting mixes
for a mix cascade or for a path in a free-route mix network may follow different strategies.
Namely, a deterministic strategy, a uniformly random selection, or a variation such as random
selection biased by network state, or reputation/reliability scores. When multiple mix cascades
are available for the users to choose from, node selection has two dimensions: selecting a set of
mixes for building the cascades, and selecting a particular mix cascade for relaying the messages.
Moreover, predefined probability distributions and topological restrictions can also be taken into
account for mix selection. Danezis [25] proposed the restricted routes mix networks that lever-
age the mix cascade model (i.e., being less vulnerable to intersection attacks and being secure
against global adversaries) and free-route mix networks (i.e., being scalable). He proposes a
mix network topology that is based on constant degree graphs (sparse expander graphs), where
each mix only communicates with a few neighboring nodes based on a predefined probability
distribution. Next, we review two variants of mix selection, one for free-route mix networks and
one for mix cascades.

Mixes that fail, lead to further delays in mix networks, thus selecting reliable mix nodes can
lead to better performance. Dingledine et al. [40] proposed to identify mixes that fail and use a
reputation system for mix selection leading to more reliability and efficiency for the mix network.
In their proposed system, mixes issue receipts for each received message. After a mix has sent
a message to the next mix, if it is not receiving a receipt within a restricted time, it asks a set
of witnesses to resend the message and receive the receipt and forward it to the original mix.
The system establishes routing paths following the free-route node selection strategy, where the
mixes are selected based on their past behavior (reputation score). Such a strategy suggests use
of a non-deterministic node selection, biased towards mix nodes with high reputation scores.
Mixes that have no positive ratings at all are avoided for mix selection. The main weakness of
their scheme is that the reliability depends on the witnesses that need to be trusted, or at least
a core group of trusted witnesses.

Unlike the previous system, which relies upon trusted global witnesses, Dingledine and Syver-
son [41] proposed a mix cascade protocol with distributed trust. The system they propose uses
a reputation mechanism for rearranging mix cascades in order to obtain more reliable cascades.
The construction of such cascade utilizes communal randomness and reputation scores provided
by all of the mixes; therefore, there is no need of a trusted central authority. To mitigate the
weakness of the previous work, mix nodes of a cascade act as witnesses for the reliability of their
own cascade. All mixes submit random values to the configuration servers, which order mixes
based on their reputation score and pick the top mix nodes to create a pool of mixes. From this
pool, the mixes are selected randomly of mix cascade rearrangement. For each cascade, rout-
ing relevant information such as available bandwidth and expected waiting time are published.

– 28 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Based on this information and the reputation score of the mixes, users choose mix cascade for
their messages. Note that if the mix network is large, the network view might not be complete
for the users.

2.3.3 Variations of Flushing Strategies

Flushing algorithm (or batching strategies) specifies the precise timing at when a batch of
collected messages is flushed out of the mix in order to be simultaneously delivered to the
respective recipients. Flushing strategies are analogous to the forwarding component of the
routing and they highly influence the scheduling routing characteristic defined in Section

Mixes that delay messages individually, for example based on a certain probability distribution,
and lead to continuous flushing are called continuous mixes. One example of continuous mixes
is the Stop-and-Go mixes (SG-mix) [37] system. The initiator of a message assigns for each
mix in the path a randomly selected delay (from an exponential distribution). The independent
random delays that are assigned to each message make the performance and anonymity of each
message independent of the other users in the system. However, a drawback of their system
is that SG-mixes are vulnerable when incoming traffic is low [81]. Another type of flushing
algorithms is pool mixes that only flush out a fraction of messages of a batch at each round, and
keep the remainder in the memory of the mix (pool) for next flushing rounds. In pool mixes, the
number of messages that are forwarded may be determined by deterministic or non-deterministic
functions, and the message selection may be a uniformly random or weighted based on dynamic
conditions (e.g., based on incoming traffic). When the average delay of the messages is equal,
pool mixes offer better anonymity since the anonymity set is bigger. Another advantage of pool
mixes is that they are suitable for networks with fluctuating traffic load. Pool mixes, however,
still need to specify when messages are flushed out and therefore combined with other flushing
techniques such as threshold (described above) or time restrictions. Timed mixes enforce a
time restriction for flushing out messages. The anonymity of timed mixes is vulnerable to low
traffic since if only one message arrives before the time restriction is met, the mix provides no
anonymity measure for that message. Moreover, a combination of the aforementioned flushing
strategies can also be used by mixes [17,81]. For example, the two prominent remailers, namely
Mixmaster [42] and Mixminion [43], use timed dynamic pool mixes as flushing strategies [82],
which are a combination of timed and threshold pool flushing techniques, where the parameters
depend on the network traffic. The flushing algorithm of Mixmaster has been characterized by
generalized mixes [83]. We review these remailer protocols in Section

Next, we review some mix protocols from the literature that have been suggested for applications
such as ISDN telephone, web browsing, and anonymous emails. In order to anonymize ISDN
telephone communication with its intrinsic requirements on low-latency, Pfitzmann et al. [31]
introduced the concept of ISDN mixes. An important feature of ISDN mixes is to maintain
constant traffic in the network to avoid traffic analysis. ISDN mixes use threshold mixes. To
obtain sender and receiver anonymity, ISDN mixes use two mix cascades, each built by the sender
and receiver, respectively, which are connected either by a connecting mix; when used in long
distance communications by the long distance network operators. Initially, a broadcast takes
place to exchange the connecting details and the time where the communication takes place. To
achieve constant traffic, a number of ISDN channels, with an equal amount of messages, need to
start and end their communication at the same time (in a so-called time-slice). However, this
is time-consuming and would lead to blocking the connection, which is not suitable since ISDN
mixes use narrow-banded channels and were designed for low-latency communication. In Table

– 29 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

A real-world realization built on ISDN mixes are Webmixes (also known as JAP) [38,39] designed
for real-time Internet applications, passing the traffic to several available mix cascades. In
Webmixes, the mixes transform the messages cryptographically and re-shuffle their order before
flushing them out. However, messages are not delayed by flushing strategies. Webmixes use an
adaptation of the time-slice method introduced by ISDN mixes. Routes in Webmixes consist of
JAP proxies, which are local software at the users, one (or several) mix cascade(s) consisting
of reliable and high capacity mix nodes, and a cache-server. Web requests are sent from the
users JAP proxy through the mix cascade and the cache-server, and furthermore delivered to
the destination server. The web replies are sent back the same route and a copy of the reply
is saved at the cache-server. Hourly mix cascade information is published by so-called Info
Servers. Users can choose among the published mix cascades by the info servers. ISDN mixes,
real-time mixes, and Webmixes have a deterministic node selection to build the mix cascade,
where nodes selection for the cascades relies on the network state.

2.3.4 Prominent Applications of Mixes: Remailers

The original concept of mixes has an immediate application to high-latency remailer systems
for providing anonymous e-mail service.

Babel [36] aims at mitigating traffic analysis attacks by delaying only some messages of the
batches. Babel uses independent forward routes and return routes. Forward routes may include
a reply block (where the return route mix addresses are encrypted in a layered fashion) that
may be used by recipients for anonymous replies. Forward routes are considered to have better
anonymity; one of the reasons for this is that reply blocks enable replay attacks on anonymous
replies [84]. Babel introduces intermix detours, where mix nodes choose a random sequence of
mixes and relay the message through them before forwarding the message further to the next
mix of the original route. In Babel, the flushing algorithm uses time restrictions (intervals) and
thresholds for flushing out messages. Another technique Babel proposes to use is probabilistic
deferment, where a number of messages (determined by a biased coin) are delayed at each mix
(this is similar to pool mixes). Babel proposes to use of free-route mix networks, where mixes
are chosen uniformly random for each route by the user. However, there were no details given
how routing information is communicated to users.

Mixmaster [42] is an anonymous remailer, where mixes transform messages cryptographically
into uniform sizes by adding random data at the end of each data packet. If a message is too
large, Mixmaster splits up the message to achieve uniform sized packets and sends these packets
independently of each other through a series of mixes, which do not necessarily need to be all
the same. Only the last mix needs to be the same for all packets of one email message, which
has been split up before. Mixmaster adopts a free-route path selection, the node selection is not
specified by the protocol, though statistics on the reliability of mixes can be used to bias node
selection [25]. Though the Mixmaster protocol did not specify details about maintaining mix
information, later implementations of Mixmaster adopted an ad hoc scheme for distributing
routing information [43]. One the main weaknesses of Mixmaster is that it only guarantees
sender anonymity, since reply blocks are not used in Mixmaster.

Mixminion (or Type III remailer) [43] are widely considered as the state-of-the-art remailer. To
guarantee equal routing information for all senders, Mixminion deploys a group of redundant
and a synchronized system of directory servers, which was not considered in the Mixmaster
design. Note that we disregard the directory servers synchronization for our classification in
Table

– 30 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

2.3.5 Onion Routing

Onion routing [7] [85] is designed for anonymizing connections for applications with low-latency
constraints, such as web browsing.

MSGRouter A Router B Router C

Source Destination

Figure 2.2: The concept of onion routing

An onion routing network consists of a set of nodes so-called Onion Routers (ORs). Users
choose an ordered sequence of ORs to establish a bidirectional channel, so-called circuit, for
relaying their data through the onion routing network. The communication is encrypted in a
layered fashion and the ORs in the circuit each can decrypt their corresponding layer. When
the communication is relayed by an OR in the circuit, the OR removes the corresponding layer
of encryption and forwards the data to the next OR in the circuit (see Figure

2.3.6 Onion Routing-based Protocols

Onion routing is used in Tor [8], which constitutes an extension of the original onion routing
design, with some modifications to achieve better security, efficiency and deployability. The Tor
network, an open source and free to use the framework, consists of a large set of volunteering
routers (at the time of writing, there exist more than 7000 routers [9]). The network is mostly
connected because routers can connect to any router from the Tor network, except for connec-
tions between routers located in the same IP /16 subnet space, which are not possible. Tor’s
services are used daily by approximately 2,000,000 users [9]. Each user runs a piece of software
called Onion Proxy (OP) that manages all Tor related processes, e.g., establishing circuits or
handling connections from user applications. Tor deploys a group of well-known and trusted
authoritative servers that publish on a regular basis (typically, every hour) a list of all active
Tor nodes with their characteristics, e.g., estimated bandwidth, IP addresses, and cryptographic
keys. This list is called a consensus. After the user has obtained the consensus, the OP of the
user chooses an ordered set of usually three ORs to build a circuit. The first node in a circuit
is called the entry node, the second node is the middle node, and the last node in the circuit
is the exit node. The first node that is selected is the exit node, then the entry node of the
circuit is selected, and last the middle node of the circuit is selected. After selecting a set of
ORs, the OP contacts the entry node and builds a circuit with it. This newly created circuit
is used to contact the middle OR to extend the circuit and similarly through the middle node
the exit node is contacted to extend the circuit. The established circuit can now be used to
anonymously relay data.

In 2002, Wright et al. introduced the predecessor attack [86] on onion routing. To defend
against this and related attacks, selecting a small set of nodes was introduced for Tor [87].
Previously, each user maintained a list of 3 randomly pre-selected (so-called guard) nodes with
high bandwidth and uptime. This list was updated every 30/60 days and the user could choose
uniformly random an entry node from this list for each path construction. This has changed

– 31 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

recently because Tor is starting to let each user select only one fixed entry guard node for 9
months [88].

In the early onion routing design, it was suggested to select the nodes uniformly random [89].
Due to performance considerations, Tor’s routing policy does not select nodes with the same
probability, but rather preference is given to high-bandwidth nodes. The likelihood that nodes
are chosen for certain positions in a given route depends on the ratios of overall node bandwidths
and node such as the IP addresses and whether they can be selected as entry node or as exit
node. Moreover, some additional bandwidth weights are used to balance off the node selection.
As mentioned before, a further development in the routing policy is to disallow a communication
to pass through two nodes within the same /16 subnet IP address. The implications of these
changes with respect to structural node corruption have been recently explored by Backes et
al. [49, 90].

Next, we review two prominent attacks on Tor’s routing. Murdoch et al. have proposed a
traffic-analysis attack using timing information to identify Tor nodes and to infer traffic load
to a specific initiator. Their investigation shows a degradation of Tor’s anonymity against such
attacks. They furthermore propose some strategies to prevent the risk of such attacks, mainly
by increasing communication latency [91]. Bauer et al. have proposed a traffic analysis attack
aim at decreasing the anonymity of Tor [28]. Their attack investigates the load balancing that
is performed by Tor, where high bandwidth nodes are preferred in the node selection strategy.
They show that performance optimization impairs the anonymity of Tor against end-to-end
traffic analysis attacks.

Since Tor has been proposed, there has been a great deal of research on extending Tor’s routing
strategy. The proposed extensions to the Tor routing protocol aim mostly at improving either
the achieved anonymity of Tor, or the performance that Tor users experience.

Improvements to Tor’s anonymity have been often realized by aiming at an improved node
selection. For example, improving anonymity by using better weighting at the node selection
phase has been proposed in [48] and [49]. Involving AS-level information in the node selection has
been proposed by [23] and [44]. Moreover, offering the user a tuneup option between uniformly
random node selection (for high anonymity) and weighted random node selection with a bias
towards high bandwidth nodes (for better performance) has been suggested by Snader and
Borisov [46].

Tor’s performance problems have several causes, and hence suggested improvements aim at
different aspects of the Tor routing protocol. One cause of Tor performance is high congestion
[13, 92], often caused by bulk traffic, which induces high latency for interactive/web traffic.
Several solutions to solve the problem of high waiting times for interactive traffic have been
proposed. One possible solution is to increase the number of connections between two nodes [50–
53], which can be used to separate interactive and bulk traffic into different connections. Another
solution is to prioritize interactive traffic in the scheduling phase [54] [55]. An alternative solution
is to improve how Tor’s resources are used by improving node selection with a more realistic
estimation of the available bandwidth of nodes [48]. Furthermore, another solution to Tor’s
congestion problem is to enforce avoiding congested nodes at the node selection phase [47].
Another reason for Tor’s high latency is circuitous paths [44]. To solve this problem, node
selection strategies have been proposed that take the destination between chosen nodes into
account [44,45,48].

The scalability of Tor has also been subject to new proposals for the Tor routing protocol in the
literature. One proposal to tackle scalability issues is to give the user only the information about

– 32 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

the necessary nodes for path construction and to hide the complete view of the system from the
user by either managing Tor nodes as a DHT table and using Kademlia for node retrieval [60],
or by using private node retrieval [56].

2.3.7 Random Walks, Structured and Unstructured DHT-based Protocols

In this section, we review random walk protocols, where the communication is relayed randomly
through the network. We consider a protocol a random walk protocol if node selection is
hop-by-hop routed and a random selection. Random walk protocols are often combined with
peer-to-peer network structures.

Crowds [57] is one of the early AC systems designed for anonymous web browsing. The key design
feature of Crowds is a random peer selection. In Crowds, all nodes are grouped into so-called
crowds; all nodes within a crowd might connect to each other for relaying a communication.
Each node in the crowd is called a jondo. A so-called blender is responsible for managing and
administrating nodes. Crowds has a peer-to-peer structure since all users of the system are nodes
themselves. The user randomly selects a node and sends her message (i.e., website request).
Upon receiving the request, this node flips a biased coin to decide whether to send the request
directly to the receiver or to forward it to another node selected uniform at random. This
continues until the message arrives at the destination. The server replies are relayed through
the same nodes in reverse order. Wright et al. showed that Crowds is vulnerable to so-called
predecessor attacks [86, 93]. In order to prevent such type of attacks, Crowds suggested to
employ static route (a user keeps the route for a while) such that an attacker does not have
multiple routes to link to the same jondo [57]. However, even keeping routes static for a day is
not enough to prevent predecessor attacks [84].

MorphMix [58, 59] is a dynamic peer-to-peer AC network. Technically, MorphMix establishes
circuit-based connections using layered encryption, where the anonymous route is established
iteratively by the nodes on the route. Each node is typically only aware of a set of network
nodes, which is not necessarily covering all nodes. In order to avoid repeated connections with
the same set of nodes, a node has to forget about nodes it has not been connected and constantly
require new node information. After an initiator selects the first node, she selects randomly a
witness for each hop thereafter, randomly chosen from the nodes in her local database. She asks
the next hop to extend the route with the assistance of the witness she has chosen, where nodes
propose a set of candidate nodes for the next hop and the witness chooses one of them. To
prevent path compromise, nodes can only propose nodes with different IP prefix to her own IP
address to the witness. The witness should not be selected from the nodes to which the initiator
is connected currently to avoid initiators being identified by witness nodes. In order to mitigate
guessing whether a node was initiator by the next hop, the initiator adds random delays to her
communication before forwarding them in the tunnel establishment phase.

Efficiency is one of the main problems in random walk protocols. In the next section, we review
DHT-based protocols, which aim at efficient node lookup and selection. Random walk protocols
can employ DHT lookups to gain better efficiency (e.g., AP3 protocol [62]).

DHT-based Protocols

In distributed systems, where there are network administrators, a challenge is to locate a node.
One solution is to use Distributed Hash Tables (DHTs) to manage the distributed nature of

– 33 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

the data (relaying nodes or distributed storage). Generally, DHT refers to a trust-distributing,
structured-data management model for storing (value, key) pairs and is accompanied with key-
based lookups for locating the corresponding stored value (see Figure

DHT structures enable efficient routing even when the peers of a DHT structure keep only
information (key-value pairs) of a partial subset of all the other peers of the DHT structure; this,
in turn, leads also to improved scalability of such systems. Another important feature of DHT-
based structures is having better load balancing. For systems, where nodes have only a partial
view of the structure, hop-by-hop routing is preferable. Some AC protocols use randomness in
the routing strategy besides the classical lookup method. For example, node selection is carried
out by selecting a random key and by then using a classical lookup method (an adaptation
of Chord, Kademlia, or Pastry) to find that key. Next, we review AC protocols that use an
adaptation from Kademlia, Chord, Pastry for their node lookup (considered as structured DHT-
based protocols). We proceed by reviewing independent DHT-based routing proposals for AC
that are considered unstructured DHT-based protocols. We start with AP3 [62], a random
walk protocol aiming at providing anonymity when a large part of the nodes is compromised.
AP3 uses the same routing strategy as Crowds, with the difference that the node information
is retrieved using Pastry and that the node does not have a complete view of the system.

K V

K V

K V

Retrive (K1)

Figure 2.3: The concept of distributed hash tables

Next, we review two protocols that aim at replacing node selection of source-routed protocols
such as onion routing with structured DHT systems making the suitable to be combined with
onion routing. Salsa [63], proposed by Nambiar et al., aims at providing scalability and pre-
venting malicious colluding nodes to be able to bias routing. Salsa virtually divides nodes into
groups, which are organized in a binary tree form. For routing, simultaneous redundant lookups
and bound checking are used in order to avoid malicious nodes returning wrong addresses. The
lookup queries are carried out similar to the Chord lookup in a recursive fashion. qIn Salsa, the
routing information that is available to each node is partial; however, the tree structure allows
nodes to carry out source-routing.

McLachlan et al. have proposed Torsk [60], a peer-to-peer AC protocol, replacing Tor’s node
selection and directory service with a DHT design. It aims at providing better scalability for
Tor. Their design uses DHT tables for node selection by using a randomly chosen key that is
looked up in the table using Kademlia. To secure lookups, Torsk uses the “root certification”
approach proposed by Myrmic [97] and randomly selected secret “secret buddies.”

Panchenko et al. proposed NISAN [61], an AC protocol that aims at achieving high scalability
and preventing adversaries to bias routing. NISAN uses iterative search to select nodes randomly
for constructing anonymous paths. It uses an adaptation of Chord, where the node lookups are
aggregated. Moreover, NISAN hides the node that it is looking up, by requiring the complete
routing table and enforcing bound checking to further prevent selecting nodes from routing

– 34 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

tables, which were manipulated by malicious nodes.

Octopus [64] aims at providing security by preventing malicious nodes to be able to bias routing.
It also aims at providing anonymity by hiding which nodes have been looked up for anonymous
paths. For routing, Octopus uses iterative lookups by sending the query to the closest node
to the searched key in the local routing table and then retrieving the routing table from that
node until the node containing the corresponding value to the key is found. Node selection is
carried out in two phases. In the first phase, nodes are selected by the path initiator (user).
In the second phase, the last node selected in the first phase chooses the remaining nodes.
Therefore, Octopus is not purely a random walk protocol. After establishing anonymous paths,
Octopus splits queries to different paths and adds dummy traffic to hide the real queries among
them. Furthermore, as security measures, Octopus enforces bound checking on the received
routing tables to prevent using manipulated routing tables, and it proactively tries to identify
and remove malicious nodes.

Next, we review two file sharing protocols that use DHT for routing file requests and their
responses. They, however, use unstructured routing. Clarke et al. proposed Freenet [65], a
peer-to-peer censorship-resistant system for sharing storage space. Freenet offers strong decen-
tralization in order to provide privacy and robustness against attacks. The key design feature of
Freenet is based on storage replication and plausible deniability. Files are stored multiple times
at the nodes, are indexed by binary file keys, and can be looked up by their corresponding key.
Each node has a dynamic routing table including the node information with the stored keys. The
original design uses a heuristic deterministic routing using potentially all Freenet participating
nodes choosing mostly neighborhood nodes (currently called Opennet mode). Freenet uses an
adaptive routing using DHTs with keys that are location-independent. Three methods are used
for key construction: keyword-signed key, signed-subspace key, and content-hash key (for more
details see [65]). The routing table is updated periodically to achieve better performance. The
replication of files provides resilience against node failure and node overloads. In the Opennet
mode, a heuristic-based deterministic routing approach (a distance-directed depth-first search
with backtracking) is used [66, 98]. When a file request arrives at a node, including a key and
a value for hops-to-live, if the file is not stored locally, the node looks up the node with the
nearest key in the routing table and forwards the file request to the corresponding node. The
node receiving the request repeats the process until either the file is found or the hops-to-live is
reached. If the requested file is found, the node forwards the file to the node from which it has
received the request, stores a copy of the file locally and updates its routing table in order to
optimize routing for future requests. If the node that is contacted is not responding, the node
sends the request to the node with the second-nearest key. If that node is also unresponsive,
it contacts the third-nearest one, and so on. If the file is not retrieved within the hops-to-live
number of hops then the search is aborted and the file requester is informed. The nodes that
are forwarding the requested file back to the file requester change randomly the sender address,
providing reasonable deniability for the node that has stored the file [65]. The Opennet mode
was vulnerable to various attacks. In particular, nodes participating in Freenet were not pro-
tected, and an attacker could easily find out whether a router is a participating Freenet node.
In the Darknet mode, such shortcomings are addressed. In 2010, Freenet has been extended by
a membership-concealing Darknet mode, where trusted connection are used for routing [66]. In
the Darknet mode, the user chooses the nodes from her trusted nodes [66]. The routing table
is consisting of nodes derived from a fixed graph, which is the social graph of the node. In the
Darknet mode, the routing table is not optimized during time and cannot include nodes that are
not derived from the social graph of the node. Since the Darknet mode is based on the trusted

– 35 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

network of a user, the structure of the network is following Kleinberg’s small world model [99].
The relaying nodes only know their predecessor and the successor in order provide privacy. In
Freenet, the data is encrypted using symmetric encryption. The key is transferred either with
the address or in the header of the file request [65].

GNUnet [67] was originally designed as a peer-to-peer censorship-resistant content sharing sys-
tem, but has been expanded into other applications such as anonymous file sharing using the
GAP protocol [68]. GAP aims at providing requester and responder anonymity for file search
and file sharing. In GAP, a node that is relaying a message in the forward route has the option
to “drop out” from the reply route (for example due to network state and its own heavy load)
and when the reply is sent back, the node is over-jumped. Moreover, when queries arrive at
the nodes, they can be dropped if the node has already too much load. Routing in GAP uses
credit rating scheme, where relaying requests and replies increases the credit and sending uses
the credit. The credit score is local at each node. In GAP, the file request can either be sent
to newly selected nodes or to a node where there is already a connection established. This is
decided based on the node’s current CPU and load, the credit rating and a random factor. The
node selection is random with a bias towards nodes, which have a closer identifier to the hash
value of the file that is queried. Moreover, the network activity is also taken into account in node
selection (giving preference to “hot paths”). Unlike Freenet, GAP uses a time-live restriction
to avoid routing loops; when time-to-live is reached, the query is forwarded directly to the des-
tination with a certain probability. For flushing in GAP, nodes use a combination of timed and
threshold mixes for flushing batches of messages, where the time restriction is selected randomly.

2.3.8 DC Networks

The idea of DCnets (Dining Cryptographers Networks) was first proposed by Chaum [69] and
later revisited [70, 71]. DCnets are an important alternative to mix-based schemes and their
extensions due to their resistance against traffic analysis attacks. DCnets offer non-interactive
anonymous communication using secure multi-party computation with information-theoretically
secure anonymity, guaranteeing sender anonymity while enabling all participants to verify the
final outcome. The key concept is that every participant outputs a message that is disguised by
XORing them with the keys the participants are sharing pairwise with other participants. The
participants combine their outputs and share the output with each other (i.e., they broadcast
their output). When the encrypted messages are combined, the keys cancel each other out, and
the message is revealed; however, the sender remains unknown (see Figure

The DCnet concept can be generalized, to transmit large messages simply by repeating the
protocol as desired [71]. DCnet expects all participants to be involved in every run of the
protocol and requires pairwise shared keys between the participants. Moreover, every participant
needs to disclose the same number of bits in each round. The participants can share the keys
for every round, or they can repeatedly use the same key; this makes DCnet unconditionally or
computationally secure, under the assumption that the protocol is executed correctly. Moreover,
DCnets also have practical challenges, such as the message transmission or avoiding collisions
(unintentional) and disruptions (intentional collisions). Since a collision invalidates the message
(bit), when only one-bit messages are sent, just one of the participants may transmit at a time
(although all participants are involved in each round). If multiple participants want to send
messages within a block of communication, they need to occupy different positions within the
block. One proposed solution is to randomly pick a position (slot) in the block that is going
to transmit and reserve the position in earlier rounds (pre-transmission round). However, this

– 36 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 2.4: The concept of DC network

might only shift problem and again in the reservation round collisions might occur. The basic
DCnet does not prevent any disruption, such as actively blocking participants from sending the
message; hence, it is susceptible to anonymous DoS attacks. To partially address this problem,
some solutions to detect disrupters in DCnets have been proposed in the literature [100, 101].
Furthermore, recovering from a fault is only possible by re-broadcasting the messages.

Chaum proposed in his DCnet to either use a ring topology for sharing the messages or use
broadcast to transmit messages to all participants at once. The ring topology solution has a the
problem of detecting the disruptions because malicious participants can adapt their answers to
other participants answers to avoid being detected. Basically, if two users submit reverse bits,
they cancel each other out and the disruptions remain undetected. Other topologies that have
been proposed for DCnets are tree [102] or star topologies [103]. The broadcast solution has
the problem of being expensive and introduces the problem of collision. The major limitations
of DCnet are the strong assumptions that they require: first, participants follow the protocol
honestly and are expected not to collude; second, unconditional sender anonymity is guaranteed
only if there is an unconditional secure channel between every pair of participants. Furthermore,
DCnets are vulnerable to Sybil attacks [104].

Herbivore [72] is built on top of DCnets aiming at better efficiency and scalability and managing
churn. To improve scalability, Herbivore breaks down the participants into smaller groups called
cliques, a message can only be traced to a clique but not to the corresponding sender/receiver
within their clique. Within a clique, participants are organized in a star topology, where the
central node relays all messages between members of a clique. The central node is changed for
each new round of communication. For inter-clique communication, the cliques are connected to
each other in a ring topology. For locating cliques, Herbivore employs the Chord protocol [95].
In order to mitigate intersection attacks, nodes departure from a clique can be vetoed by the
node that is in the middle of a long-run transmission.Although authors claim low-latency, we
decided to classify the protocols as being high latency since it contains a central node that has
to wait for messages from all other nodes in the clique. One of the main weaknesses of Herbivore
is that smaller anonymity sets are achieved and the applications have a time restriction based
on the cliques lifetime. Moreover, the star topology makes the design vulnerable to DoS attacks.

Dissent (Dinning-cryptographers Shuffled-Send Network) [73] is a latency-tolerant protocol for
AC. It is the first protocol that provides accountability for a small-size group, and also maintains
integrity. Dissent is built on top of DCnets, but relaxes the aforementioned assumption that all
participants follow the protocol correctly. In Dissent, anonymous communication is guaranteed

– 37 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

for members of a group. Apart from the multi-party computation and layered encryption to hide
the sender of the messages, to solve the collision problem, each group member influences the
position of the messages of other group members in the final transmission block. Dissent consists
of two sub-protocols: a shuffle protocol and a bulk protocol, In the bulk protocol, each member
creates an assignment table for each of the other member, so-call message descriptors. The
shuffle protocol is used to shuffle these messages descriptors. Based on these message descriptors,
each participant inserts her messages to a cipher stream, which is a slice of the message block
that needs to be transmitted. The shuffle protocol functions similar to mix cascades, where each
participant receives the set of message descriptors (which were encrypted in a layered fashion)
and shuffles them and passes them over to the next participant. Thereafter, each member
transmits one cipher stream. When these cipher-streams are combined, a vector of concatenated
messages is obtained. Dissent uses broadcasting for intermediate runs of its protocols such as
sharing keys. However, the final cipher streams are not necessarily broadcasted, and can be sent
to a single group member or a non-member node. Hence, Dissent primarily only guarantees
sender anonymity and further protocol setup details determine whether recipient anonymity is
also achieved. To mitigate untraceable DoS attacks (disruptions), go/no-go messages and blame
phases are used in Dissent, which identify collisions and malicious participants and enables
accountability.

Wolinsky et al. have extended Dissent to improve scalability and efficiency [74]. They propose
to group participants and use designated servers, where the group members share keys with
these servers instead of each other (the network consists of server nodes and participant nodes).
In the basic version of Dissent, the group size was restricted; however, in the extended version,
the participants may form larger groups, though the servers consist of a significantly smaller
group, while still being not completely centralized to avoid the single point of failure. Hence,
the extended Dissent builds an asymmetric topology for key sharing. At least one of the servers
needs to be honest to prevent compromises. While latency introduced at the shuffle protocol
made the basic version of Dissent unsuitable for interactive and low-latency applications, the
extended Dissent, if used in a local-area setting, can be suitable for low-latency communication.

2.3.9 Miscellaneous Protocols

Tarzan [76, 77] is a peer-to-peer anonymous fully decentralized IP-level network overlay. All
participants are peers; they are all potential originators of traffic, and also potential relays.
Tarzan nodes do not implement any mixing strategies and simply forward incoming traffic.
After the initiator node selects a set of nodes (preferably from existing connections from previous
communication rounds) to form a route through the overlay network, a tunnel via these nodes is
established for relaying communication. Unlike the early design of the protocol [76], where the
peers only needed to know about a random subset of nodes, the final version [77] introduces a
gossip-based protocol based on the Name-Dropper protocol [105], where more node information
is requested from randomly chosen nodes. The aim is to gain information about all available
servers in the network to avoid attacks that are facilitated due to churn, such as fingerprinting
attacks [32]. Node information is stored in a ring model and lookups are carried out using the
Chord algorithm [95]. The initiator only selects nodes randomly from distinct IP subnets, a
three layer hierarchy selection is used to make sure nodes are from distinct subnets.

I2P [106] is a distributed overlay network, originally aimed at enabling anonymous communica-
tion between two nodes within the I2P network. Note that currently there is a service built on

– 38 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

top of I2P to allow getting connected to web servers [107]. Currently, the number of I2P routers
is estimated to be between 40,000 and 50,000 [108].

The network metadata (containing router contact information and destination contact informa-
tion) is distributed among a subset of all nodes so-called floodfill nodes, and is managed using
DHT structure by employing Kademlia for node lookups. At bootstrapping, users obtain a list
of I2P peers from websites and then contact two floodfill routers from the list and requests router
information that is available to that floodfill node. In order to mitigate that malicious flood-
fill nodes are not biasing node selection by providing manipulated router information, router
information is stored at eight floodfill nodes [109].

Nodes are categorized into tiers (called peer profiling) based on the previous performance (re-
sponse times) and reliability (uptime) of nodes. Three main types of tiers are defined in I2P:
high capacity, fast, and standard. The routing protocol of I2P, so-called Garlic Routing, is
source-routed with a randomized node selection biased towards faster nodes [79].

In I2P, communication channels are unidirectional and called tunnels; tunnels for outgoing traffic
are called outbound and tunnels for incoming traffic are called inbound. Each user maintains
a number of inbound and outbound tunnels; outbound inbound tunnels of other users can be
retrieved from the floodfill nodes. When users want to relay communication to each other,
the nodes in the chosen inbound and outbound tunnels shape the relaying route. Moreover,
there are two types of tunnels in I2P – client tunnels and exploratory tunnels – for which
different peer selection strategies are used. Client tunnels are used for application traffic, and
exploratory tunnels are used to send administrative information. For client tunnels, peers are
selected randomly from the nodes that are categorized as fast-tier nodes, which is done locally
by the client using previous measurements. For exploratory tunnels, peers are selected randomly
from the set of nodes that are categorized as standard tier.

The communication through I2P is protected using garlic encryption. Garlic encryption is very
similar to onion encryption, with the difference that multiple data messages may be contained
in a single garlic message.

2.4 Discussion

2.4.1 Routing Features: Commonalities and Differences

In this section, we discuss commonalities and differences between the investigated classes of
AC protocols with respect to their routing characteristics. The discussion is grounded on our
classification presented in Tables

Mixnet-based protocols, as classified in Table

Generally speaking, mix cascade networks employ rather synchronized connection because mes-
sages are sent in batches and mostly depend on their flushing algorithms in a timely schedule.
For example, timed mixes lead to synchronized message transmission. Recall that the flushing
algorithm in Mixmaster and Mixminion partially uses time restrictions. However, we consider
these two protocols with asynchronous message transmissions due to the possibility that low
traffic might lead to a threshold restriction instead of a time restriction. As for free-route sys-
tems, in SG-mixes, message transmission is also synchronized due to assigned time ranges by
the routing initiator. Nevertheless, these timing ranges are not coordinated with other users

– 39 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

or mix nodes. Dingledine et al.’s proposal for a reputation system for mixnets [40] also uses a
synchronized message relaying to enable verifying the correctness of the routing process.

In the mix protocols, node management has not been always specified in the protocol descrip-
tion. For example, in Chaumian mixes, the view of the routing decision maker is not discussed;
however, it can be implicitly deduced that it is complete. The anonymous remailer Mixmaster
does not discuss node management either; however, the later implementation uses ad hoc sys-
tems, which suggests a partial view [43]. The remailer Mixminion defines a node management
strategy to insure a complete view for the routing decision maker.

Source-routing is one of the inherent routing features of mix cascade protocols because the
routing paths are fixed beforehand. Choosing the mixes for the mix cascade might be either
deterministic such as in the case of Webmixes or non-deterministic such as in the case of Reliable
mix cascades.

Flushing algorithms do apparently impact scheduling. Note that some protocols in Tables

As mentioned in Section

All mix cascade protocols are high latency AC networks and have a message-based communi-
cation mode; exceptions are ISDNs, Real-time mixes, and Webmixes, which are designed for
low-latency applications, such as web browsing. Note that the latencies might be restricted, for
instance in case of Stop-and-go mixes, where the delays are randomly selected from a restricted
time range.

Onion routing protocols, as classified in Table

One inherent routing feature of onion routing protocols, due to preventing additional latency, is
to have no synchronization, which makes such protocols sensitive to timing attacks and global
adversaries. Another inherent feature is that all onion routing protocols have a client-server
model, which improves their usability and leads to a higher number of users, thus contributing
to better anonymity for onion routing protocols [111]. They are characterized as complete
network view due to a central authority, which distributes the list of Tor routers. One exception
is [56], which realizes private node retrieval and thereby constrains the decision maker’s view of
the network. A complete view helps against adversary biasing node selection and is preferred
in source-routing in order to prevent the decision maker to choose from a smaller set of nodes.
Further inherent routing features concerning the communication model include routing type,
scheduling, determinism in the node selection, and the selection set. The exceptions here are [54,
55], where they suggest a prioritization at the scheduling phase in favor of interactive traffic in
order to reduce delays that interactive users might experience.

Node selection in all onion routing-based protocols is non-deterministic. This is important since
the Tor network consists of volunteers and it is very likely to have a fraction of malicious nodes
among them. A non-deterministic node selection reduces the chances of consistently selecting
malicious nodes. Since the adversary is assumed to be local, a non-deterministic node selection
makes targeted surveillance harder.
Furthermore, the node selection probability is generally weighted using static parameters, ex-
cept for a few approaches that dynamically adjust weights, e.g., for balancing security versus
performance [46] and for avoiding congestion [47, 53]. Onion routing protocols are low-latency
and have circuit-based communication mode, which are both inherent routing features of these
protocols. Although we classify Tor as a protocol where the routing decision maker has a com-
plete view, it is worth mentioning that the unlisted relays, known as bridges, are not part of
this view.

– 40 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Next, we discuss random walk protocols and DHT-based protocols. Crowds are Morphmix are
two of the early random walk protocols that were proposed for anonymous communication.
However, they present conceptual differences in terms of routing features. Both Crowds and
Morphmix have fully connected topologies since every node may build a connection with every
other node, resulting in better availability of the system, which leads to a bigger attack surface
for timing attacks.

The path length in Crowds may vary and is determined in a non-deterministic manner to
make simple timing attacks harder for external, local, and passive adversaries. Still, this does
not necessarily hold for the case that at least one of the nodes in the path is malicious. In
Morphmix, the initiator does not select the nodes of the route herself, rather decides on the
number of nodes and establishes the connection.

Crowds is semi-decentralized because routing information of nodes is distributed by a central
entity (the blender), which introduces a single point of failure with respect to node administra-
tion. Morphmix, however, has a fully decentralized structure. The network view is complete in
Crowds, which, on the one hand, protects Crowds from eclipse attacks and on the other hand, is
important since Crowds has a hop-by-hop routing type that makes the node selection sensitive
to be biased by adversaries. In Morphmix, the network view is partial, and therefore, witnesses
were introduced to prevent the biased node selection. Moreover, an inherent feature of random
walk protocols is that the node selection is non-deterministic. In Crowds, each node is chosen
from the set of all nodes based on a geometric distribution [112]; whereas, in Morphmix, the
initiator knows a subset of nodes.

An inherent routing feature of DHT-based protocols is partially connected topology and a partial
network view. The routing information is distributed among nodes and no single node has the
complete list. Such a design increases the scalability of the protocols. A partially connected
network topology makes DHT-based protocols less resilient against DoS attacks, which aim
at disconnecting the network as much as possible compared to onion routing protocols. The
connection direction is bidirectional for the majority of protocols with two exceptions. The
exceptions are the file sharing applications Gnunet and Freenet Opennet mode.

Generally, DHT-based protocols are fully peer-to-peer protocols. There are two exceptions in
this category: namely, Torsk and Salsa, where the first one has a hybrid role structure while
the latter one allows both hybrid and fully peer-to-peer role structures. For being partially
connected, DHT-based protocols provide a partial view of the network to the routing decision
maker. Note that this may introduce a series of attacks. Examples of attacks against protocols
that provide only a partial view of the network to the routing decision maker are route finger-
printing attacks [32], and route bridging attacks [33]. Another series of attacks, which might be
possible due to a partial network view, are attacks that aim at disconnecting target nodes from
the rest of the network, such as eclipse attacks [113].

Most of the DHT-based protocols are characterized with a hop-by-hop routing type. Exceptions
are NISAN, Salsa, and Octopus, with source-routing. In Octopus, there are two decision makers
for node selection; the path initiator who decides only about a segment of the path and the last
node of that segment, which initiates the rest of the path. In our study, we could not find much
information about the scheduling of DHT-based protocols, in particular for protocols that have
not been deployed. Most of the DHT-based protocols have non-deterministic node selection,
again here exceptions are the file sharing applications, where the routing path does not need to
be anonymous.

The set selection for DHT-based protocols is, in most cases, all nodes within the routing table

– 41 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

(i.e., all nodes available to the decision maker). However, there are two exceptions: Torsk, where
the set selection is restricted by security and network restrictions, and Freenet in the Darknet
mode, where the set selection is based on trust assumptions of the user. For most of DHT-
based protocols, the selection probability is uniform, exceptions are Freenet and Gnunet. Both
protocols do not aim at providing unlinkability [80] nor they hide that a user is participating in
the network. Nevertheless, they hide the role of the peer in the network. Most of the DHT-based
protocols are message-based except Torsk, AP3, and Salsa.

Next, we discuss the DCNets protocols. DCNet-based protocols, as classified in Table

In order to improve efficiency and performance, some DCNet-based protocols [72, 74, 75] have
been proposed, which vary in their routing features. Unlike the first group, in these protocols,
the network structure is partially connected. For example, in Herbivore, participants are orga-
nized in star topologies, which are then connected in a ring topology. The organization of the
nodes yields a hierarchical structure for the second group of DCnet protocols. Moreover, in the
extended version of Dissent, users do not share keys with each other but rather with designated
servers. Furthermore, the new versions of DCnet-based protocols enforce network restrictions
to the selection set in order to increase efficiency and performance.

We conclude this part of the discussion with miscellaneous protocols. Tarzan protocol originally
had a partially connected topology that was due to its partial network view of the route initiator.
However, in the later version of Tarzan, a gossip-based strategy has been proposed to have a
complete view for the route initiator, which leads to a fully connected topology as marked in
Table

The connectivity of I2P is similar to onion-routing protocols due to the same restriction for
node selection. However, note that since the network view is not necessarily complete in I2P,
the connectivity might be slightly less than onion routing-protocols. I2P uses a unidirectional
connection direction, which reduces the timing data that a single relay can have, however, more
relays are going to be involved in the communication between a sender and receiver. The routing
information of I2P is managed in DHT-like fashion, and each database node (floodfill peer) has a
slice of the information [79], which might enable adversaries to carry out eclipse attacks targeting
floodfill nodes [109].

The connectivity of I2P is similar to onion routing protocols due to the similarities for the node
selection. I2P is characterized with unidirectional connection, which reduces the timing data
that a single relay can have. However, multiple relays participate in the communication between
a sender and receiver. The routing information of I2P is managed in a DHT-like fashion. Each
database node (floodfill peer) has a slice of the information [79], which could enable adversaries
to carry out eclipse attacks targeting floodfill nodes [109].

Since a user obtains node information from more than one floodfill node (up to eight), the union
of this information might cover most of the I2P network and give the decision maker an almost
complete view. I2P uses a source-routing approach, allowing the users to choose nodes that
are faster. The selection probability in I2P is non-deterministic with a bias towards nodes that
are profiled as fast responding nodes. Response times of these nodes differ among users; hence,
timing attacks are more difficult to mount compared to Tor, where the node selection is biased
using publicly known information [114]. Since response times are continuously measured, we
have marked the selection probability with a bias based on dynamic restrictions. At the node
level, I2P nodes use a prioritized scheduling mechanism, where each task has “bid”, and the
task with the lowest (best) bid is served first [115].

– 42 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

2.4.2 Correlation, Conflicts, Trade-offs, and Applications

In this section, we address correlation (i.e., dependencies and conflicts), and trade-offs between
routing characteristics of AC networks. First, we review direct and indirect correlations of
routing features by comparing them with each other. We conclude this section with a discussion
about the relevance of specific routing characteristics for certain applications.

Table 2.2: Overview of the adversary definitions, focus of routing feature, and challenges that our
four routing classes face
Routing Class Adversary Type Routing Feature in Focus Challenges

Mixnet Global & active Forwarding (scheduling) & node management (topology) Traffic analysis attacks, such as flooding attacks
Onion routing Local & active Node selection Traffic analysis attacks, i.e., timing attacks
Random Walks (DHT) Local & active Node selection & transfer of routing information Partitioning attacks & biasing node selection
DCnet Global & passive Forwarding Collision and disruption

We have defined the topology only based on connectivity of relaying routers (see Section

There is an evident correlation between hierarchy and topology of AC networks. A hierarchical
AC network does not have a fully connected network structure. For example, Herbivore, which
has a hierarchical routing strategy, has a partially connected topology. Moreover, the network
view of the routing decision maker can have an influence on the topology of the AC network.
Generally speaking, a partial network view might lead to a partially connected network topology
for the AC network because the routing decision maker might have difficulties accessing routing
information of certain nodes. This holds for random walk and DHT-based protocols. One
exception is demonstrated by PIR-TOR, which uses PIR to keep the network view minimal,
albeit the topology is fully connected. Therefore, the correlation between topology and the
network view depends on further factors. For example, if the topology is partially connected, it
might be that the routing decision maker has a partial view, but it also might be due to some
other routing restrictions.

We also observe a correlation between topology and selection set. Namely, restrictions in the
selection set lead to reduced connectivity of the network topology. For example, in Restricted
Route mix networks, the network view is complete; however, connectivity is restricted due to
restrictions in the selection set, which leads to a partially connected network topology.

Although the synchronization of connections is not directly correlated to scheduling, it depends
on the forwarding strategy of the particular nodes. As mentioned in Section

AC networks with a hierarchical structure have partially connected network structure (i.e.,
Herbivore and the extended version of Dissent). By definition, hierarchical organization of
nodes restricts the selection set.

Node management is more challenging in fully decentralized AC networks. Therefore, obtaining
a complete view and a periodic updating of routing information is more difficult. When the
network view of the routing decision maker is partial, often source-routing has the advantage
to prevent the bias of malicious nodes and partitioning attacks. Thus, AC protocols that use
this combination need to employ a secure node selection policy in their protocol. Examples
of such protocols are Octopus and Morphmix. Octopus uses bound checking and proactively
identifies malicious nodes; while, the latter one randomly selects witnesses to prevent bias in
node selection. A partial network view also restricts the selection set because the routing decision
maker can select only nodes that it is aware of.

Clearly, flushing algorithms also influence scheduling. For example, pool mixes can be defined
to induce prioritized scheduling. There is also a correlation between scheduling and latency

– 43 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

because in a prioritized scheduling algorithm, some type of traffic is delayed.

Flushing algorithms also influence latency. Timed mixes by themselves do not necessarily influ-
ence latency. However, they might induce latency if long time restrictions have been selected.
Same with the threshold mixes, when the incoming traffic is low compared to the threshold that
has been set up. There is also a correlation between latency and communication mode. High
latency AC networks usually use a message based communication mode and vice versa. This is
because connections are not going to be used further (e.g., replies are not going to be sent in a
short time); therefore, setting up a circuit is unnecessary.

Next, we compare our four main groups by discussing their applications. Mixnets are designed
to be secure against traffic analysis and global adversaries by aggregating messages into batches.
However, they are vulnerable to the collusion of mixnets and flooding attacks [82], in case if
there are not enough (honest) users. Moreover, Mixnets’ resilience against traffic analysis comes
with a price and makes them more appropriate for high latency applications, such as emails and
electronic voting.

Onion routing protocols, such as Tor, are more efficient (in particular faster) and have little
computational overhead, making them suitable for low-latency applications, such as web brows-
ing. Tor also leverages a large number of volunteer nodes. Almost all of these nodes are known
to the routing decision maker. However, the complete network structure for the routing decision
maker can limit scalability. Moreover, Tor is considered to be only secure against local adver-
saries and it is vulnerable to traffic analysis attacks [91,116–120], in particular if the adversary
can access both ends of the communication.

Random walk protocols and protocols using DHT are designed rather for fully peer-to-peer net-
works, where the network view is incomplete. Having a fully peer-to-peer network motivates
the growth of the network and helps scalability. Therefore, they are suitable, for instance, for
anonymous file sharing, where the nodes have to dedicate a considerable amount of resources.
However, being fully peer-to-peer is considered to affect the usability of the protocol. Unfortu-
nately, this might lead to a decrease in the number of users of such systems and in turn reduce
anonymity. Last but not least, classic DCnets provide information-theoretic anonymity but
some of them require a restricted setting, where all users or nodes need to be honest. The clas-
sic DCnets were also not resilient against DoS attacks. Moreover, DCnets tend do have a large
communication overhead and do not scale well. Even Dissent, which employs a client-server
approach for better scalability, can only scale up to a few thousand clients [74]. Therefore, they
are more suitable for applications, such as micro-blogging, but at a small scale.

In Table

2.5 Concluding Remarks

In this work, we classified anonymous routing characteristics. We identified main criteria groups,
each with several routing features and dimensions tackling various aspects routing decisions in
AC protocols. Moreover, we shortly described and then carefully evaluated the bulk of existing
AC protocols under our classification. Furthermore, we discussed the relevance between routing
decisions that are made in such networks and their influence on anonymity and security. We
have learned several lessons from conducting our survey. On the one hand, security, anonymity,
scalability, and performance goals that are favored for anonymous communication are very hard
to reach altogether, simply because the routing decisions, which support each of these goals,

– 44 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

often contradict each other. This is especially true for achieving strong anonymity and good
performance, which is still an open problem. On the other hand, routing aspects are related to
each other, for example, a partial view of the system (in the routing information) often supports
the hop-by-hop routing. Therefore, it is very hard to separate the various routing aspects from
one to another protocol. We observe that making certain routing decisions leads often to a trade-
off between security, anonymity, scalability, and performance goals. Finally, our classification
uncovers which routing decisions have to be tailored to the security, anonymity, scalability, and
performance goals that are necessary for a specific use case of a given AC protocol.

– 45 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 46 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,” Com-
mun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[2] K. Sako and J. Kilian, “Receipt-free Mix-Type voting scheme - A practical solution to
the implementation of a voting booth,” in Advances in Cryptology - EUROCRYPT ’95,
International Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, May 21-25, 1995, Proceeding, pp. 393–403, 1995.

[3] M. Jakobsson, A. Juels, and R. L. Rivest, “Making mix nets robust for electronic voting
by randomized partial checking,” in Proceedings of the 11th USENIX Security Symposium,
San Francisco, CA, USA, August 5-9, 2002, pp. 339–353, 2002.

[4] R. Dingledine, M. J. Freedman, and D. Molnar, “The free haven project: Distributed
anonymous storage service,” in Designing Privacy Enhancing Technologies, International
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pp. 67–95, 2000.

[5] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-evident,
censorship-resistant, and source-anonymous web publishing system,” in 9th USENIX Se-
curity Symposium, Denver, Colorado, USA, August 14-17, 2000.

[6] M. Waldman and D. Mazières, “Tangler: a censorship-resistant publishing system based
on document entanglements,” in CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, Philadelphia, Pennsylvania, USA, November
6-8, 2001., pp. 126–135, 2001.

[7] D. Goldschlag, M. Reed, and P. Syverson, “Hiding routing information,” in Information
Hiding (R. Anderson, ed.), vol. 1174 of Lecture Notes in Computer Science, pp. 137–150,
Springer Berlin Heidelberg, 1996.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” in Proceedings of the 13th Conference on USENIX Security Symposium - Vol-
ume 13, SSYM ’04, pp. 303–320, USENIX Association, 2004.

[9] T. T. Project, “Tor metrics.” https://metrics.torproject.org/. Last accessed: Au-
gust 05, 2015.

[10] E. Erdin, C. Zachor, and M. Gunes, “How to find hidden users: A survey of attacks on
anonymity networks,” Communications Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–1,
2015.

– 47 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[11] K. Sampigethaya and R. Poovendran, “A survey on mix networks and their secure appli-
cations,” Proceedings of the IEEE, vol. 94, pp. 2142–2181, December 2006.

[12] B. Conrad and F. Shirazi, “Survey on Tor and I2P,” in ICIMP, pp. 22–28, July 2014.

[13] M. AlSabah and I. Goldberg, “Performance and security improvements for Tor: A survey.”
Cryptology ePrint Archive, Report 2015/235, 2015.

[14] J. Ren and J. Wu, “Survey on anonymous communications in computer networks,” Com-
puter Communications, vol. 33, no. 4, pp. 420–431, 2010.

[15] M. Edman and B. Yener, “On anonymity in an electronic society: A survey of anony-
mous communication systems,” ACM Computing Surveys (CSUR), vol. 42, pp. 5:1–5:35,
December 2009.

[16] G. Danezis and C. Dı́az, “A survey of anonymous communication channels,” tech. rep.,
Microsoft Research, 2008.

[17] A. Serjantov, “On the anonymity of anonymity systems,” tech. rep., University of Cam-
bridge, Computer Laboratory, October 2004.

[18] J. Raymond, “Traffic analysis: Protocols, attacks, design issues, and open problems,”
in Designing Privacy Enhancing Technologies, International Workshop on Design Issues
in Anonymity and Unobservability, Berkeley, CA, USA, July 25-26, 2000, Proceedings,
pp. 10–29, 2000.

[19] P. Bell and K. Jabbour, “Review of point-to-point network routing algorithms,” Commu-
nications Magazine, IEEE, vol. 24, pp. 34–38, January 1986.

[20] L. M. Feeney, “A Taxonomy for Routing Protocols in Mobile Ad Hoc Networks,” 1999.

[21] X. Zou, B. Ramamurthy, and S. Magliveras, “Routing techniques in wireless ad hoc net-
works - classification and comparison,” in Proceedings of the Sixth World Multiconference
on Systemics, Cybernetics, and Informatics (SCI 2002, 2002.

[22] N. Feamster and R. Dingledine, “Location diversity in anonymity networks,” in Proceed-
ings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04, (New
York, NY, USA), pp. 66–76, ACM, 2004.

[23] M. Edman and P. Syverson, “As-awareness in Tor path selection,” in Proceedings of the
16th ACM Conference on Computer and Communications Security, CCS ’09, (New York,
NY, USA), pp. 380–389, ACM, 2009.

[24] R. Böhme, G. Danezis, C. Dı́az, S. Köpsell, and A. Pfitzmann, “On the PET workshop
panel mix cascades versus peer-to-peer: Is one concept superior?,” in Privacy Enhancing
Technologies (D. Martin and A. Serjantov, eds.), vol. 3424 of Lecture Notes in Computer
Science, pp. 243–255, Springer Berlin Heidelberg, 2005.

[25] G. Danezis, “Mix-networks with restricted routes,” in Privacy Enhancing Technologies,
Third International Workshop, PET 2003, Dresden, Germany, March 26-28, 2003, Re-
vised Papers, pp. 1–17, 2003.

– 48 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[26] G. Danezis, “Statistical disclosure attacks,” in Security and Privacy in the Age of Un-

certainty, IFIP TC11 18th International Conference on Information Security (SEC ’03),
May 26-28, 2003, Athens, Greece, pp. 421–426, 2003.

[27] B. Levine, M. Reiter, C. Wang, and M. Wright, “Timing attacks in low-latency mix
systems,” in Financial Cryptography (A. Juels, ed.), vol. 3110 of Lecture Notes in Computer
Science, pp. 251–265, Springer Berlin Heidelberg, 2004.

[28] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-resource routing
attacks against Tor,” in Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society, WPES ’07, (New York, NY, USA), pp. 11–20, ACM, 2007.

[29] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “Correlation-based traffic analy-
sis attacks on anonymity networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 7,
pp. 954–967, 2010.

[30] S. Murdoch and P. Zielinski, “Sampled traffic analysis by internet-exchange-level adver-
saries,” in Privacy Enhancing Technologies (N. Borisov and P. Golle, eds.), vol. 4776 of
Lecture Notes in Computer Science, pp. 167–183, 2007.

[31] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “Isdn-mixes: Untraceable communication
with very small bandwidth overhead,” in Kommunikation in verteilten Systemen, vol. 267
of Informatik-Fachberichte, pp. 451–463, Springer Berlin Heidelberg, 1991.

[32] G. Danezis and R. Clayton, “Route fingerprinting in anonymous communications,” in
Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE International Conference on,
pp. 69–72, IEEE, 2006.

[33] G. Danezis and P. Syverson, “Bridging and fingerprinting: Epistemic attacks on route
selection,” in Proceedings of the 8th International Symposium on Privacy Enhancing Tech-
nologies, PETS ’08, (Berlin, Heidelberg), pp. 151–166, Springer-Verlag, 2008.

[34] C. Grothoff, “An excess-based economic model for resource allocation in peer-to-peer
networks,” Wirtschaftsinformatik, vol. 3-2003, June 2003.

[35] A. Jerichow, J. Müller, A. Pfitzmann, B. Pfitzmann, and M. Waidner, “Real-time mixes:
a bandwidth-efficient anonymity protocol,” IEEE Journal on Selected Areas in Commu-
nications, vol. 16, no. 4, pp. 495–509, 1998.

[36] C. Gülcü and G. Tsudik, “Mixing email with babel,” in 1996 Symposium on Network and
Distributed System Security, NDSS ’96, San Diego, CA, February 22-23, 1996, pp. 2–16,
1996.

[37] D. Kesdogan, J. Egner, and R. Büschkes, “Stop-and-Go-MIXes providing probabilistic
anonymity in an open system,” in Information Hiding, Second International Workshop,
Portland, Oregon, USA, April 14-17, 1998, Proceedings, pp. 83–98, 1998.

[38] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A system for anonymous and
unobservable internet access,” in Designing Privacy Enhancing Technologies, International
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pp. 115–129, 2000.

– 49 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[39] O. Berthold, H. Federrath, and M. Köhntopp, “Project anonymity and unobservability in
the internet,” in Proceedings of the Tenth Conference on Computers, Freedom and Privacy:
Challenging the Assumptions, CFP ’00, (New York, NY, USA), pp. 57–65, ACM, 2000.

[40] R. Dingledine, M. Freedman, D. Hopwood, and D. Molnar, “A reputation system to
increase MIX-Net reliability,” in Information Hiding (I. Moskowitz, ed.), vol. 2137 of
Lecture Notes in Computer Science, pp. 126–141, Springer Berlin Heidelberg, 2001.

[41] R. Dingledine and P. Syverson, “Reliable MIX cascade networks through reputation,” in
Financial Cryptography (M. Blaze, ed.), vol. 2357 of Lecture Notes in Computer Science,
pp. 253–268, Springer Berlin Heidelberg, 2002.

[42] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster protocol - version 2,”
2003.

[43] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a type III anony-
mous remailer protocol,” in 2003 IEEE Symposium on Security and Privacy (SP 2003),
11-14 May 2003, Berkeley, CA, USA, pp. 2–15, 2003.

[44] M. Akhoondi, C. Yu, and H. Madhyastha, “Lastor: A low-latency as-aware Tor client,”
in Security and Privacy (SP), 2012 IEEE Symposium on, pp. 476–490, May 2012.

[45] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link-based relay selection for anonymous
routing,” in Proceedings of Privacy Enhancing Technologies, 9th International Symposium
(PETS 2009) (I. Goldberg and M. J. Atallah, eds.), vol. 5672 of Lecture Notes in Computer
Science, pp. 73–93, Springer, August 2009.

[46] R. Snader and N. Borisov, “Improving security and performance in the Tor network
through tunable path selection,” Dependable and Secure Computing, IEEE Transactions
on, vol. 8, pp. 728–741, September 2011.

[47] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path selection for Tor,”
in Financial Cryptography and Data Security (A. Keromytis, ed.), vol. 7397 of Lecture
Notes in Computer Science, pp. 98–113, Springer Berlin Heidelberg, 2012.

[48] A. Panchenko, F. Lanze, and T. Engel, “Improving performance and anonymity in the
Tor network,” in 31st IEEE International Performance Computing and Communications
Conference, IPCCC 2012, Austin, TX, USA, December 1-3, 2012, pp. 1–10, 2012.

[49] M. Backes, A. Kate, S. Meiser, and E. Mohammadi, “(Nothing else) MATor(s): Monitor-
ing the Anonymity of Tor’s Path Selection,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, (New York, NY, USA),
pp. 513–524, ACM, 2014.

[50] D. Gopal and N. Heninger, “Torchestra: Reducing interactive traffic delays over Tor,” in
Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, WPES ’12,
(New York, NY, USA), pp. 31–42, ACM, 2012.

[51] M. AlSabah and I. Goldberg, “PCTCP: per-circuit tcp-over-ipsec transport for anonymous
communication overlay networks,” in 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pp. 349–360,
2013.

– 50 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[52] J. Geddes, R. Jansen, and N. Hopper, “IMUX: managing Tor connections from two to
infinity, and beyond,” in Proceedings of the 13th Workshop on Privacy in the Electronic
Society, WPES 2014, Scottsdale, AZ, USA, November 3, 2014, pp. 181–190, 2014.

[53] M. AlSabah, K. S. Bauer, T. Elahi, and I. Goldberg, “The path less travelled: Overcoming
Tor’s bottlenecks with traffic splitting,” in Privacy Enhancing Technologies - 13th Inter-
national Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings,
pp. 143–163, 2013.

[54] C. Tang and I. Goldberg, “An improved algorithm for Tor circuit scheduling,” in Proceed-
ings of the 17th ACM Conference on Computer and Communications Security, CCS ’10,
(New York, NY, USA), pp. 329–339, ACM, 2010.

[55] M. AlSabah, K. S. Bauer, and I. Goldberg, “Enhancing Tor’s performance using real-time
traffic classification,” in the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, pp. 73–84, 2012.

[56] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg, “PIR-Tor: Scalable
anonymous communication using private information retrieval,” in Proceedings of the 20th
USENIX Conference on Security, SEC ’11, (Berkeley, CA, USA), pp. 31–31, USENIX
Association, 2011.

[57] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,” ACM Trans.
Inf. Syst. Secur., vol. 1, pp. 66–92, November 1998.

[58] M. Rennhard and B. Plattner, “Introducing MorphMix: Peer-to-peer based anonymous
internet usage with collusion detection,” in Proceedings of the 2002 ACM Workshop on
Privacy in the Electronic Society, WPES ’02, (New York, NY, USA), pp. 91–102, ACM,
2002.

[59] M. Rennhard and B. Plattner, “Practical anonymity for the masses with morphmix,” in
Financial Cryptography (A. Juels, ed.), vol. 3110 of Lecture Notes in Computer Science,
pp. 233–250, Springer Berlin Heidelberg, 2004.

[60] J. McLachlan, A. Tran, N. Hopper, and Y. Kim, “Scalable onion routing with Torsk,”
in Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS ’09, (New York, NY, USA), pp. 590–599, ACM, 2009.

[61] A. Panchenko, S. Richter, and A. Rache, “NISAN: network information service for
anonymization networks,” in Proceedings of the 2009 ACM Conference on Computer
and Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009,
pp. 141–150, 2009.

[62] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach, “AP3: coopera-
tive, decentralized anonymous communication,” in Proceedings of the 11st ACM SIGOPS
European Workshop, Leuven, Belgium, September 19-22, 2004, p. 30, 2004.

[63] A. Nambiar and M. Wright, “Salsa: A structured approach to large-scale anonymity,”
in Proceedings of the 13th ACM Conference on Computer and Communications Security,
CCS ’06, (New York, NY, USA), pp. 17–26, ACM, 2006.

[64] Q. Wang and N. Borisov, “Octopus: A secure and anonymous DHT lookup,” CoRR,
vol. abs/1203.2668, 2012.

– 51 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[65] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous in-
formation storage and retrieval system,” in International Workshop on Designing Privacy
Enhancing Technologies: Design Issues in Anonymity and Unobservability, pp. 46–66,
Springer-Verlag New York, Inc., 2001.

[66] I. Clarke, O. Sandberg, M. Toseland, and V. Verendel, “Private communication through
a network of trusted connections: The dark freenet,” Network, 2010.

[67] K. Bennett, T. Stef, C. Grothoff, T. Horozov, and I. Patrascu, “The gnet whitepaper,”
June 2002.

[68] K. Bennett and C. Grothoff, “gap practical anonymous networking,” in Privacy Enhanc-
ing Technologies (R. Dingledine, ed.), vol. 2760 of Lecture Notes in Computer Science,
pp. 141–160, Springer Berlin Heidelberg, 2003.

[69] D. Chaum, “The dining cryptographers problem: Unconditional sender and recipient un-
traceability,” Journal of Cryptology, vol. 1, no. 1, pp. 65–75, 1988.

[70] M. Waidner and B. Pfitzmann, “The dining cryptographers in the disco: Unconditional
sender and recipient untraceability with computationally secure serviceability,” in Ad-
vances in Cryptology - EUROCRYPT ’89 (J.-J. Quisquater and J. Vandewalle, eds.),
vol. 434 of Lecture Notes in Computer Science, pp. 690–690, Springer Berlin Heidelberg,
1990.

[71] P. Golle and A. Juels, “Dining cryptographers revisited,” in Advances in Cryptology -
EUROCRYPT ’04 (C. Cachin and J. Camenisch, eds.), vol. 3027 of Lecture Notes in
Computer Science, pp. 456–473, Springer Berlin Heidelberg, 2004.

[72] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and efficient protocol
for anonymous communication,” tech. rep., Cornell University, 2003.

[73] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous group messaging,”
in Proceedings of the 17th ACM Conference on Computer and Communications Security,
CCS ’10, pp. 340–350, 2010.

[74] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent in numbers: Making
strong anonymity scale,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’12, pp. 179–192, USENIX Association, 2012.

[75] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Scalable anonymous group
communication in the anytrust model,” in European Workshop on System Security (Eu-
roSec), vol. 4, 2012.

[76] M. J. Freedman, E. Sit, J. Cates, and R. Morris, “Introducing tarzan, a peer-to-peer
anonymizing network layer,” in Peer-to-Peer Systems, First International Workshop,
IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised Papers, pp. 121–129, 2002.

[77] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing network layer,” in
Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS
’02, pp. 193–206, ACM, 2002.

[78] “I2P documentation.” https://geti2p.net/en/docs. Last accessed: August 05, 2014.

– 52 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[79] L. Schimmer, “Peer profiling and selection in the I2P anonymous network,” in Proceedings
of PET-CON 2009.1, pp. 59–70, March 2009.

[80] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and pseudonymity - A
proposal for terminology,” in Designing Privacy Enhancing Technologies, International
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pp. 1–9, 2000.

[81] C. Dı́az and B. Preneel, “Taxonomy of mixes and dummy traffic,” in Information Secu-
rity Management, Education and Privacy, IFIP 18th World Computer Congress, TC11
19th International Information Security Workshops, 22-27 August 2004, Toulouse, France,
pp. 215–230, 2004.

[82] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a flood: Active attacks on
several mix types,” in Information Hiding (F. Petitcolas, ed.), vol. 2578 of Lecture Notes
in Computer Science, pp. 36–52, Springer Berlin Heidelberg, 2003.

[83] C. Dı́az and A. Serjantov, “Generalising mixes,” in Privacy Enhancing Technologies
(R. Dingledine, ed.), vol. 2760 of Lecture Notes in Computer Science, pp. 18–31, Springer
Berlin Heidelberg, 2003.

[84] G. Danezis, C. Diaz, and P. F. Syverson, “Systems for Anonymous Communication,” in
CRC Handbook of Financial Cryptography and Security (B. Rosenberg and D. Stinson,
eds.), CRC Cryptography and Network Security Series, pp. 341–390, Chapman & Hall,
August 2010.

[85] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous connections and onion routing,”
Selected Areas in Communications, IEEE Journal on, vol. 16, pp. 482–494, May 1998.

[86] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the degradation of
anonymous protocols,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2002, San Diego, California, USA, The Internet Society, 2002.

[87] M. Wright, M. Adler, B. Levine, and C. Shields, “Defending anonymous communications
against passive logging attacks,” in Security and Privacy (SP), 2003. Proceedings. 2003
Symposium on, pp. 28–41, May 2003.

[88] R. Dingledine, N. Hopper, G. Kadianakis, and N. Mathewson, “One fast guard for life (or
9 months),” 7th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2014), 2014.

[89] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an analysis of onion routing
security,” in Designing Privacy Enhancing Technologies (H. Federrath, ed.), vol. 2009 of
Lecture Notes in Computer Science, pp. 96–114, Springer Berlin Heidelberg, 2001.

[90] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi, “AnoA: A framework
for analyzing anonymous communication protocols,” in Computer Security Foundations
Symposium (CSF), 2013 IEEE 26th, pp. 163–178, June 2013.

[91] S. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in Security and Privacy,
2005 IEEE Symposium on, pp. 183–195, May 2005.

– 53 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[92] R. Dingledine and S. J. Murdoch, “Performance improvements on Tor or, why Tor is slow
and what we’re going to do about it,” tech. rep., The Tor Project, November 2009.

[93] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The predecessor attack: An anal-
ysis of a threat to anonymous communications systems,” ACM Trans. Inf. Syst. Secur.,
vol. 7, pp. 489–522, Novmeber 2004.

[94] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system based on
the xor metric,” in Revised Papers from the First International Workshop on Peer-to-Peer
Systems, IPTPS ’01, (London, UK, UK), pp. 53–65, Springer-Verlag, 2002.

[95] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in Proceedings of the 2001 Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications, SIGCOMM ’01, pp. 149–160, ACM, 2001.

[96] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms Heidelberg, Middleware ’01, (London,
UK, UK), pp. 329–350, Springer-Verlag, 2001.

[97] P. Wang, I. Osipkov, N. Hopper, and Y. Kim, “Myrmic: Provably secure and efficient
DHT routing,” tech. rep., DTC, 2006.

[98] S. Roos, B. Schiller, S. Hacker, and T. Strufe, “Measuring freenet in the wild: Censorship-
resilience under observation,” in Privacy Enhancing Technologies - 14th International
Symposium, PETS 2014, Amsterdam, The Netherlands, July 16-18, 2014. Proceedings,
pp. 263–282, 2014.

[99] J. Kleinberg, “The small-world phenomenon: An algorithmic perspective,” in Proceed-
ings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00,
pp. 163–170, ACM, 2000.

[100] J. Bos and B. den Boer, “Detection of disrupters in the dc protocol,” in Advances in
Cryptology - EUROCRYPT ’89 (J.-J. Quisquater and J. Vandewalle, eds.), vol. 434 of
Lecture Notes in Computer Science, pp. 320–327, Springer Berlin Heidelberg, 1990.

[101] M. Waidner, “Unconditional sender and recipient untraceability in spite of active attacks,”
in Advances in Cryptology - EUROCRYPT ’89 (J.-J. Quisquater and J. Vandewalle, eds.),
vol. 434 of Lecture Notes in Computer Science, pp. 302–319, Springer Berlin Heidelberg,
1990.

[102] S. Dolev and R. Ostrobsky, “Xor-trees for efficient anonymous multicast and reception,”
ACM Trans. Inf. Syst. Secur., vol. 3, pp. 63–84, May 2000.

[103] A. Pfitzmann and M. Waidner, “Networks without user observability - design options,” in
Advances in Cryptology - EUROCRYPT ’85 (F. Pichler, ed.), vol. 219 of Lecture Notes in
Computer Science, pp. 245–253, Springer Berlin Heidelberg, 1986.

[104] J. Douceur, “The sybil attack,” in Peer-to-Peer Systems (P. Druschel, F. Kaashoek, and
A. Rowstron, eds.), vol. 2429 of Lecture Notes in Computer Science, pp. 251–260, Springer
Berlin Heidelberg, 2002.

– 54 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[105] M. Harchol-Balter, F. T. Leighton, and D. Lewin, “Resource discovery in distributed
networks,” in Proceedings of the Eighteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’99, pp. 229–237, 1999.

[106] J. P. Timpanaro, I. Chrisment, and O. Festor, “I2P’s usage characterization,” in Traffic
Monitoring and Analysis (A. Pescapè, L. Salgarelli, and X. Dimitropoulos, eds.), vol. 7189
of Lecture Notes in Computer Science, pp. 48–51, Springer Berlin Heidelberg, 2012.

[107] J. P. Timpanaro, C. Isabelle, and F. Olivier, “Monitoring the I2P network,” tech. rep.,
October 2011.

[108] “I2P statistics.” http://stats.i2p.re/. Last accessed: January 25, 2016.

[109] C. Egger, J. Schlumberger, C. Kruegel, and G. Vigna, “Practical attacks against the i2p
network,” in Proceedings of the 16th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2013), October 2013.

[110] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage, and G. Voelker,
“Defenestrator: Throwing out windows in Tor,” in Privacy Enhancing Technologies
(S. Fischer-Hübner and N. Hopper, eds.), vol. 6794 of Lecture Notes in Computer Sci-
ence, pp. 134–154, Springer Berlin Heidelberg, 2011.

[111] R. Dingledine and N. Mathewson, “Anonymity loves company: Usability and the network
effect,” in Proceedings of the Fifth Workshop on the Economics of Information Security
(WEIS 2006) (R. Anderson, ed.), (Cambridge, UK), June 2006.

[112] G. Danezis, C. Diaz, E. Ksper, and C. Troncoso, “The wisdom of crowds: Attacks and op-
timal constructions,” in Computer Security ESORICS 2009 (M. Backes and P. Ning, eds.),
vol. 5789 of Lecture Notes in Computer Science, pp. 406–423, Springer Berlin Heidelberg,
2009.

[113] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, “Secure routing for
structured peer-to-peer overlay networks,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 299–314,
Dec. 2002.

[114] “I2P peer profiling and selection.” https://geti2p.net/en/docs/how/peer-selection.
Last accessed: January 25, 2016.

[115] “I2P transport overview.” https://geti2p.net/en/docs/transport. Last accessed:
January 25, 2016.

[116] S. Chakravarty, A. Stavrou, and A. Keromytis, “Traffic analysis against low-latency
anonymity networks using available bandwidth estimation,” in Computer Security - ES-
ORICS 2010 (D. Gritzalis, B. Preneel, and M. Theoharidou, eds.), vol. 6345 of Lecture
Notes in Computer Science, pp. 249–267, Springer Berlin Heidelberg, 2010.

[117] “A practical congestion attack on Tor using long paths,” in Presented as part of the
18th USENIX Security Symposium (USENIX Security 09), (Montreal, Canada), USENIX,
2009.

[118] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. F. Syverson, “Users get routed:
traffic correlation on tor by realistic adversaries,” in 2013 ACM SIGSAC Conference on

– 55 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pp. 337–348, 2013.

[119] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traffic analysis of
low-latency anonymous communication using throughput fingerprinting,” in Proceedings
of the 18th ACM Conference on Computer and Communications Security, CCS ’11, (New
York, NY, USA), pp. 215–226, ACM, 2011.

[120] G. O’Gorman and S. Blott, “Improving stream correlation attacks on anonymous net-
works,” in Proceedings of the 2009 ACM Symposium on Applied Computing (SAC), Hon-
olulu, Hawaii, USA, March 9-12, 2009, pp. 2024–2028, 2009.

– 56 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

3. Existing shuffle protocols: A Survey of
Shuffle protocols

A crucial part of any mix-net is a secure, private and efficient shuffle argument. A zero-knowledge
shuffle argument enables a prover to convince a verifier given two lists of ciphertexts, that one lists
of ciphertexts is a permutation of other lists of ciphertexts, without revealing any additional infor-
mation except the truth of the statement; that is, a shuffle argument should be zero knowledge [23].
In this chapter, we present a survey of existing shuffle protocols and their comparison. The solid
understanding of the security and performance properties, as well as possible threads and issues
allows to design and develop the secure yet efficient e-voting applications; neccessary to support
WP5 of PANORAMIX project.

3.1 Efficiency

One of the things that makes the construction of efficient shuffle arguments difficult is the fact that
the prover may not know any of the corresponding plaintexts. Due to this, while contemporary
shuffle arguments are relatively efficient, they are at the same time conceptually quite complicated
and rely (say) on novel characterization of permutation matrices. In particular, computationally
most efficient shuffle arguments tend to rely either

• on the CRS-model [7] and require a larger number of rounds (unless one relies on the random
oracle model [5] to make the argument non-interactive by using the Fiat-Shamir heuristic [18]),
or

• offer less security (for example, the argument of [21] is not zero knowledge).

On the other hand, existing random oracle-less CRS-model non-interactive shuffle arguments [29,
35] are considerably less efficient. While the random oracle model is dubious from the security
viewpoint [9], there are no known practical attacks on random oracle-model shuffle arguments.

3.2 Interactive and non-interactive shuffle arguments

Interactive shuffle arguments

We recall three main paradigms that are used in known computationally efficient interactive shuffle
arguments. Other approaches are known, but they have up to now resulted in significantly less
computation-efficient shuffle arguments. An additional direction has been to minimize the commu-
nication and the verifier’s computation at the cost of possibly larger prover’s computation; see [4].

– 59 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 3.1: Interactive shuffles comparison. In this table shuffles based on Elgamal has been included
and analysed. Here N , the number of ciphertexts to shuffle equals N = nm.

[1] [21] [20] [19] [44]
rounds 3 3 5 3 5
pro comp. O(log(N))N 8N 9N 7N 9N
ver comp. O(logN) 10N 10N 8N 11N
size (in Kbits) O(logN)N 5.3N 5.3N 1.5N 3.7N

[38] [25] [28] [4] [4]
rounds 7 7 7 9 log(m)
pro comp. 8N 6N 3mN 2 log(m)N O(N)
ver comp. 12N 6N 4N 4N 4N
size (in Kbits) 7.7N 3N 3m2 + 3n 11m+ 5n 11m+ 5n

The approach of Furukawa and Sako [21] uses permutation matrices, relying a specific char-
acterization of permutation matrices. Namely, a matrix M is a permutation matrix if M(i) ·
M(j) = δij and M(i) ·M(j) �M(k) = δijk, where δij is the Kronecker delta, δijk = δijδik, �
denotes element-wise multiplication, and · denotes scalar product. The Furukawa-Sako argu-
ment satisfies a privacy requirement that is weaker than zero knowledge. Later, it has been
made more efficient — and zero knowledge — by Furukawa [19]. Importantly, arguments of
this approach have only 3 messages.

The approach of Neff [38] uses the fact that permuting the roots of a polynomial results in
the same polynomial; Neff’s argument has been made efficient by Groth [26]. While Neff’s
approach results in computationally more efficient arguments, the resulting arguments require
7 messages.

The approach by Terelius and Wikström [43] uses permutation matrices together with the
fact that Zq[X] is a unique factorization domain. It is based on an alternative characterization
of permutation matrices: M ∈ ZN×Nq is a permutation matrix iff (a)

∏N
i=1 M(i) ·Xi =

∏N
i=1Xi

for independent random variables Xi, and (b)M ·1N = 1N . The Terelius-Wikström approach
results of shuffle arguments of intermediate number of messages (namely, 5). However, up to
now it has required somewhat higher computational complexity than the first two approaches.

Efficiency comparison between different interactive shuffle arguments were collected in Table 3.1.

Non-interactive shuffle arguments

Advantages of non-interactive setting Although interactive shuffle arguments are usually
more efficient than they non-interactive counterparts, the later are considered much more practical
and their scope of use seems much broader. Especially, non-interactive setting allows various users
to verify correctness of the protocol after it was proceeded and after, e.g., mix-servers were shut
down.

Furthermore, this approach makes computational effort on behalf of mix-servers (that have to
prove the fairness of the execution) independent from the number of potential verifiers. The later
plays a great role when a system prepared for a potentially millions of verifiers, what is demanded

– 60 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

for applications like electronic voting. Thus, although for a small amount of verifiers interactive
arguments lead in terms of efficiency, non-interactivity makes system truly scalable.

Table 3.2: A comparison of different NIZK shuffle arguments compared with the computationally
most efficient known shuffle argument in the random oracle model [26]. If not stated otherwise
pro–prover’s computational complexity is described in exponentiation, ver–verifier’s computational
complexity is described in the number of bilinear pairings, and both CRS and communication sizes
are in the number of group elements.

[29] [36] [16] [26]
|CRS| 2N + 8 7N + 6 8N + 17 N + 1
Communication 18N + 120 12N + 11 9N + 2 480N bits
pro’s computation 54N + 246 28N + 11 18N + 3 6N (+2N)
ver’s computation 75N + 282 28N + 18 18N + 6 6N exp.
Knowledge assumptions No Yes Yes No
Relying on GBGM PP, SP Knowledge Knowl., PSP No
Random oracle No No No Yes
Soundness Culpable Full Culpable Full

NI shuffle argument, state of the art Up to now, only three NIZK shuffle arguments in the
CRS model have been proposed, by Groth and Lu [29], Lipmaa and Zhang [36], Fauzi and Lipmaa
[16] all of which are significantly slower than the fastest arguments in the random oracle model
(see Tbl. 3.2). The Groth-Lu shuffle argument only provides culpable soundness [29, 31] in the
sense that if a malicious prover can create an accepting shuffle argument for an incorrect statement,
then this prover together with a party that knows the secret key can break the underlying security
assumptions.

Relaxation of the soundness property is unavoidable, since [2] showed that only languages in
P/poly can have direct black-box adaptive perfect NIZK arguments under a (polynomial) crypto-
graphic hardness assumption. If the underlying cryptosystem is IND-CPA secure, then the shuffle
language is not in P/poly, and thus it is necessary to use knowledge assumptions [13] to prove its
adaptive soundness. Moreover, [29] argued that culpable soundness is a sufficient security notion
for shuffles, since in any real-life application of the shuffle argument there exists some coalition of
parties who knows the secret key.

Table 3.2 provides a brief comparison between known NIZK shuffle arguments in the CRS model
and the most computationally efficient known shuffle argument in the random oracle model [26]. We
emphasize that the values in parentheses show the cost of computing and communicating the shuffled
ciphertexts themselves, and must be added to the rest. Moreover, the cost of the shuffle argument
from [36] should include the cost of a range argument. Unless written otherwise, the communication
and the CRS length are given in group elements, the prover’s computational complexity is given
in exponentiations, and the verifier’s computational complexity is given in bilinear pairings. In
each row, highlighted cells denote the best efficiency or best security (e.g., not requiring the PKE
assumption) among arguments in the CRS model. Of course, a full efficiency comparison can only
be made after implementing the different shuffle arguments.

– 61 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

3.3 Description of existing shuffle protocols

Neff [38] The paper published by Neff in 2001 proposed one of the first efficient interactive shuffle
arguments. The arguments works in any group where Diffie-Hellman problem is intractable. Thus,
it allows to implement the scheme in the elliptic curves, but is not achievable for a bilinear setting.

Argument presented in the paper makes use of Schwartz-Zippel lemma, what result in security
upper bounded by some fraction 1 − N/q for N being the number of shuffled elements and q the
size of the group where operations are performed. Author points out that both parameters N and
q should be fitted to a setting used to perform protocol. E.g. if protocol is to be executed in an
interactive way N and q can guarantee less security than in a case when a malicious party, a cheater,
is allowed to perform an exhaustive computations off-line.

From the efficiency point of view, the argument is much more efficient compared to the previous.
Prover computation is limited by 8N+5 while for Furukawa-Sako [21] it is 18N+18 and Sako-Kilian
[40] 642N . The proof size has also been optimized and is limited by 8N + 5 group elements.

Neff’s argument differs from other arguments in a way it proves that some elements (cipher-
texts) were permuted. Despite of proving that a set of elements were transformed accordingly to
a matrix that is a permutation matrix, it maps ciphertexts into roots of some polynomial, say P ,
and permuted ciphertexts into roots of some other polynomial P ′ and shows that both polynomi-
als are equal (with overwhelming probability) using property of identity of polynomials under root
permutation.

Groth [26] In 2003 Groth proposed a shuffle that was based on approach used previously by Neff
[38] (that polynomials are identical under permutation of their roots), but with a great complexity
optimization.

Argument proposed in [26] is a 7-move public coin HVZK that, unlike [38], makes use of a CRS
that contains of a public key for a homomorphic commitment scheme. The choice of commitment
scheme is crucial for the security of the argument. If commitment scheme is statistically binding
then argument is unconditionally sound. On the other hand, if the scheme is statistically hiding,
then the argument is statistically HVZK.

One of the strong points of this argument is fact that it is well suited to use techniques like
batching and multi-exponentiation what can have a great impact on the complexity of the whole
protocol.

Authors use as a building block a new argument for a shuffle of known contents. This argument
takes as input a sequence of messagesm1, . . . ,mN and outputs a commitment c← com(mπ(1), . . . ,mπ(N))
for some permutation π along with a proof Π showing that c indeed consists of a permutation of
messages m1, . . . ,mN . This building block is used in a full shuffle argument as follows: prover
commits to a permutation of known values 1, . . . , N , i.e. c← com(π(1), . . . , π(N)) and then shows
that for given two sequences of ciphertexts C1, . . . , CN and C ′1, . . . , C

′
N holds Cπ(i) = C ′i for all

i ∈ 1, . . . , N .
Furthermore authors show how to modify presented argument to work with decryption mix-nets

by creating an argument of shuffle-and-decrypt operation.
Argument proposed by Groth [26] is the most efficient known non-interactive argument for

shuffle. However, this argument is made non-interactive by using Fiat-Shamir heuristics [18], thus
it works is the Random Oracle Model which is impossible to achieve in a real world.

Terelius-Wikström [43] The paper by Terelius and Wikström provides a shuffle argument for
restricted shuffles, that is shuffles that permutation included is chosen from a public yet limited

– 62 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

subset of all permutations. This is done by showing that a permutation π is contained in a group
of automorphism of a publicly known polynomial, i.e. permutations such that F (x1, . . . , xN) =
F (xπ(1), . . . , xπ(N)) for some publicly known F .

Furthermore, authors show how the basic principle behind proposed techniques can be used in
an efficient shuffle argument for unrestricted shuffle.

In this paper, permutation of N elements is defined by an N × N permutation matrix that
contains in every row and column exactly one entry different than zero. Proof of such property goes
as follows: let (xi)

N
i=1 denote the list of variables and mi i-th row of matrix M then, if the matrix

has more than one non-zero entry in a row or column then
∏N
i=1〈mi, xi〉 6=

∏N
i=1 xi. What can be

easily checked by using Schwartz-Zippel lemma.
Having this proven it is enough to show that sum of elements in every column and row is one.

Furukawa [19] The Furukawa shuffle protocol is a three round zero-knowledge protocol for El-
gamal ciphertext shuffling, proposed in [19]. Using this protocol a mixer can prove that Elgamal
ciphertexts where shuffled correctly without leaking any other information. Furukawa shuffle proto-
col is the most efficient three round shuffle argument currently known, any other efficient interactive
shuffle arguments need more than three rounds.

This shuffle argument is based on common approach that represents a permutation as a permu-
tation matrix.

Loosely the protocol works as follows. The prover (mixer) commits to the columns of a permuta-
tion matrix A = (Ai,j) that corresponds to the permutation that it used for shuffling the ciphertexts.
The prover sends the commitments to the verifier. The verifier responds by sending N challenge
values c1, . . . , cN where N is the number of ciphertexts. The prover sends a response

ri =
N∑

j=1

Ai,jcj

for every i ∈ {1, 2, . . . , N}.
Verifier checks five equations to conclude whether the shuffling was done correctly or not. First

it checks an equation that tells if ri is computed in a correct form. Then it checks two equations to
verify that A is a permutation matrix. Furukawa uses a novel description of a permutation matrix
to make these two checks efficient. Namely A is a permutation matrix if the following two properties
hold

n∑

h=1

Ah,iAh,jAh,k = δi,j,k

n∑

h=1

Ah,iAh,j = δi,j

for any i, j, k ∈ {1, 2, . . . , N}. Here δi,j,k and δi,j denote the Kronecker delta. Finally the verifier
checks two equation that tell if the permutation matrix A was used for shuffling the ciphertexts.

Prover’s computation complexity is 8N exponentiations, although there is a simple modification
that reduces it to 7N exponentiations. Verifier’s computation is 6N exponentiations. Communica-
tion complexity is 3N log q +N log p where p and q are security parameters with the property that
q|(p− 1).

– 63 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bayer-Groth [4] Bayer-Groth paper introduces the first efficient non-interactive shuffle argument
that has sublinear communication complexity. To shuffle N = mn elements argument transmits
only O(m + n) elements (that optimizes for m = n) what is as little as O(

√
N). Furthermore the

prover computation is efficient almost as in the protocols with linear communication.
To compare this result with the first sublinear argument [28] one has to mention that the paper

by Groth and Ishai was inefficient from the prover point of view who was supposed to compute up
to O(Nm) exponentiations. Thus, the protocol was limited by the small m.

High-level description of the argument proposed in the paper goes as follows. The prover who
proves the correctness of shuffle for some permutation π ofN ciphertexts commits to π(1), π(2), ..., π(N).
Then, after receiving a challenge x, commits to xπ(1), xπ(2), ..., xπ(N). Now, the prover gives an ar-
gument of opening of the commitments to permutation of respectively 1, 2, ..., N and x1, x2, ..., xN

and shows that the same permutation has been used in both cases.
To check that the same permutation has been used in both commitments the verifier sends

random challenges y and z. Then by homomorphic properties of the commitment, the prover shows
that,

N∏

i=1

(yπ(i) + xπ(i) − z) =
N∏

i=1

(yi+ xi − z) (3.1)

Both expressions from the left and the right are two identical degree N polynomials in z. The
only difference is that the roots have been permuted [38]. The verifier does not know a priori
that the the two polynomials are identical but using the Schwartz-Zippel lemma she can deduce
that the prover has negligible chance (over the choice of z) to make a convincing argument unless
there is a permutation π. Furthermore, there is negligible probability over the choice of y of
this being true unless the first commitment contains π(1), π(2), . . . , π(N) and the second contains
xπ(1), xπ(2), . . . , xπ(N).

In order to show that a sequence (C ′i)
N
i=1 is in fact a sequence (Ci)

N
i=1 but with entries permuted,

that is Ci′ = εpk(1; ρi)Cπ(i) for i = 1, 2, . . . , N , prover uses commitments xπ(1), xπ(2), . . . , xπ(N) and
so-called multiexponentiation argument to show that there exist a randomness ρ such that

N∏

i=1

Ci
xi = εpk(1; ρ)

N∏

i=1

(Ci
′)x

π(i)
. (3.2)

Since the efficiency of the argument strongly depends from the efficiency of the multiplication
operation, authors propose a number of speed-ups by substituting standard multiplication algorithm
by Toom-Cook [45, 11] and Fast Fourier Transform [12].

Groth-Lu [29] The argument presented by Groth and Lu in [29] is considered first efficient non-
interactive shuffle argument that works in the CRS model and does not rely on the random oracle
assumption (unlike [26]). Authors claim that zero-knowledge of the protocol is perfect.

To achieve non-interactivity without using random oracle authors used techniques from [32, 30],
making non-interactive witness-indistinguishable proofs by using bilinear groups. This approach
has become a standard technique for a oracle-less non-interactive proofs and was recently used, e.g.
in [16]. However, this approach usually demands verifier to compute a number of bilinear pairings
instead of exponentiation. As was shown in [3] a single exponentiation can be performed up to 7
times faster than a pairing.

Furthermore, the scheme proposed by Groth and Lu relies on BBS cryptosystem [8] where
every ciphertext consists of 3 group elements (Elgamal ciphertexts needs only 2 group elements).

– 64 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Although it may not look as a big difference, on average using 3 elements for a ciphertext instead
of 2 multiplies the number of necessary pairings computed by a verifier by 3/2.

As claimed by authors, proposed argument consists of 15N group elements, while the statement
needs 6N elements.

Lipmaa-Zhang [36] Lipmaa and Zhang [36] proposed a more efficient NIZK shuffle argument
by using knowledge assumptions under which they also bypassed the impossibility result of [2] and
proved that their shuffle argument is sound. However, their shuffle argument is sound only under
the assumption that there is an extractor that has access to the random coins of all encrypters,
e.g., all voters, allowing her to extract all plaintexts and randomizers. Authors say in this case that
the argument is white-box sound. White-box soundness is clearly a weaker security notion than
culpable soundness of [29], and it would be good to avoid it.

In addition, the use of knowledge assumptions in [36] forces the underlying BBS [8] cryptosystem
to include knowledge components (so ciphertexts are twice as long) and be lifted (meaning that one
has to solve discrete logarithm to decrypt, so plaintexts must be small). Thus, one has to use a
random oracle-less range argument [39, 10, 17, 34] to guarantee that the plaintexts are small and
thus to guarantee the soundness of the shuffle argument (see [36] for a discussion). While range
proofs only have to be verified once (e.g., by only one mix-server), this still means that the shuffle
argument of [36] is somewhat slower than what is given in Tbl. 3.2. Moreover, in the case of
e-voting, using only small plaintexts restricts the applicability of a shuffle argument to only certain
voting mechanisms like majority. On the other hand, a mechanism such as Single Transferable Vote
would likely be unusable due to the length of the ballots.

Panoramix impact on the shuffle arguments state of the art

Although during Panoramix project no interactive protocols have been proposed yet, two papers
have been delivered so far in the non-interactive setting.

Fauzi-Lipmaa [16] The paper provides non-interactive zero-knowledge shuffle argument that is
more efficient than previous ones. The authors created an argument that at cost of slightly longer
crs and weaker security model (culpable soundness instead of full soundness) makes both prover and
verifier computation more efficient: prover’s computation has been reduced by 10N exponentiations
(28N to 18N) and verifier’s by 10N pairings (28N to 18N).

The security of the Fauzi-Lipmaa shuffle argument is proven under a knowledge assumption [13]
(PKE, [27]) and three computational assumptions (PCDH, TSDH, PSP). Knowledge assumptions
are non-falsifiable [37], and their validity has to be very carefully checked in each application [6].
Moreover, the PSP assumption of [16] is novel, and its security is proven in the Generic Group
Model [41].

This Fauzi-Lipmaa shuffle differs from the shuffle of [35] also in its security model. Briefly, in
the security proof of the shuffle argument of [35] it is assumed that the adversary obtains — by
using knowledge assumptions — not only the secrets of the possibly malicious mix-server, but also
the plaintexts and randomizers computed by all voters. This model was called white-box soundness
in [16], where it was also criticized. Moreover, in the shuffle argument [35], the plaintexts have to
be small for the soundness proof to go through; for this, all voters should use efficient CRS-model
range proofs [34].

On the other hand, the shuffle of [16] is proven culpably sound [29] though also under knowledge
assumptions. Intuitively, this means that if a cheating adversary produces an invalid (yet accept-

– 65 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

able) shuffle together with the secret key, then one can break one of the underlying knowledge or
computational assumptions.

Compared to [29], which also achieves culpable soundness, the new argument has 3 times faster
proving and more than 4 times faster verification. Compared to [29, 35], it is based on a more
standard cryptosystem (Elgamal). While the new shuffle argument is still at least 2 times slower
than the most efficient known random oracle based shuffle arguments, it has almost optimal online
prover’s computation. Of course, a full efficiency comparison can only be made after implementing
the different shuffle arguments.

The construction of the shuffle in [16] goes as follows. First commit to the permutation ψ
(by committing separately to first n − 1 rows of the corresponding permutation matrix Ψ) and to
the vector t of blinding randomizers. Here, authors use the polynomial commitment scheme with
com(ck; m; r) = (g1, g

γ
2)rP0(χ)+

∑n
i=1miPi(χ) ∈ G1×G2, in pairing-based setting, where ê : G1×G2 →

GT is a bilinear pairing, gi is a generator of Gi for i ∈ {1, 2}, (Pi(X))ni=0 is a tuple of linearly
independent polynomials, χ is a trapdoor, γ is a knowledge secret, and ck = ((g1, g

γ
2)Pi(χ))ni=0 is

the CRS. For different values of Pi(X), variants of this commitment scheme have been proposed
before [24, 27, 33].

The authors show that Ψ is a correct permutation matrix by constructing n witness-indist-
inguishable succinct unit vector arguments, each of which guarantees that a row of Ψ is a unit
vector, for implicitly constructed Ψn = 1n −

∑n−1
i=1 Ψi. Then authors use the recent square span

programs (SSP, [14]) approach to choose the polynomials Pi(X) = yi(X) so that the unit vector
argument is efficient.

After that, the authors postulate a natural concrete verification equation for shuffles, and con-
struct the shuffle argument from this. If privacy were not an issue (and thus v′i = vψ(i) for every

i), the verification equation would just be the tautology
∏n
i=1 ê(v

′
i, g

yi(χ)
2) =?

∏n
i=1 ê(vi, g

yψ−1(i)(χ)

2).
Clearly, if the prover is honest, this equation holds. However, it does not yet guarantee sound-
ness, since an adversary can use gyj(χ)1 (given in the CRS) to create (v′i)

n
i=1 in a malicious way.

To eliminate this possibility, by roughly following an idea from [29], authors also verify that
∏n
i=1 ê(v

′
i, g

ŷi(χ)
2) =?

∏n
i=1 ê(vi, g

ŷψ−1(i)(χ)

2) for some well-chosen polynomials ŷi(X). (Note that
instead of n univariate polynomials, [29] used n random variables χi, increasing the size of the
secret key to Ω(n) bits.)

To show that the verifications are instantiated correctly, authors also need a same-message
argument that shows that commitments w.r.t. two tuples of polynomials (yi(X))ni=1 and (ŷi(X))ni=1

commit to the same plaintext vectors. Authors construct an efficient same-message argument by
using an approach that is (again, roughly) motivated by the QAP-based approach of [22]. This
argument is an argument of knowledge, given that the polynomials ŷi(X) satisfy an additional
restriction.

Since also privacy is required, the actual verification equations are more complicated. In particu-
lar, v′i = vψ(i) ·encpk(1; ti), and (say) g

yψ−1(i)(χ)

2 is replaced by the second element g
γ(riy0(χ)+yψ−1(i)(χ))

2

of a commitment to Ψi. The resulting complication is minor (it requires one to include into the
shuffle argument a single ciphertext U ∈ G2

1 that compensates for the added randomness). The
full shuffle argument consists of commitments to Ψ and to t (both committed twice, w.r.t. the
polynomials (yi(X))ni=0 and (ŷi(X))ni=0), n unit vector arguments (one for each row of Ψ), n − 1
same-message arguments, and finally U .

If ŷi(X) are well-chosen, then from the two verification equations and the soundness of the unit
vector and same-message arguments it follows, under a new computational assumption PSP (Power
Simultaneous Product), related to an assumption from [29]), that v′i = vψ(i) for every i.

– 66 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Authors prove culpable soundness [29, 31] of the new argument. Since the security of the new
shuffle argument does not depend on the cryptosystem either having knowledge components or being
lifted, one can use Elgamal encryption [15] instead of the non-standard knowledge BBS encryption
introduced in [35]. Since the cryptosystem does not have to be lifted, one can use more complex
voting mechanisms with more complex ballots. The use of knowledge assumptions means that the
new argument is an argument of knowledge.

The new shuffle argument can be largely precomputed by the prover and forwarded to the ver-
ifier even before the common input (i.e., ciphertexts) arrive. Similarly, the verifier can perform
a large part of verification before receiving the ciphertexts. (See [47] for motivation for precom-
putation.) The prover’s computation in the online phase is dominated by just two (n + 1)-wide
multi-exponentiations (the computation of U). The multi-exponentiations can be parallelized; this
is important in practice due to the wide availability of highly parallel graphics processors.

– 67 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] Masayuki Abe. Mix-Networks on Permutation Networks. In Kwok-Yan Lam, Eiji Okamoto, and
Chaoping Xing, editors, ASIACRYPT 1999, volume 1716 of LNCS, pages 258–273, Singapore,
14–18 November 1999. Springer, Heidelberg.

[2] Masayuki Abe and Serge Fehr. Perfect NIZK with Adaptive Soundness. In Salil P. Vad-
han, editor, TCC 2007, volume 4392 of LNCS, pages 118–136, Amsterdam, The Netherlands,
February 21–24, 2007. Springer, Heidelberg.

[3] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Automated Unbounded Analysis of
Cryptographic Constructions in the Generic Group Model. In Marc Fischlin and Jean-Sebastien
Coron, editors, EUROCRYPT 2016, volume 9666 of LNCS, pages 822–851, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg.

[4] Stephanie Bayer and Jens Groth. Efficient Zero-Knowledge Argument for Correctness of a
Shuffle. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 263–280, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg.

[5] Mihir Bellare and Phillip Rogaway. Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In Victoria Ashby, editor, ACM CCS 1993, pages 62–73, Fairfax, Virginia,
3–5 November 1993. ACM Press.

[6] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the Existence of Extractable
One-Way Functions. In David Shmoys, editor, STOC 2014, pages 505–514, New York, NY,
USA, May 31 – Jun 3, 2014. ACM Press.

[7] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and Its Ap-
plications. In STOC 1988, pages 103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[8] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures. In Matthew K.
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55, Santa Barbara, USA,
August 15–19, 2004. Springer, Heidelberg.

[9] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited.
In Jeffrey Scott Vitter, editor, STOC 1998, pages 209–218, Dallas, Texas, USA, May 23–26,
1998.

[10] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A Non-Interactive Range Proof with
Constant Communication. In Angelos Keromytis, editor, FC 2012, volume 7397 of LNCS,
pages 179–199, Bonaire, The Netherlands, Feb 27–Mar 2, 2012. Springer, Heidelberg.

[11] Stephen A Cook and Stål O Aanderaa. On the minimum computation time of functions.
Transactions of the American Mathematical Society, 142:291–314, 1969.

– 68 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[12] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[13] Ivan Damgård. Towards Practical Public Key Systems Secure against Chosen Ciphertext
Attacks. In Joan Feigenbaum, editor, CRYPTO 1991, volume 576 of LNCS, pages 445–456,
Santa Barbara, California, USA, August 11–15, 1991. Springer, Heidelberg, 1992.

[14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square Span Programs
with Applications to Succinct NIZK Arguments. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014 (1), volume 8873 of LNCS, pages 532–550, Kaohsiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Heidelberg.

[15] Taher Elgamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. IEEE Trans. on Inf. Theory, 31(4):469–472, 1985.

[16] Prastudy Fauzi and Helger Lipmaa. Efficient Culpably Sound NIZK Shuffle Argument without
Random Oracles. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 200–216,
San Franscisco, CA, USA, February 29–March 4, 2016. Springer, Heildeberg.

[17] Prastudy Fauzi, Helger Lipmaa, and Bingsheng Zhang. Efficient Non-Interactive Zero Knowl-
edge Arguments for Set Operations. In Nicolas Christin and Rei Safavi-Naini, editors, FC
2014, volume ? of LNCS, pages 216–233, Bridgetown, Barbados, March 3–7, 2014. Springer,
Heidelberg.

[18] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In Andrew M. Odlyzko, editor, CRYPTO 1986, volume 263 of LNCS,
pages 186–194, Santa Barbara, California, USA, 11–15 August 1986. Springer, Heidelberg,
1987.

[19] Jun Furukawa. Efficient and Verifiable Shuffling and Shuffle-Decryption. IEICE Transactions,
88-A(1):172–188, 2005.

[20] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue Sako. An imple-
mentation of a universally verifiable electronic voting scheme based on shuffling. In Matt
Blaze, editor, Financial Cryptography, 6th International Conference, FC 2002, Southampton,
Bermuda, March 11-14, 2002, Revised Papers, volume 2357 of Lecture Notes in Computer
Science, pages 16–30. Springer, 2002.

[21] Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a Shuffle. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 368–387, Santa Barbara, USA, August 19–23,
2001. Springer, Heidelberg.

[22] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span Programs
and NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT
2013, volume 7881 of LNCS, pages 626–645, Athens, Greece, April 26–30, 2013. Springer,
Heidelberg.

[23] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive
Proof-Systems. In Robert Sedgewick, editor, STOC 1985, pages 291–304, Providence, Rhode
Island, USA, May 6–8, 1985. ACM Press.

– 69 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[24] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic Primitives Enforcing Com-
munication and Storage Complexity. In Matt Blaze, editor, FC 2002, volume 2357 of LNCS,
pages 120–135, Southhampton Beach, Bermuda, March 11–14, 2002. Springer, Heidelberg.

[25] Jens Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 145–160, Miami, Florida, USA, January 6–8, 2003.
Springer, Heidelberg.

[26] Jens Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. J. Cryptology, 23(4):546–
579, 2010.

[27] Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–
9, 2010. Springer, Heidelberg.

[28] Jens Groth and Yuval Ishai. Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle.
In Smart [42], pages 379–396.

[29] Jens Groth and Steve Lu. A Non-interactive Shuffle with Pairing Based Verifiability. In Kaoru
Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 51–67, Kuching, Malaysia,
December 2–6, 2007. Springer, Heidelberg.

[30] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect Non-Interactive Zero-Knowledge for
NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 338–359,
St. Petersburg, Russia, May 28–June 1, 2006. Springer, Heidelberg.

[31] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New Techniques for Noninteractive Zero-
Knowledge. Journal of the ACM, 59(3), 2012.

[32] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In
Smart [42], pages 415–432.

[33] Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-
Knowledge Arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189, Taormina, Italy, March 18–21, 2012. Springer, Heidelberg.

[34] Helger Lipmaa. Prover-Efficient Commit-And-Prove Zero-Knowledge SNARKs. In David
Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 2016,
volume 9646 of LNCS, pages 185–206, Fes, Morocco, April 13–15, 2016. Springer, Heidelberg.

[35] Helger Lipmaa and Bingsheng Zhang. A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. In Visconti and Prisco [46], pages 477–502.

[36] Helger Lipmaa and Bingsheng Zhang. A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. Journal of Computer Security, 21(5):685–719, 2013.

[37] Moni Naor. On Cryptographic Assumptions and Challenges. In Dan Boneh, editor, CRYPTO
2003, volume 2729 of LNCS, pages 96–109, Santa Barbara, USA, August 17–21, 2003. Springer,
Heidelberg.

[38] C. Andrew Neff. A Verifiable Secret Shuffle and Its Application to E-Voting. In ACM CCS
2001, pages 116–125, Philadelphia, Pennsylvania, USA, November 6–8 2001. ACM Press.

– 70 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

[39] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced
Oblivious Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671
of LNCS, pages 231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer, Heidelberg.

[40] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting Scheme - A Practical Solution to the
Implementation of a Voting Booth. In Louis C. Guillou and Jean-Jacques Quisquater, editors,
EUROCRYPT 1995, volume 921 of LNCS, pages 393–403, Saint-Malo, France, 21–25 May
1995. Springer, Heidelberg.

[41] Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Walter Fumy,
editor, EUROCRYPT 1997, volume 1233 of LNCS, pages 256–266, Konstanz, Germany, 11–
15 May 1997. Springer, Heidelberg.

[42] Nigel Smart, editor. EUROCRYPT 2008, volume 4965 of LNCS, Istanbul, Turkey, April 13–17,
2008. Springer, Heidelberg.

[43] Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In Daniel J. Bernstein
and Tanja Lange, editors, AFRICACRYPT 2010, volume 6055 of LNCS, pages 100–113, Stel-
lenbosch, South Africa, May 3–6, 2010. Springer, Heidelberg.

[44] Björn Terelius and Douglas Wikström. Efficiency Limitations of Σ-Protocols for Group Homo-
morphisms Revisited. In Visconti and Prisco [46], pages 461–476.

[45] Andrei L Toom. The complexity of a scheme of functional elements realizing the multiplication
of integers. In Soviet Mathematics Doklady, volume 3, pages 714–716, 1963.

[46] Ivan Visconti and Roberto De Prisco, editors. SCN 2012, volume 7485 of LNCS, Amalfi, Italy,
September 5–7, 2012. Springer, Heidelberg.

[47] Douglas Wikström. A Commitment-Consistent Proof of a Shuffle. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP 2009, volume 5594 of LNCS, pages 4007–421, Brisbane,
Australia, July 1–3, 2009. Springer, Heidelberg.

– 71 of 187 −

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 70 of 187 –

Part II

Initial design options for mix-nets

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 73 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 74 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

4. Initial design options for mix-nets:
Efficient Culpably Sound NIZK Shuf-
fle Argument without Random Ora-
cles

One way to guarantee security against malicious voting servers, implementing mix-nets, is to use
non-interactive zero-knowledge (NIZK) shuffle arguments. Up to now, only two NIZK shuffle
arguments in the CRS model have been proposed. Both arguments are relatively inefficient
compared to known random oracle based arguments. We propose a new, more efficient, shuffle
argument in the CRS model. Importantly, its online prover’s computational complexity is
dominated by only two (n+1)-wide multi-exponentiations, where n is the number of ciphertexts.
Compared to the previously fastest argument by Lipmaa and Zhang, it satisfies a stronger notion
of soundness. This chapter presents a new efficient NIZK shuffle argument, which serves as a
design option for WP5 of PANORAMIX project.

4.1 Introduction

A mix network, or mix-net, is a network of mix-servers designed to remove the link between
ciphertexts and their senders. To achieve this goal, a mix-server of a mix-net initially obtains
a list of ciphertexts (zi)

n
i=1. It then re-randomizes and permutes this list, and outputs the new

list (z′i)
n
i=1 together with a non-interactive zero knowledge (NIZK, [2]) shuffle argument [22]

that proves the re-randomization and permutation was done correctly, without leaking any side
information. If enc is a multiplicatively homomorphic public-key cryptosystem like Elgamal [7],
a shuffle argument convinces the verifier that there exists a permutation ψ and a vector t of
randomizers such that z′i = zψ(i) · encpk(1; ti), without revealing any information about ψ or t.
Mix-nets improve security against malicious voting servers in e-voting. Other applications of
mix-nets include anonymous web browsing, payment systems, and secure multiparty computa-
tion.

It is important to have a non-interactive shuffle argument outputting a short bit string that
can be verified by anybody (possibly years later) without interacting with the prover. Many
NIZK shuffle arguments are known in the random oracle model, see for example [10, 20, 9, 23, 13].
Since the random oracle model is only a heuristic, it is strongly recommended to construct NIZK
arguments in the common reference string (CRS) model [2], without using random oracles. 1

We note that the most efficient shuffle arguments in the random oracle model like [13] also
require a CRS.

Up to now, only two NIZK shuffle arguments in the CRS model have been proposed, by

1In a practical implementation of a mix-net, one can use the random oracle model also for other purposes,
such as to construct a pseudo-number generator or a public-key cryptosystem. In most of such cases, it is known
how to avoid the random oracle model, although this almost always incurs some additional cost.

– 75 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Groth and Lu [15] and Lipmaa and Zhang [18, 19], both of which are significantly slower than
the fastest arguments in the random oracle model (see Tbl. 4.1). The Groth-Lu shuffle argument
only provides culpable soundness [15, 16] in the sense that if a malicious prover can create an
accepting shuffle argument for an incorrect statement, then this prover together with a party
that knows the secret key can break the underlying security assumptions. Relaxation of the
soundness property is unavoidable, since [1] showed that only languages in P/poly can have
direct black-box adaptive perfect NIZK arguments under a (polynomial) cryptographic hardness
assumption. If the underlying cryptosystem is IND-CPA secure, then the shuffle language is
not in P/poly, and thus it is necessary to use knowledge assumptions [5] to prove its adaptive
soundness. Moreover, [15] argued that culpable soundness is a sufficient security notion for
shuffles, since in any real-life application of the shuffle argument there exists some coalition of
parties who knows the secret key.

Lipmaa and Zhang [18] proposed a more efficient NIZK shuffle argument by using knowledge
assumptions under which they also bypassed the impossibility result of [1] and proved that their
shuffle argument is sound. However, their shuffle argument is sound only under the assumption
that there is an extractor that has access to the random coins of all encrypters, e.g., all voters,
allowing her to extract all plaintexts and randomizers. We say in this case that the argument
is white-box sound. White-box soundness is clearly a weaker security notion than culpable
soundness of [15], and it would be good to avoid it.

In addition, the use of knowledge assumptions in [18] forces the underlying BBS [4] cryp-
tosystem to include knowledge components (so ciphertexts are twice as long) and be lifted
(meaning that one has to solve discrete logarithm to decrypt, so plaintexts must be small).
Thus, one has to use a random oracle-less range argumentto guarantee that the plaintexts are
small and thus to guarantee the soundness of the shuffle argument (see [18] for a discussion).
While range proofs only have to be verified once (e.g., by only one mix-server), this still means
that the shuffle argument of [18] is somewhat slower than what is given in Tbl. 4.1. Moreover,
in the case of e-voting, using only small plaintexts restricts the applicability of a shuffle argu-
ment to only certain voting mechanisms like majority. On the other hand, a mechanism such
as Single Transferable Vote would likely be unusable due to the length of the ballots.

Tbl. 4.1 provides a brief comparison between known NIZK shuffle arguments in the CRS
model and the most computationally efficient known shuffle argument in the random oracle
model [13]. We emphasize that the values in parentheses show the cost of computing and
communicating the shuffled ciphertexts themselves, and must be added to the rest. Moreover,
the cost of the shuffle argument from [18] should include the cost of a range argument. Unless
written otherwise, the communication and the CRS length are given in group elements, the
prover’s computational complexity is given in exponentiations, and the verifier’s computational
complexity is given in bilinear pairings. In each row, highlighted cells denote the best efficiency
or best security (e.g., not requiring the PKE assumption) among arguments in the CRS model.
Of course, a full efficiency comparison can only be made after implementing the different shuffle
arguments.

This brings us to the main question of the current paper:

Is it possible to construct an NIZK shuffle argument in the CRS model that is com-
parable in efficiency with existing random oracle model NIZK shuffle arguments?
Moreover, can one do it while minimizing the use of knowledge assumptions (i.e.,
not requiring the knowledge extractor to have access to the random coins used by all
encrypters) and using a standard, non-lifted, cryptosystem?

Our Contributions.

We give a partial answer to the main question. We propose a new pairing-based NIZK shuffle
argument in the CRS model. Differently from [18], we prove the culpable soundness of the

– 76 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 4.1: A comparison of different NIZK shuffle arguments, compared with the computation-
ally most efficient known shuffle argument in the random oracle model [13].

[15] [19] This work [13]

|CRS| 2n+ 8 7n+ 6 8n+ 17 n+ 1
Communication 15n+ 120 (+3n) 6n+ 11 (+6n) 7n+ 2 (+2n) 480n bits
pro’s comp. 51n+ 246 (+3n) 22n+ 11 (+6n) 16n+ 3 (+2n) 6n (+2n)
ver’s comp. 75n+ 282 28n+ 18 18n+ 6 6n exp.
Lifted No Yes No No

Soundness Culp. sound White-box
sound

Culp. sound Sound

Arg. of knowl. no yes yes yes

PKE (knowl. assm.) no yes yes no
Random oracle no yes

new argument instead of white-box soundness. Compared to [15], which also achieves culpable
soundness, the new argument has 3 times faster proving and more than 4 times faster verifi-
cation. Compared to [15, 18], it is based on a more standard cryptosystem (Elgamal). While
the new shuffle argument is still at least 2 times slower than the most efficient known random
oracle based shuffle arguments, it has almost optimal online prover’s computation. Of course, a
full efficiency comparison can only be made after implementing the different shuffle arguments.

Our construction works as as follows. We first commit to the permutation ψ (by committing
separately to first n − 1 rows of the corresponding permutation matrix Ψ) and to the vector
t of blinding randomizers. Here, we use the polynomial commitment scheme (see Sect. 4.2)
with com(ck;m; r) = (g1, g

γ
2)rP0(χ)+

∑n
i=1miPi(χ) ∈ G1 × G2, in pairing-based setting, where

ê : G1 × G2 → GT is a bilinear pairing, gi is a generator of Gi for i ∈ {1, 2}, (Pi(X))ni=0

is a tuple of linearly independent polynomials, χ is a trapdoor, γ is a knowledge secret, and
ck = ((g1, g

γ
2)Pi(χ))ni=0 is the CRS. For different values of Pi(X), variants of this commitment

scheme have been proposed before [12, 14, 17].

We show that Ψ is a correct permutation matrix by constructing n witness-indistinguishable
succinct unit vector arguments, each of which guarantees that a row of Ψ is a unit vector, for
implicitly constructed Ψn = 1n−

∑n−1
i=1 Ψi. We use the recent square span programs (SSP, [6])

approach to choose the polynomials Pi(X) = yi(X) so that the unit vector argument is efficient.
Since unit vectors are used in many contexts, we hope this argument is of independent interest.

After that, we postulate a natural concrete verification equation for shuffles, and construct
the shuffle argument from this. If privacy were not an issue (and thus z′i = zψ(i) for every i),

the verification equation would just be the tautology
∏n
i=1 ê(z

′
i, g

yi(χ)
2) =?

∏n
i=1 ê(zi, g

yψ−1(i)(χ)

2).
Clearly, if the prover is honest, this equation holds. However, it does not yet guarantee sound-

ness, since an adversary can use g
yj(χ)
1 (given in the CRS) to create (z′i)

n
i=1 in a malicious

way. To eliminate this possibility, by roughly following an idea from [15], we also verify that
∏n
i=1 ê(z

′
i, g

ŷi(χ)
2) =?

∏n
i=1 ê(zi, g

ŷψ−1(i)(χ)

2) for some well-chosen polynomials ŷi(X). (We note
that instead of n univariate polynomials, [15] used n random variables χi, increasing the size of
the secret key to Ω(n) bits.)

To show that the verifications are instantiated correctly, we also need a same-message argu-
ment that shows that commitments w.r.t. two tuples of polynomials (yi(X))ni=1 and (ŷi(X))ni=1

commit to the same plaintext vectors. We construct an efficient same-message argument by
using an approach that is (again, roughly) motivated by the QAP-based approach of [11]. This
argument is an argument of knowledge, given that the polynomials ŷi(X) satisfy an additional
restriction.

– 77 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Since we also require privacy, the actual verification equations are more complicated. In

particular, z′i = zψ(i) · encpk(1; ti), and (say) g
yψ−1(i)(χ)

2 is replaced by the second element

g
γ(riy0(χ)+yψ−1(i)(χ))

2 of a commitment to Ψi. The resulting complication is minor (it requires
one to include into the shuffle argument a single ciphertext U ∈ G2

1 that compensates for the
added randomness). The full shuffle argument consists of commitments to Ψ and to t (both
committed twice, w.r.t. the polynomials (yi(X))ni=0 and (ŷi(X))ni=0), n unit vector arguments
(one for each row of Ψ), n− 1 same-message arguments, and finally U .

If ŷi(X) are well-chosen, then from the two verification equations and the soundness of the
unit vector and same-message arguments it follows, under a new computational assumption
PSP (Power Simultaneous Product, related to an assumption from [15]), that z′i = zψ(i) for
every i.

We prove culpable soundness [15, 16] of the new argument. Since the security of the new
shuffle argument does not depend on the cryptosystem either having knowledge components
or being lifted, we can use Elgamal encryption [7] instead of the non-standard knowledge BBS
encryption introduced in [18]. Since the cryptosystem does not have to be lifted, one can use
more complex voting mechanisms with more complex ballots. The use of knowledge assumptions
means that the new argument is an argument of knowledge.

The new shuffle argument can be largely precomputed by the prover and forwarded to
the verifier even before the common input (i.e., ciphertexts) arrive. Similarly, the verifier can
perform a large part of verification before receiving the ciphertexts. (See [24] for motivation
for precomputation.) The prover’s computation in the online phase is dominated by just two
(n+ 1)-wide multi-exponentiations (the computation of U). The multi-exponentiations can be
parallelized; this is important in practice due to the wide availability of highly parallel graphics
processors.

Main Technical Challenges.

While the main objective of the current work is efficiency, we emphasize that several steps of the
new shuffle argument are technically involved. Throughout the paper, we use and combine very
recent techniques from the design of efficient succinct non-interactive arguments of knowledge
(SNARKs, [11, 21, 6], that are constructed with the main goal of achieving efficient verifiable
computation) with quite unrelated techniques from the design of efficient shuffle arguments [15,
18].

The security of the new shuffle argument relies on a new assumption, PSP. We prove that
PSP holds in the generic bilinear group model, given that polynomials ŷi(X) satisfy a very
precise criterion. For the security of the SSP-based unit vector argument, we need yi(X) to
satisfy another criterion, and for the security of the same-message argument, we need yi(X)
and ŷi(X) to satisfy a third criterion. The fact that polynomials yi(X) and ŷi(X) that satisfy
all three criteria exist is not a priori clear; yi(X) and ŷi(X) (see Prop. 3) are also unlike any
polynomials from the related literature on non-interactive zero knowledge.

Finally, the PSP assumption was carefully chosen so it will hold in the generic bilinear
group model, and so the reduction from culpable soundness of the shuffle argument to the PSP
assumption would work. While the PSP assumption is related to the SP assumption from [15],
the situation in [15] was less fragile due to the use of independent random variables Xi and X2

i

instead of polynomials yi(X) and ŷi(X). In particular, the same-message argument is trivial in
the case of using independent random variables.

4.2 Preliminaries

Let n be the number of ciphertexts to be shuffled. Let Sd be the symmetric group of d elements.
Let G∗ denote the group G without its identity element. For a ≤ b, let [a .. b] := {c ∈ Z : a ≤

– 78 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

c ≤ b}. Denote (a, b)c := (ac, bc). For a set of polynomials F that have the same domain, denote
gF(a) := (gf(a))f∈F .

A permutation matrix is a Boolean matrix with exactly one 1 in every row and column. If
ψ is a permutation then the corresponding permutation matrix Ψψ is such that (Ψψ)ij = 1 iff
j = ψ(i). Thus (Ψψ−1)ij = 1 iff i = ψ(j). Clearly, Ψ is a permutation matrix iff its every row
is a unit vector, and the sum of all its row vectors is equal to the all-ones vector 1n.

Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if |f(κ) − g(κ)| is negligible in
κ. We abbreviate (non-uniform) probabilistic-polynomial time by (NU)PPT. On input 1κ, a
bilinear map generator BP returns (p,G1,G2,GT , ê), where G1, G2 and GT are multiplicative
cyclic groups of prime order p, and ê is an efficient bilinear map ê : G1×G2 → GT that satisfies
the following two properties, where g1 (resp., g2) is an arbitrary generator of G1 (resp., G2): (i)
ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) = ê(g1, g2)ab. Thus, ê(ga1 , g

b
2) = ê(gc1, g

d
2) iff ab ≡ cd (mod p). We

give BP another input, n (related to the input length), and allow p to depend on n. Finally, we
assume that all algorithms that handle group elements reject if their inputs do not belong to
corresponding groups.

We will now give short explanations of the main knowledge assumptions. Let 1 < d(n) <
d∗(n) = poly(κ) be two functions. We say that BP is
• d(n)-PDL (Power Discrete Logarithm, [17]) secure if any NUPPT adversary, given values

((g1, g2)χ
i
)
d(n)
i=0 , has negligible probability of producing χ.

• (d(n), d∗(n))-PCDH (Power Computational Diffie-Hellman, [12, 14, 11]) secure if any
NUPPT adversary, given values ((g1, g2)χ

i
)i∈[0 .. d∗(n)]\{d(n)+1}, has negligible probability

of producing gχ
d(n)+1

1 .
• d(n)-TSDH (Target Strong Diffie-Hellman, [3, 21]) secure if any NUPPT adversary, given

values ((g1, g2)χ
i
)
d(n)
i=0 , has negligible probability of producing a pair of values

(
r, ê(g1, g2)1/(χ−r))

where r 6= χ.
For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ outputs y, and XA

on the same input (including the random tape of A) outputs y′ [1]. We will need knowledge
assumptions w.r.t. up to 2 knowledge secrets γi. Let m be the number of different knowledge
secrets in any concrete argument, in the current paper m ≤ 2. Let F = (Pi)

n
i=0 be a tuple of

univariate polynomials, and G1 (resp., G2) be a tuple of univariate (resp., m-variate) polynomials.
For i ∈ [1 ..m], BP is (F ,G1,G2, γi)-PKE (Power Knowledge of Exponent, [14]) secure if for any
NUPPT adversary A there exists a NUPPT extractor XA, such that

Pr

gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp,γ ←r Zmp ,

γ−i = (γ1, . . . , γi−1, γi+1, . . . , γm), aux←
(
g
G1(χ)
1 , g

G2(χ,γ−i)
2

)
,

(h1, h2; (ai)
n
i=0)← (A||XA)(gk; (g1, g

γi
2)F(χ), aux) :

ê(h1, g
γi
2) = ê(g1, h2) ∧ h1 6= g

∑n
i=0 aiPi(χ)

1

≈κ 0 .

Here, aux can be seen as the common auxiliary input to A and XA that is generated by using
benign auxiliary input generation. The definition implies that aux may depend on γ−i but not
on γi. If F = (Xi)di=0 for some d = d(n), then we replace the first argument in (F , . . .)-PKE
with d. If m = 1, then we omit the last argument γi in (F , . . . , γi)-PKE.

We will use the Elgamal cryptosystem [7] Π = (BP, genpkc, enc, dec), defined as follows, in
the bilinear setting.
Setup (1κ): Let gk← (p,G1,G2,GT , ê)← BP(1κ).
Key Generation genpkc(gk): Let g1 ←r G∗1. Set the secret key sk←r Zp, and the public key

pk← (g1, h = gsk1). Output (pk, sk).
Encryption encpk(m; r): To encrypt a message m ∈ G1 with randomizer r ∈ Zp, output the

ciphertext encpk(m; r) = pkr · (1,m) = (gr,mhr).
Decryption decsk(c1, c2): m = c2/c

sk
1 = mhr/hr = m.

– 79 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Elgamal is clearly multiplicatively homomorphic. In particular, if t ←r Zp, then for any
m and r, encpk(m; r) · encpk(1; t) = encpk(m; r + t) is a random encryption of m. Elgamal is
IND-CPA secure under the XDH assumption.

An extractable trapdoor commitment scheme consists of two efficient algorithms gencom
(that outputs a CRS and a trapdoor) and com (that, given a CRS, a message and a randomizer,
outputs a commitment), and must satisfy the following four security properties.

Computational binding: without access to the trapdoor, it is intractable to open a commit-
ment to two different messages.

Trapdoor: given access to the original message, the randomizer and the trapdoor, one can
open the commitment to any other message.

Perfect hiding: commitments of any two messages have the same distribution.
Extractable: given access to the CRS, the commitment, and the random coins of the commit-

ter, one can obtain the value that the committer committed to.

See, e.g., [14] for formal definitions.

We use the following extractable trapdoor polynomial commitment scheme that generalizes
various earlier commitment schemes [12, 14, 17]. Let n = poly(κ), n > 0, be an integer. Let
Pi(X) ∈ Zp[X], for i ∈ [0 .. n], be n + 1 linearly independent low-degree polynomials. First,
gencom(1κ, n) generates gk← BP(1κ, n), picks g1 ←r G∗1, g2 ←r G∗2, and then outputs the CRS

ck← ((g
Pi(χ)
1 , g

γPi(χ)
2)ni=0) for χ←r Zp \ {j : P0(j) = 0} and γ ←r Zp. The trapdoor is equal to

tdcom = χ.

The commitment of a ∈ Znp , given a randomizer r ←r Zp, is com(ck;a; r) := (g
P0(χ)
1 , g

γP0(χ)
2)r·

∏n
i=1(g

Pi(χ)
1 , g

γPi(χ)
2)ai ∈ G1 × G2. The validity of a commitment (A1, A

γ
2) can be checked by

verifying that ê(A1, g
γP0(χ)
2) = ê(g

P0(χ)
1 , Aγ2). To open a commitment, the committer sends (a, r)

to the verifier.

Theorem 1. Denote Fcom = (Pi(X))ni=0. The polynomial commitment scheme is perfectly hid-
ing and trapdoor. Let d := maxf∈Fcom(deg f). If BP is d-PDL secure, then it is computationally
binding. If BP is (Fcom, ∅, ∅)-PKE secure, then it is extractable.

Alternatively, we can think of com as being a commitment scheme that does not depend
on the concrete polynomials at all, and the description of Pi is just given as a part of ck. We
instantiate the polynomial commitment scheme with concrete polynomials later in Sect. 4.3 and
Sect. 4.6.

An NIZK argument for a group-dependent language L consists of four algorithms, setup,
gencrs, pro and ver. The setup algorithm setup takes as input 1κ and n (the input length), and
outputs the group description gk. The CRS generation algorithm gencrs takes as input gk and
outputs the prover’s CRS crsp, the verifier’s CRS crsv, and a trapdoor td. (td is only required
when the argument is zero-knowledge.) The distinction between crsp and crsv is only important
for efficiency. The prover pro takes as input gk and crsp, a statement u, and a witness w, and
outputs an argument π. The verifier ver takes as input gk and crsv, a statement u, and an
argument π, and either accepts or rejects.

Some of the properties of an argument are: (i) perfect completeness (honest verifier always
accepts honest prover’s argument), (ii) perfect witness-indistinguishability (argument distribu-
tions corresponding to all allowable witnesses are equal), (iii) perfect zero knowledge (there exists
an efficient simulator that can, given u, (crsp, crsv) and td, output an argument that comes from
the same distribution as the argument produced by the prover), (iv) adaptive computational
soundness (if u 6∈ L, then an arbitrary non-uniform probabilistic polynomial time prover has
negligible success in creating a satisfying argument), and (v) adaptive computational culpable
soundness [15, 16] (if u 6∈ L, then an arbitrary NUPPT prover has negligible success in creating
a satisfying argument together with a witness that u 6∈ L). An argument is an argument of
knowledge, if from an accepting argument it follows that the prover knows the witness.

– 80 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

4.3 Unit Vector Argument

In a unit vector argument, the prover aims to convince the verifier that he knows how to open
a commitment (A1, A

γ
2) to some (eI , r), where eI denotes the Ith unit vector for I ∈ [1 .. n].

We construct the unit vector argument by using square span programs (SSP-s, [6], an especially
efficient variant of the quadratic arithmetic programs of [11]).

Clearly, a ∈ Znp is a unit vector iff the following n+ 1 conditions hold:
• ai ∈ {0, 1} for i ∈ [1 .. n] (i.e., a is Boolean), and
• ∑n

i=1 ai = 1.
We use the methodology of [6] to obtain an efficient NIZK argument out of these conditions.

Let {0, 2}n+1 denote the set of (n+1)-dimensional vectors where every coefficient is from {0, 2},
let ◦ denote the Hadamard (entry-wise) product of two vectors, let V :=

(
2·In×n
1>n

)
∈ Z(n+1)×n

p

and b :=
(
0n
1

)
∈ Zn+1

p . Clearly, the above n+ 1 conditions hold iff V a+ b ∈ {0, 2}n+1, i.e.,

(V a+ b− 1n+1) ◦ (V a+ b− 1n+1) = 1n+1 . (4.1)

Let ωi, i ∈ [1 .. n + 1] be n + 1 different values. Let Z(X) :=
∏n+1
i=1 (X − ωi) be the

unique degree n + 1 monic polynomial, such that Z(ωi) = 0 for all i ∈ [1 .. n + 1]. Let the
ith Lagrange basis polynomial `i(X) :=

∏
i,j∈[1 .. n+1],j 6=i((X − ωj)/(ωi − ωj)) be the unique

degree n polynomial, s.t. `i(ωi) = 1 and `i(ωj) = 0 for j 6= i. For a vector x ∈ Zn+1
p , let

Lx(X) =
∑n+1

i=1 xi`i(X) be a degree n polynomial that interpolates x, i.e., Lx(ωi) = xi.
For i ∈ [1 .. n], let yi(X) be the polynomial that interpolates the ith column of the matrix V .

That is, yi(X) = 2`i(X)+ `n+1(X) for i ∈ [1 .. n]. Let y0(X) = −1+ `n+1(X) be the polynomial
that interpolates b− 1n+1. We will use an instantiation of the polynomial commitment scheme
with Fcom = (Z(X), (yi(X))ni=1).

As in [6], we arrive at the polynomialQ(X) = (
∑n

i=1 aiyi(X)+y0(X))2−1 = (yI(X) + y0(X))2−
1 (here, we used the fact that a = eI for some I ∈ [1 .. n]), such that a is a unit vector iff
Z(X) | Q(X). As in [11, 6], to obtain privacy, we now add randomness to Q(X), arriving at
the degree 2(n+ 1) polynomial Qwi(X) = (rZ(X) + yI(X) + y0(X))2 − 1. By [11, 6], Eq. (4.1)
holds iff

(i) Qwi(X) = (A(X) + y0(X))2 − 1, where A(X) = raZ(X) +
∑n

i=1 aiyi(X) ∈ span(Fcom),
and

(ii) Z(X) | Qwi(X).
An honest prover computes the degree ≤ n + 1 polynomial πwi(X) ← Qwi(X)/Z(X) ∈ Zp[X],

and sets the argument to be equal to π∗uv := g
πwi(χ)
1 for a secret χ that instantiates X. If it

exists, πwi(X) := Qwi(X)/Z(X) is equal to r2Z(X) + r · 2(yI(X) + y0(X)) + ΠI(X), where
for i ∈ [1 .. n], Πi(X) := ((yi(X) + y0(X))2 − 1)/Z(X) is a degree ≤ n − 1 polynomial and
Z(X) | ((yi(X) + y0(X))2 − 1). Thus, computing π∗uv uses two exponentiations.

We use a knowledge (PKE) assumption in a standard way to guarantee that A(X) is in the
span of {Xi}n+1

i=0 . As in [11, 6], we then guarantee condition (i) by using a PCDH assumption
and condition (ii) by using a TSDH assumption. Here, we use the same technique as in [11] and

subsequent papers by introducing an additional secret, β, and adding one group element Aβ1 to
the argument.
System parameters: Let com be the polynomial commitment scheme and let Fcom = (Z(X), (yi(X))ni=1).
Setup setupuv(1

κ, n): Let gk← BP(1κ, n).
CRS generation gencrsuv(gk): Let (g1, g2, χ, β, γ)←r G∗1 ×G∗2 × Z3

p, s.t. Z(χ) 6= 0.

ck← (g1, g
γ
2)Fcom(χ),

crsuv,p ← (ck, (g
2(yi(χ)+y0(χ))
1 , g

Πi(χ)
1)ni=1, g

β·Fcom(χ)
1),

crsuv,v ← (g1, g
y0(χ)
1 , gγ2 , g

γy0(χ)
2 , g

γZ(χ)
2 , gγβ2 , ê(g1, g

γ
2)−1).

– 81 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Return crsuv = (crsuv,p, crsuv,v).
Common input: (A1, A

γ
2) = ((g1, g

γ
2)Z(χ))r(g1, g

γ
2)yI(χ) where I ∈ [1 .. n].

Proving prouv(gk, crsuv,p;A1, A
γ
2 ;wuv = (a = eI , r)): Set π∗uv ← (g

Z(χ)
1)r

2 · (g2(yI(χ)+y0(χ))
1)r ·

g
ΠI(χ)
1 . Set Aβ1 ← (g

βZ(χ)
1)rg

βyI(χ)
1 . Output πuv = (π∗uv, A

β
1) ∈ G2

1.

Verification veruv(gk, crsuv,v;A1, A
γ
2 ;πuv): Parse πuv as πuv = (π∗uv, A

β
1). Verify that (1) ê(π∗uv, g

γZ(χ)
2) =

ê(A1 · gy0(χ)
1 , Aγ2 · g

γy0(χ)
2) · ê(g1, g

γ
2)−1,(2) ê(g1, A

γ
2) = ê(A1, g

γ
2), and (3) ê(A1, g

γβ
2) =

ê(Aβ1 , g
γ
2).

Set Fuv,1 = {1} ∪ Fcom ∪ XβFcom and Fuv,2 = Y Fcom ∪ {Y, Y Xβ}. The formal variable Xβ

(resp., Y) stands for the secret key β (resp., γ). Since other elements of crsuv are only needed

for optimization, crsuv can be computed from crs∗uv = (g
Fuv,1(χ,β)
1 , g

Fuv,2(χ,β,γ)
2). If n > 2 then

1 6∈ span({Z(X)}∪{yi(X)}ni=1), and thus {1, Z(X)}∪{yi(X)}ni=1 is a basis of all polynomials of
degree at most n+ 1. Thus, Fuv,1 can be computed iff {Xi}n+1

i=0 ∪ {XβFcom} can be computed.

Theorem 2. The new unit vector argument is perfectly complete and witness-indistinguishable.
If BP is (n+ 1, 2n+ 3)-PCDH secure, (n+ 1)-TSDH secure, and (n+ 1, XβFcom, {Y Xβ})-PKE
secure, then this argument is an adaptive argument of knowledge.

Proposition 1. The computation of (π∗uv, A
β
1) takes one 2-wide multi-exponentiation and 1

exponentiation in G1. In addition, it takes 2 exponentiations (one in G1 and one in G2) in the
master argument to compute (A1, A

γ
2). The verifier computation is dominated by 6 pairings.

4.4 New Same-Message Argument

In a same-message argument, the prover aims to convince the verifier that he knows, given
two commitment keys ck and ĉk (that correspond to two tuples of polynomials (Pi(X))ni=0 and

(P̂i(X))ni=0, respectively), how to open (A1, A
γ
2) = com(ck;m; r) and (Â1, Â

γ̂
2) = com(ĉk;m; r̂)

as commitments (w.r.t. ck and ĉk) to the same plaintext vector m (but not necessarily to the
same randomizer r).

We propose an efficient same-message argument using Fcom = (Z(X), (yi(X))ni=1) as de-
scribed in Sect. 4.3. In the shuffle argument, we need (P̂i(X))ni=0 to satisfy some specific
requirements w.r.t. Fcom, see Sect. 4.5. We are free to choose P̂i otherwise. We concentrate on
a choice of P̂i that satisfies those requirements yet enables us to construct an efficient same-
message argument.

Denote Ẑ(X) = P̂0(X). For the same-message argument to be an argument of knowledge
and efficient, we choose P̂i such that (P̂i(ωj))

n+1
j=1 = (yi(ωj))

n+1
j=1 = 2ei + en+1 for i ∈ [1 .. n].

Moreover, (Ẑ(ωj))
n+1
j=1 = (Z(ωj))

n+1
j=1 = 0n+1.

Following similar methodology as in Sect. 4.3, define

Qwi(X) := (r̂Ẑ(X) +
∑n

i=1 m̂iP̂i(X))− (rZ(X) +
∑n

i=1miyi(X)) .

Let n̂ be the maximum degree of polynomials in (yi(X), P̂i(X))ni=0, thus degQwi ≤ n̂. Since
Qwi(ωj) = 2(m̂j − mj) for j ∈ [1 .. n], Qwi(ωj) = 0 iff mj = m̂j . Moreover, if m = m̂ then
Qwi(ωn+1) =

∑n
i=1 m̂i −

∑n
i=1mi = 0. Hence, m = m̂ iff

(i) Qwi(X) = Â(X) − A(X), where A(X) ∈ span({Z(X)} ∪ {yi(X)}ni=1), and Â(X) ∈
span({Ẑ(X)} ∪ {P̂i(X)}ni=1), and

(ii) there exists a degree ≤ n̂− (n+ 1) polynomial πwi(X) = Qwi(X)/Z(X).
If the prover is honest, then πwi(X) = r̂Ẑ(X)/Z(X)−r+

∑
mi · ((P̂i(X)−yi(X))/Z(X)). Note

that we do not need that Qwi(X) = 0 as a polynomial, we just need that Qwi(ωi) = 0, which is
a deviation from the strategy usually used in QAP/QSP-based arguments [11].

We guarantee the conditions similarly to Sect. 4.3. The description of the argument follows.
(Since it is derived as in Sect. 4.3, we omit further explanations.)

– 82 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

System parameters: Let n = poly(κ). Let com be the polynomial commitment scheme
and let Fcom = (Z(X), (yi)

n
i=1) and F̂com = (Ẑ(X), (P̂i)

n
i=1), where P̂i(X) is such that

yi(ωj) = P̂i(ωj) for i ∈ [0 .. n+ 1] and j ∈ [1 .. n+ 1].
Setup setupsm(1κ, n): Let gk← BP(1κ, n).
CRS generation gencrssm(gk): Let (g1, g2, χ, β, γ, γ̂) ←r G∗1 × G∗2 × Z4

p with Z(χ) 6= 0. Set

ck← (g1, g
γ
2)Fcom(χ) and ĉk← (g1, g

γ̂
2)F̂com(χ). Let crssm,p ← (ck, ĉk, g

β·Fcom(χ)
1 , g

Ẑ(χ)/Z(χ)
1 , g1, (g

(P̂i(χ)−yi(χ))/Z(χ)
1)ni=1),

and crssm,v ← (g1, g
γ
2 , g

γ̂
2 , g

γβ
2 , g

γZ(χ)
2). Return crssm = (crssm,p, crssm,v).

Common input: (A1, A
γ
2) = com(ck;m; r), (Â1, Â

γ̂
2) = com(ĉk;m; r̂).

Argument generation prosm(gk, crssm,p;A1, A
γ
2 , Â1, Â

γ̂
2 ;m, r, r̂): Set π∗sm ← g

πwi(χ)
1 = (g

Ẑ(χ)/Z(χ)
1)r̂·

g−r1 · ∏n
i=1(g

(P̂i(χ)−yi(χ))/Z(χ)
1)mi . Set Aβ1 ← (g

βZ(χ)
1)r

∏n
i=1(g

βyi(χ)
1)mi . Output πsm =

(π∗sm, A
β
1) ∈ G2

1.

Verification versm(gk, crssm,v; (A1, A
γ
2), (Â1, Â

γ̂
2);πsm):

Parse πsm as πsm = (π∗sm, A
β
1). Verify that (1) ê(g1, A

γ
2) = ê(A1, g

γ
2),(2) ê(A1, g

γβ
2) =

ê(Aβ1 , g
γ
2),(3) ê(g1, Â

γ̂
2) = ê(Â1, g

γ̂
2), and(4) ê(π∗sm, g

γZ(χ)
2) = ê(Â1/A1, g

γ
2).

Let Ŷ be the formal variable corresponding to γ̂. In the following theorem, it suffices to take

crs∗ = (g
Fsm,1(χ,β)
1 , g

Fsm,2(χ,β,γ,γ̂)
2), where Fsm,1 = {1}∪Fcom∪F̂com∪XβFcom∪{Ẑ(X)/Z(X)}∪

{(P̂i(X)− yi(X))/Z(X)}ni=1 and Fsm,2 = Y · ({1, Xβ} ∪ Fcom) ∪ Ŷ · ({1} ∪ F̂com).

Theorem 3. The same-message argument is perfectly complete and witness-indistinguishable.
Let n̂ be as above. If BP is (n̂, n̂+ n+ 2)-PCDH secure, n̂-TSDH secure, (n+ 1,Fsm,1 \ ({1} ∪
Fcom),Fsm,2 \ Y · ({1} ∪Fcom), γ)-PKE secure, and (F̂com,Fsm,1 \ F̂com,Fsm,2 \ Ŷ F̂com, γ̂)-PKE
secure, then this argument is an adaptive argument of knowledge.

The proof of the following proposition is straightforward and thus omitted.

Proposition 2. The prover’s computation is dominated by one (W +2)-wide and one (W +1)-
wide multi-exponentiation in G1, where 0 ≤ W ≤ n is the number of elements in the vector m
that are not in {0, 1}. The verifier’s computation is dominated by 8 pairings.

In the shuffle argument below, the prover uses r = r̂, so prover’s computation is 2W + 2
exponentiations. For a unit vector m, we additionally have W = 0 and computing Aβ1 and
the first two verification steps are already done in the unit vector argument anyway, so the
argument only adds 1 exponentiation for the prover, and 4 pairings for the verifier.

4.5 New Assumption: PSP

We will next describe a new computational assumption (PSP) that is needed in the shuffle
argument. The PSP assumption is related to but not equal to the SP assumption from [15].
Interestingly, the generic group proof of the PSP assumption relies on the Schwartz-Zippel
lemma, while in most of the known interactive shuffle arguments (like [20]), the Schwartz-Zippel
lemma is used in the reduction from the shuffle security to some underlying assumption.

Let let d(n) > n be a function. Let F̂ = (P̂i(X))ni=0 be a tuple of polynomials. We say

(d(n), F̂) is PSP-friendly, if the following set is linearly independent: F̂d(n) := {Xi}2d(n)
i=0 ∪{Xi ·

P̂j(X)}0≤i≤d(n),0≤j≤n ∪ {P̂0(X)P̂j(X)}nj=0.

Let (d(n), F̂) be PSP-friendly. Let F = (Pi(X))ni=0 be a tuple of polynomials of degree
≤ d(n). The (F , F̂)-Power Simultaneous Product (PSP) assumption states that for any n =

– 83 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

poly(κ) and any NUPPT adversary A,

Pr

gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp,

Gn+2
1 3 (t, t̂, (si)

n
i=1)← A(gk; ((g1, g2)χ

i
)
d(n)
i=0 , (g1, g2)F̂(χ)) :

tP0(χ) ·
n∏

i=1

s
Pi(χ)
i = t̂ P̂0(χ) ·

n∏

i=1

s
P̂i(χ)
i = 1 ∧ (∃i ∈ [1 .. n] : si 6= 1)

≈κ 0 .

In this section, we prove that the PSP assumption holds in the generic bilinear group model.
PSP-friendliness and the PSP assumption are defined so that both the generic model proof and
the reduction from the shuffle soundness to the PSP in Thm. 5 would go through. As in the
case of SP, it is essential that two simultaneous products have to hold true; the simpler version

of the PSP assumption with only one product (i.e., tP0(χ) ·∏n
i=1 s

Pi(χ)
i = 1) does not hold in the

generic bilinear group model. Differently from SP, the PSP assumption incorporates possibly
distinct t and t̂ since the same-message argument does not guarantee that the randomizers of
two commitments are equal.

Generic Security of the PSP Assumption.

We will briefly discuss the security of the PSP assumption in the generic bilinear group model.
Similarly to [15], we start by picking a random asymmetric bilinear group gk := (p,G1,G2,GT , ê)←
BP(1κ). We now give a generic bilinear group model proof for the PSP assumption.

Theorem 4. Let F = (Pi(X))ni=0 be linearly independent with 1 6∈ span(F). Let d = max{degPi(X)}
and let F̂ = (P̂i(X))ni=0 be such that (d, F̂) is PSP-friendly. The (F , F̂)-PSP assumption holds
in the generic bilinear group model.

Proof. Assume there exists a successful adversary A. In the generic bilinear group model, A
acts obliviously to the actual representation of the group elements and only performs generic
bilinear group operations such as multiplying elements in Gi for i ∈ {1, 2, T}, pairing elements
in G1 and G2, and comparing elements to see if they are identical. hence it can only produce
new elements in G1 by multiplying existing group elements together.

Recall that the A’s input is gk and crs = (((g1, g2)χ
i
)di=0, (g1, g2)F̂(χ)). Hence, keeping

track of the group elements we get that A outputs t, t̂, si ∈ G1, where logg1 t =
∑d

j=0 tjχ
j +∑n

j=0 t
′
jP̂j(χ), logg1 t̂ =

∑d
j=0 t̂jχ

j +
∑n

j=0 t̂
′
jP̂j(χ), and logg1 si =

∑d
j=0 sijχ

j +
∑n

j=0 s
′
ijP̂j(χ),

for known constants tj , t
′
j , t̂j , t̂

′
j , sij , s

′
ij . Taking discrete logarithms of the PSP condition

tP0(χ) · ∏n
i=1 s

Pi(χ)
i = t̂P̂0(χ) · ∏n

i=1 s
P̂i(χ)
i = 1, we get that the two polynomials (for known

coefficients)

d1(X) :=

d∑

j=0

tjX
j +

n∑

j=0

t′jP̂j(X)

 · P0(X) +

n∑

i=1

d∑

j=0

sijX
j +

n∑

j=0

s′ijP̂j(X)

Pi(X) ,

d2(X) :=

d∑

j=0

t̂jX
j +

n∑

j=0

t̂′jP̂j(X)

 · P̂0(X) +

n∑

i=1

d∑

j=0

sijX
j +

n∑

j=0

s′ijP̂j(X)

 P̂i(X)

satisfy d1(χ) = d2(χ) = 0. Since the adversary is oblivious to the actual representation of the
group elements it will do the same group operations no matter the actual value of X(= χ);
so the values tj , . . . , s′ij are generated (almost2) independently of χ. By the Schwartz-Zippel
lemma there is a negligible probability that di(χ) = 0, for non-zero di(X), when we choose χ
randomly. Thus, with all but a negligible probability d1(X) and d2(X) are zero polynomials.

2A generic bilinear group adversary may learn a negligible amount of information about χ by comparing group
elements; we skip this part in the proof.

– 84 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Since F and {Xi}2di=0 ∪ {Xi · P̂j(X)}i∈[0 .. d],j∈[0 .. n] are both linearly independent, {Xi}2di=0 ∪
{Pi(X)P̂j(X)}i,j∈[0 .. n] is also linearly independent. We get from d1(X) = 0 that

∑n
j=0 t

′
jP0(X)P̂j(X)+∑n

i=1

∑n
j=0 s

′
ijPi(X)P̂j(X) = 0, which implies s′ij = 0 for i ∈ [1 .. n], j ∈ [0 .. n]. Substituting

these values into d2(X) = 0, we get that
(∑d

j=0 t̂jX
j +

∑n
j=0 t̂

′
jP̂j(X)

)
P̂0(X)+

∑n
i=1

∑d
j=0 sijX

jP̂i(X) =

0. Since F̂d is linearly independent, we get that all coefficients in the above equation are zero,
and in particular sij = 0 for i ∈ [1 .. n], j ∈ [0 .. n]. Thus si = 1 for i ∈ [1 .. n]. Contradiction to
the fact that the adversary is successful.

4.6 New Shuffle Argument

Let Elgamal operate in G1 defined by gk. In a shuffle argument, the prover aims to convince the
verifier that, given the description of a group, a public key, and two vectors of ciphertexts, the
second vector of the ciphertexts is a permutation of rerandomized versions of the ciphertexts
from the first vector. However, to achieve better efficiency, we construct a shuffle argument that
is only culpably sound with respect to the next relation (i.e., Rguilt

sh -sound):

Rguilt
sh,n =

{
(gk, (pk, (zi)

n
i=1, (z

′
i)
n
i=1), sk) : gk ∈ BP(1κ, n)∧

(pk, sk) ∈ genpkc(gk) ∧
(
∀ψ ∈ Sn : ∃i : decsk(z

′
i) 6= decsk(zψ(i))

)
}

.

The argument of [15] is proven to be Rguilt
sh -sound with respect to the same relation. See [15] or

the introduction for an explanation why Rguilt
sh is sufficient.

As noted in the introduction, we need to use same-message arguments and rely on the PSP
assumption. Thus, we need polynomials P̂j that satisfy two different requirements at once. First,
to be able to use the same-message argument, we need that yj(ωk) = P̂j(ωk) for k ∈ [1 .. n+ 1].
Second, to be able to use the PSP assumption, we need (d, F̂) to be PSP-friendly, and for this
we need P̂j(X) to have a sufficiently large degree. Recall that yj are fixed by the unit vector
argument. We now show that such a choice for P̂j exists.

Proposition 3. Let ŷj(X) := (XZ(X) + 1)j−1(X2Z(X) + 1)yj(X) for j ∈ [1 .. n], and Ẑ(X) =
ŷ0(X) := (XZ(X) + 1)n+1Z(X). Let F̂com = (ŷj(X))nj=0. Then ŷj(ωk) = yj(ωk) for all j, k,

and (n+ 1, F̂com) is PSP-friendly.

Next, we will provide the full description of the new shuffle argument. Note that (ci)
n
i=1 are

commitments to the rows of the permutation matrix Ψ, proven by the n unit vector arguments
(πuv,i)

n
i=1 and by the implicit computation of cn. We denote Ê((a, b), c) := (ê(a, c), ê(b, c)).

System parameters: Let (genpkc, enc, dec) be the Elgamal cryptosystem. Let com be the
polynomial commitment scheme. Consider polynomials Fcom = {Z(X)} ∪ (yi(X))ni=1

from Sect. 4.3. Let F̂com = (ŷi(X))ni=0 be as in Prop. 3.
Setup setupsh(1κ, n): Let gk← BP(1κ, n).
CRS generation gencrssh(gk): Let (g1, g2, χ, β, γ) ←r G∗1 × G∗2 × Z3

p with Z(χ) 6= 0. Let
(crsuv,p, crsuv,v)←r gencrsuv(gk, n), (crssm,p, crssm,v)←r gencrssm(gk, n), but by using the

same (g1, g2, χ, β, γ) in both cases. Let ck ← (g1, g
γ
2)Fcom(χ) and ĉk ← (g1, g

γ̂
2)F̂com(χ). Set

(D1, D
γ
2)← com(ck; 1n; 0), (D̂1, D̂

γ̂
2)← com(ĉk; 1n; 0). Set crssh,p ← (crsuv,p, ĉk, g

Ẑ(χ)/Z(χ)
1 , g1, (g

(ŷi(χ)−yi(χ))/Z(χ)
1)ni=1, D1, D

γ
2 , D̂1, D̂

γ̂
2),

crssh,v ← (crsuv,v, g
γ̂
2 , {g

γyi(χ)
2 , g

γ̂ŷi(χ)
2 }ni=0, D1, D

γ
2 , D̂1, D̂

γ̂
2), and tdsh ← χ. Return ((crssh,p, crssh,v), tdsh).

Common input: (pk, (zi, z
′
i)
n
i=1), where pk = (g1, h) ∈ G2

1, zi ∈ G2
1 and z′i = zψ(i) ·encpk(1; ti) ∈

G2
1.

Argument prosh(gk, crssh,p; pk, (zi, z
′
i)
n
i=1;ψ, (ti)

n
i=1):

(1) Let Ψ = Ψψ−1 be the n× n permutation matrix corresponding to ψ−1.
(2) For i ∈ [1 .. n− 1]:

• Set ri ← Zp, (ci1, c
γ
i2)← com(ck; Ψi; ri), (ĉi1, ĉ

γ̂
i2)← com(ĉk; Ψi; ri).

– 85 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

(3) Set rn ← −
∑n−1

i=1 ri, (cn1, c
γ
n2)← (D1, D

γ
2)/
∏n−1
i=1 (ci1, c

γ
i2).

(4) Set (ĉn1, ĉ
γ̂
n2)← (D̂1, D̂

γ̂
2)/
∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(5) For i ∈ [1 .. n]: set πuv,i = (π∗uv,i, c
β
i1)← prouv(gk, crsuv,p; ci1, c

γ
i2; Ψi, ri).

(6) Set rt ←r Zp, (d1, d
γ
2)← com(ck; t; rt), and (d̂1, d̂

γ̂
2)← com(ĉk; t; rt).

(7) For i ∈ [1 .. n− 1]:

• Set (π∗sm,i, c
β
i1)← prosm(gk, crssm,p; ci1, c

γ
i2, ĉi1, ĉ

γ̂
i2; Ψi, ri, ri).

(8) Set πsm,d ← prosm(gk, crssm,p; d1, d
γ
2 , d̂1, d̂

γ̂
2 ; t, rt, rt).

(9) Compute U = (U1, U2)← pkrt ·∏n
i=1 z

ri
i ∈ G2

1. // The only online step

(10) Output πsh ← ((ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2)n−1

i=1 , d1, d
γ
2 , d̂1, d̂

γ̂
2 , (πuv,i)

n
i=1, (π∗sm,i)

n−1
i=1 , πsm,d, U)

Verification versh(gk, crssh,v; pk, (zi, z
′
i)
n
i=1, πsh):

(1) Let (cn1, c
γ
n2)← (D1, D

γ
2)/
∏n−1
i=1 (ci1, c

γ
i2).

(2) Let (ĉn1, ĉ
γ̂
n2)← (D̂1, D̂

γ̂
2)/
∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(3) For i ∈ [1 .. n]: reject if veruv(gk, crsuv,v; ci1, c
γ
i2;πuv,i) rejects.

(4) For i ∈ [1 .. n− 1]: reject if versm(gk; crssm,v; ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2;πsm,i) rejects.

(5) Reject if versm(gk, crssm,v; d1, d
γ
2 , d̂1, d̂

γ̂
2 ;πsm,d) rejects.

(6) Check the PSP-related verification equations: // The only online step

(a)
∏n
i=1 Ê(z′i, g

γyi(χ)
2)/

∏n
i=1 Ê(zi, c

γ
i2) = Ê((g1, h), dγ2)/Ê(U, g

γZ(χ)
2),

(b)
∏n
i=1 Ê(z′i, g

γ̂ŷi(χ)
2)/

∏n
i=1 Ê(zi, ĉ

γ̂
i2) = Ê((g1, h), d̂γ̂2)/Ê(U, g

γ̂Ẑ(χ)
2).

Since ck, ĉk ⊂ crssh,p, (D1, D
γ
2) = com(ck; 1n; 0) and (D̂1, D̂

γ̂
2) = com(ĉk; 1n; 0) can be computed

from the rest of the CRS. (These four elements are only needed to optimize the computation

of (cn1, c
γ
n2) and (ĉn1, ĉ

γ̂
n2).) For security, it suffices to take crs∗sh = (g

Fsh,1(χ,β)
1 , g

Fsh,2(χ,β,γ,γ̂)
2),

where Fsh,1 = Fuv,1 ∪ F̂com ∪ {Ẑ(X)/Z(X)} ∪ {(ŷi(X)− yi(X))/Z(X)}ni=1 and Fsh,2 = Fuv,2 ∪
Ŷ · ({1} ∪ F̂com).

Theorem 5. The new shuffle argument is a non-interactive perfectly complete and perfectly
zero-knowledge shuffle argument for Elgamal ciphertexts. If the (n + 1)-TSDH, (n̂, n̂ + n +
2)-PCDH, (Fcom, F̂com)-PSP, (n + 1,Fsh,1 \ ({1} ∪ Fcom),Fsh,2 \ Y · ({1} ∪ Fcom), γ)-PKE,

(F̂com,Fsh,1 \ F̂com,Fsh,2 \ Ŷ F̂com, γ̂)-PKE assumptions hold, then the shuffle argument is adap-

tively computationally culpably sound w.r.t. the language Rguilt
sh,n and an argument of knowledge.

When using a Barreto-Naehrig curve [?], exponentiations in G1 are three times cheaper
than in G2. Moreover, a single (N + 1)-wide multi-exponentiations is considerably cheaper
than N + 1 exponentiations. Hence, we compute separately the number of exponentiations and
multi-exponentiations in both G1 and G2 [?, ?]. For the sake of the simplicity, Prop. 4 only
summarizes those numbers.

Proposition 4. The prover’s CRS consists of 6n + 7 elements of G1 and 2n + 4 elements of
G2. The verifier’s CRS consists of 4 elements of G1, 2n+ 8 elements of G2, and 1 element of
GT . The total CRS is 6n+ 8 elements of G1, 2n+ 8 elements of G2, and 1 element of GT , in
total 8n+ 17 group elements. The communication complexity is 5n+ 2 elements of G1 and 2n
elements of G2, in total 7n + 2 group elements. The prover’s and the verifier’s computational
complexity are as in Tbl. 4.1.

Importantly, both the proving and verification algorithm of the new shuffle argument can be
divided into offline (independent of the common input (pk, (zi, z

′
i)
n
i=1)) and online (dependent

on the common input) parts. The prover can precompute all elements of πsh except U (i.e.,
execute all steps of the proving algorithm, except step (9)), and send them to the verifier before
the inputs are fixed. The verifier can verify πsh \ {U} (i.e., execute all steps of the verifica-
tion algorithm, except step (6)) in the precomputation step. Thus, the online computational
complexity is dominated by two (n+ 1)-wide multi-exponentiations for the prover, and 8n+ 4

– 86 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

pairings for the verifier (note that Ê((g1, h), dγ2) and Ê((g1, h), d̂γ̂2) can also be precomputed by
the verifier).

Low online complexity is highly important in e-voting, where the online time (i.e., the time
interval after the ballots are gathered and before the election results are announced) can be
limited for legal reasons. In this case, the mix servers can execute all but step (9) of the proving
algorithm and step (6) of the verification algorithm before the votes are even cast, assuming
one is able to set a priori a reasonable upper bound on n, the number of votes. See [24] for
additional motivation.

– 87 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 88 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] Abe, M., Fehr, S.: Perfect NIZK with Adaptive Soundness. In: TCC 2007. LNCS, vol.
4392, pp. 118–136

[2] Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications.
In: STOC 1988, pp. 103–112

[3] Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In:
CRYPTO 2004. LNCS, vol. 3152, pp. 443–459

[4] Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: CRYPTO 2004. LNCS,
vol. 3152, pp. 41–55

[5] Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext
Attacks. In: CRYPTO 1991. LNCS, vol. 576, pp. 445–456

[6] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square Span Programs with Appli-
cations to Succinct NIZK Arguments. In: ASIACRYPT 2014 (1). LNCS, vol. 8873, pp.
532–550

[7] Elgamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Trans. on Inf. Theory 31(4) (1985) pp. 469–472

[8] Fauzi, P., Lipmaa, H.: Efficient Culpably Sound NIZK Shuffle Argument without Random
Oracles. Technical Report 2015/1112, IACR (2015) http://eprint.iacr.org/2015/1112.

[9] Furukawa, J.: Efficient and Verifiable Shuffling and Shuffle-Decryption. IEICE Transactions
88-A(1) (2005) pp. 172–188

[10] Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: CRYPTO 2001.
LNCS, vol. 2139, pp. 368–387

[11] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and NIZKs
without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645

[12] Golle, P., Jarecki, S., Mironov, I.: Cryptographic Primitives Enforcing Communication
and Storage Complexity. In: FC 2002. LNCS, vol. 2357, pp. 120–135

[13] Groth, J.: A Verifiable Secret Shuffle of Homomorphic Encryptions. J. Cryptology 23(4)
(2010) pp. 546–579

[14] Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 321–340

[15] Groth, J., Lu, S.: A Non-interactive Shuffle with Pairing Based Verifiability. In: ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 51–67

– 89 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[16] Groth, J., Ostrovsky, R., Sahai, A.: New Techniques for Noninteractive Zero-Knowledge.
Journal of the ACM 59(3) (2012)

[17] Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-
Knowledge Arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

[18] Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-
Knowledge Shuffle Argument. In: SCN 2012. LNCS, vol. 7485, pp. 477–502

[19] Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-
Knowledge Shuffle Argument. Journal of Computer Security 21(5) (2013) pp. 685–719

[20] Neff, C.A.: A Verifiable Secret Shuffle and Its Application to E-Voting. In: ACM CCS
2001, pp. 116–125

[21] Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly Practical Verifiable
Computation. In: IEEE SP 2013, pp. 238–252

[22] Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution to the
Implementation of a Voting Booth. In: EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403

[23] Terelius, B., Wikström, D.: Proofs of Restricted Shuffles. In: AFRICACRYPT 2010.
LNCS, vol. 6055, pp. 100–113

[24] Wikström, D.: A Commitment-Consistent Proof of a Shuffle. In: ACISP 2009. LNCS, vol.
5594, pp. 4007–421

– 90 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

5. Initial design options for mix-nets:
Prover-Efficient Commit-And-Prove Zero-
Knowledge SNARKs

Zk-SNARKs (succinct non-interactive zero-knowledge arguments of knowledge) are needed in many
applications, including e-voting applications. Unfortunately, all previous zk-SNARKs for interesting
languages are either inefficient for the prover, or are non-adaptive and based on a commitment
scheme that depends both on the prover’s input and on the language, i.e., they are not commit-
and-prove (CaP) SNARKs. In this chapter, we propose a proof-friendly extractable commitment
scheme, and use it to construct prover-efficient adaptive CaP succinct zk-SNARKs for different
languages, that can all reuse committed data. The presented scheme introduces a design option of
developing a shuffle argument in mix-nets based e-voting applications for WP4 of PANORAMIX
project.

5.1 Introduction

Recently, there has been a significant surge of activity in studying succinct non-interactive zero
knowledge (NIZK) arguments of knowledge (also known as zk-SNARKs) [4–7, 13, 14, 19, 21, 26, 27,
31]. The prover of a zk-SNARK outputs a short (ideally, a small number of group elements)
argument π that is used to convince many different verifiers in the truth of the same claim without
leaking any side information. The verifiers can verify independently the correctness of π, without
communicating with the prover. The argument must be efficiently verifiable. Constructing the
argument can be less efficient, since it is only done once. Still, prover-efficiency is important, e.g.,
in a situation where a single server has to create many arguments to different clients or other
servers.

Many known zk-SNARKs are non-adaptive, meaning that the common reference string, CRS,
can depend on the concrete instance of the language (e.g., the circuit in the case of Circuit-SAT).
In an adaptive zk-SNARK, the CRS is independent on the instance and thus can be reused many
times. This distinction is important, since generation and distribution of the CRS must be done se-
curely. The most efficient known non-adaptive zk-SNARKs for NP-complete languages from [19] are
based on either Quadratic Arithmetic Programs (QAP, for arithmetic Circuit-SAT) or Quadratic
Span Programs (QSP, for Boolean Circuit-SAT). There, the prover computation is dominated
by Θ(n) cryptographic operations (see the full version [29] for a clarification on cryptographic/non-
cryptographic operations), where n is the number of the gates. QAP, QSP [19,27] and other related
approaches like SSP [14] have the same asymptotic complexity.

QSP-based Circuit-SAT SNARK can be made adaptive by using universal circuits [36]. Then,
the CRS depends on the construction of universal circuit and not on the concrete input circuit itself.

– 91 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

However, since the size of a universal circuit is Θ(n log n), the prover computation in resulting
adaptive zk-SNARKs is Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic
operations. (In the case of QAP-based arithmetic Circuit-SAT SNARK, one has to use universal
arithmetic circuits [33] that have an even larger size Θ(r4n), where r is the degree of the polynomial
computed by the arithmetic circuit. Thus, we will mostly give a comparison to the QSP-based
approach.)

Since Valiant’s universal circuits incur a large constant c = 19 in the Θ(·) expression, a common
approach [24,34] is to use universal circuits with the overhead of Θ(log2 n) but with a smaller con-
stant c = 1/2 in Θ(·). The prover computation in the resulting adaptive zk-SNARKs is Θ(n log3 n)
non-cryptographic operations and Θ(n log2 n) cryptographic operations.1

Another important drawback of the QSP/QAP-based SNARKs is that they use a circuit-
dependent commitment scheme. To use the same input data in multiple sub-SNARKs, one needs
to construct a single large circuit that implements all sub-SNARKs, making the SNARK and the
resulting new commitment scheme more complicated.In particular, these SNARKs are not commit-
and-prove (CaP [10, 23]) SNARKs. We recall that in CaP SNARKs, a commitment scheme C is
fixed first, and the statement consists of commitments of the witness using C; see Sect. 5.2. Hence,
a CaP commitment scheme is instance-independent. In addition, one would like the commitment
scheme to be language-independent, enabling one to first commit to the data and only then to
decide in what applications (e.g., verifiable computation of a later fixed function) to use it.

See Tbl. 5.1 for a brief comparison of the efficiency of proposed adaptive zk-SNARKs for NP-
complete languages. Subset-Sum is here brought as an example of a wider family of languages;
it can be replaced everywhere say with Partition or Knapsack, see the full version [29]. Here,

N = r−13 (n) = o(n22
√

2 log2 n), where r3(n) is the density of the largest progression-free set in
{1, . . . , n}. According to the current knowledge, r−13 (n) is comparable to (or only slightly smaller
than) n2 for n < 212; this makes all known CaP SNARKs [16,21,26] arguably impractical unless n
is really small. In all cases, the verifier’s computation is dominated by either Θ(n) cryptographic
or Θ(n log n) non-cryptographic operations (with the verifier’s online computation usually being
Θ(1)), and the communication consists of a small constant number of group elements.2 Given all
above, it is natural to ask the following question:

The Main Question of This Paper: Is it possible to construct adaptive CaP zk-SNARKs
for NP-complete languages where the prover computation is dominated by a linear num-
ber of cryptographic operations?

We answer the “main question” positively by improving on Groth’s modular approach [21].
Using the modular approach allows us to modularize the security analysis, first proving the security
of underlying building blocks (the product and the shift SNARKs), and then composing them to
construct master SNARKs for even NP-complete languages. The security of master SNARKs
follows easily from the security of the basic SNARKs. We also use batch verification to speed up
verification of almost all known SNARKs.

All new SNARKs use the same commitment scheme, the interpolating commitment scheme.
Hence, one can reuse their input data to construct CaP zk-SNARKs for different unrelated lan-
guages, chosen only after the commitment was done. Thus, one can first commit to some data,

1Recently, [13] proposed an independent methodology to improve the prover’s computational complexity in QAP-
based arguments. However, [13] does not spell out their achieved prover’s computational complexity.

2We emphasize that Circuit-SAT is not our focus; the lines corresponding to Circuit-SAT are provided only for
the sake of comparison. One can use proof boot-strapping [13] to decrease the length of the resulting Circuit-SAT
argument from Θ(logn), as stated in [28], to Θ(1); we omit further discussion.

– 92 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 5.1: Prover-efficiency of known adaptive zk-SNARKs for NP-complete languages. Here, n
is the number of the gates (in the case of Circuit-SAT) and the number of the integers (in the
case of Subset-Sum). Green background denotes the best known asymptotic complexity of the
concrete NP-complete language w.r.t. to the concrete parameter. The solutions marked with * use
proof bootstrapping from [13]

Paper Language Prover computation |CRS|
non-crypt. op. crypt. op.

Not CaP-s

QAP, QSP ([14,19,27]) Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n)

CaP-s

Gro10 ([21]) Circuit-SAT Θ(n2) Θ(n2) Θ(n2)
Lip12 ([26]) Circuit-SAT Θ(n2) Θ(N) Θ(N)
Lip14 + Lip12 ([26,28])* Circuit-SAT Θ(N log2 n) Θ(N log n) Θ(N log n)
Lip14 + current paper ([28])* Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n log n)
FLZ13 ([16]) Subset-Sum Θ(N log n) Θ(N) Θ(N)
Current paper Subset-Sum Θ(n log n) Θ(n) Θ(n)

and only later decide in which application and to what end to use it. Importantly, by using CaP
zk-SNARKs, one can guarantee that all such applications use exactly the same data.

The resulting SNARKs are not only commit-and-prove, but also very efficient, and often more
efficient than any previously known SNARKs. The new CaP SNARKs have prover-computation
dominated by Θ(n) cryptographic operations, with the constant in Θ(·) being reasonably small.
Importantly, we propose the most efficient known succinct range SNARK. Since the resulting zk-
SNARKs are sufficiently different from QAP-based zk-SNARKs, we hope that our methodology by
itself is of independent interest. Up to the current paper, Groth’s modular approach has resulted
in significantly less efficient zk-SNARKs than the QSP/QAP-based approach.

In Sect. 5.3, we construct a new natural extractable trapdoor commitment scheme (the inter-
polating commitment scheme). Here, commitment to ~a ∈ Znp , where n is a power of 2, is a short

garbled and randomized version g
L~a(χ)
1 (gχ

n−1
1)r of the Lagrange interpolating polynomial L~a(X) of

~a, for a random secret key χ, together with a knowledge component. This commitment scheme is
arguably a very natural one, and in particular its design is not influenced by the desire to tailor it
to one concrete application. Nevertheless, as we will see, using it improves the efficiency of many
constructions while allowing to reuse many existing results.

The new CaP zk-SNARKs are based on the interpolating commitment scheme and two CaP
witness-indistinguishable SNARKs: a product SNARK (given commitments to vectors ~a, ~b, ~c, it
holds that ci = aibi; see [16, 21, 26]), and a shift SNARK (given commitments to ~a, ~b, it holds
that ~a is a coordinate-wise shift of ~b; see [16]). One can construct an adaptive Circuit-SAT CaP
zk-SNARK from Θ(log n) product and shift SNARKs [21, 28], or adaptive CaP zk-SNARKs for
NP-complete languages like Subset-Sum (and a similar CaP range SNARK) by using a constant
number of product and shift SNARKs [16].

In Sect. 5.4, we propose a CaP product SNARK, that is an argument of knowledge under a
computational and a knowledge (needed solely to achieve extractability of the commitment scheme)
assumption. Its prover computation is dominated by Θ(n log n) non-cryptographic and Θ(n) cryp-
tographic operations. This can be compared to r−13 (n) non-cryptographic operations in [16]. The

– 93 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

speed-up is mainly due to the use of the interpolating commitment scheme.
In Sect. 5.5, we propose a variant of the CaP shift SNARK of [16], secure when combined

with the interpolating commitment scheme. We prove that this SNARK is an adaptive argument
of knowledge under a computational and a knowledge assumption. It only requires the prover to
perform Θ(n) cryptographic and non-cryptographic operations.

Product and shift SNARKs are already very powerful by itself. E.g., a prover can commit to her
input vector ~a. Then, after agreeing with the verifier on a concrete application, she can commit to
a different yet related input vector (that say consists of certain permuted subset of ~a’s coefficients),
and then use the basic SNARKs to prove that this was done correctly. Here, she may use the
permutation SNARK [28] that consists of O(log n) product and shift SNARKs. Finally, she can
use another, application-specific, SNARK (e.g., a range SNARK) to prove that the new committed
input vector has been correctly formed.

In Sect. 5.6, we describe a modular adaptive CaP zk-SNARK, motivated by [16], for the NP-
complete language, Subset-Sum. (Subset-Sum was chosen by us mainly due to the simplicity
of the SNARK; the rest of the paper considers more applications.) This SNARK consists of three
commitments, one application of the shift SNARK, and three applications of the product SNARK.
It is a zk-SNARK given that the commitment scheme, the shift SNARK, and the product SNARK
are secure. Its prover computation is strongly dominated by Θ(n) cryptographic operations, where
n is the instance size, the number of integers. More precisely, the prover has to perform only
nine (≈ n)-wide multi-exponentiations, which makes the SNARK efficient not only asymptotically
(to compare, the size of Valiant’s arithmetic circuit has constant 19, and this constant has to be
multiplied by the overhead of non-adaptive QSP/QAP/SSP-based solutions). Thus, we answer
positively to the stated main question of the current paper. Moreover, the prover computation
is highly parallelizable, while the online verifier computation is dominated by 17 pairings (this
number will be decreased later).

In Sect. 5.7, we propose a new CaP range zk-SNARK that the committed value belongs to a
range [L ..H]. This SNARK looks very similar to the Subset-Sum SNARK, but with the integer
set ~S of the Subset-Sum language depending solely on the range length. Since here the prover has
a committed input, the simulation of the range SNARK is slightly more complicated than of the
Subset-Sum SNARK. Its prover-computation is similarly dominated by Θ(n) cryptographic oper-
ations, where this time n := dlog2(H − L)e. Differently from the Subset-Sum SNARK, the verifier
computation is dominated only by Θ(1) cryptographic operations, more precisely, by 19 pairings
(also this number will be decreased later). Importantly, this SNARK is computationally more effi-
cient than any of the existing succinct range SNARKs either in the standard model (i.e., random
oracle-less) or in the random oracle model. E.g., the prover computation in [25] is Θ(n2) under
the Extended Riemann Hypothesis, and the prover computation in [16] is Θ(r−3(n) log r−3(n)). It
is also significantly simpler than the range SNARKs of [12, 16], mostly since we do not have to
consider different trade-offs between computation and communication.

In the full version [29], we outline how to use the new basic SNARKs to construct efficient
zk-SNARKs for several other NP-complete languages like Boolean and arithmetic Circuit-SAT,
Two-Processor Scheduling, Subset-Product, Partition, and Knapsack [17]. Tbl. 5.1
includes the complexity of Subset-Sum and Circuit-SAT, the complexity of most other SNARKs
is similar to that of Subset-Sum zk-SNARK. It is an interesting open problem why some NP-
complete languages like Subset-Sum have more efficient zk-SNARKs in the modular approach
(equivalently, why their verification can be performed more efficiently in the parallel machine model
that consists of Hadamard product and shift) than languages like Circuit-SAT. We note that [15]
used recently some of the ideas from the current paper to construct an efficient shuffle argument.
However, they did not use product or shift arguments.

– 94 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

In the full version [29], we show that by using batch-verification [3], one can decrease the verifier’s
computation of all presented SNARKs. In particular, one can decrease the verifier’s computation in
the new Range SNARK from 19 pairings to 8 pairings, one 4-way multi-exponentiation in G1, two
3-way multi-exponentiations in G1, one 2-way multi-exponentiation in G1, three exponentiations in
G1, and one 3-way multi-exponentiation in G2.. Since one exponentiation is much cheaper than one
pairing [9] and one m-way multi-exponentiation is much cheaper than m exponentiations [32, 35],
this results in a significant win for the verifier. A similar technique can be used to also speed up
other SNARKs; a good example here is the Circuit-SAT argument from [28] that uses Θ(log n)
product and shift arguments. To compare, in Pinocchio [31] and Geppetto [13], the verifier has to
execute 11 pairings; however, batch-verification can also be used to decrease this to 8 pairings and
a small number of (multi-)exponentiations.

Finally, all resulting SNARKs work on data that has been committed to by using the interpo-
lating commitment scheme. This means that one can repeatedly reuse committed data to compose
different zk-SNARKs (e.g., to show that we know a satisfying input to a circuit, where the first
coefficient belongs to a certain range). This is not possible with the known QSP/QAP-based zk-
SNARKs where one would have to construct a single circuit of possibly considerable size, say n′.
Moreover, in the QSP/QAP-based SNARKs, one has to commit to the vector, the length of which
is equal to the total length of the input and witness (e.g., n′ is the number of wires in the case of
Circuit-SAT). By using a modular solution, one can instead execute several zk-SNARKs with
smaller values of the input and witness size; this can make the SNARK more prover-efficient since
the number of non-cryptographic operations is superlinear. This emphasizes another benefit of
the modular approach: one can choose the value n, the length of the vectors, accordingly to the
desired tradeoff, so that larger n results in faster verifier computation, while smaller n results in
faster prover computation. We are not aware of such a tradeoff in the case of the QSP/QAP-based
approach.

We provide some additional discussion (about the relation between n and then input length,
and about possible QSP/QAP-based solutions) in the full version [29]. Due to the lack of space,
many proofs and details are only given in the full version [29]. We note that an early version of
this paper, [29], was published in May 2014 and thus predates [13]. The published version differs
from this early version mainly by exposition, and the use of proof bootstrapping (from [13]) and
batching.

5.2 Preliminaries

By default, all vectors have dimension n. Let ~a ◦ ~b denote the Hadamard (i.e., element-wise)
product of two vectors, with (~a ◦~b)i = aibi. We say that ~a is a shift-right-by-z of ~b, ~a = ~b � z, iff
(an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+z). For a tuple of polynomials F ⊆ Zp[X,Y1, . . . , Ym−1], define
YmF = (Ym · f(X,Y1, . . . , Ym−1))f∈F ⊆ Zp[X,Y1, . . . , Ym]. For a tuple of polynomials F that have
the same domain, denote hF(~a) := (hf(~a))f∈F . For a group G, let G∗ be the set of its invertible
elements. Since the direct product G1 × · · · × Gm of groups is also a group, we use notation like
(g1, g2)

c = (gc1, g
c
2) ∈ G1×G2 without prior definition. Let κ be the security parameter. We denote

f(κ) ≈κ g(κ) if |f(κ)− g(κ)| is negligible in κ.

On input 1κ, a bilinear map generator BP returns gk = (p,G1,G2,GT , ê), where G1, G2 and
GT are three multiplicative cyclic groups of prime order p (with log p = Ω(κ)), and ê is an efficient
bilinear map ê : G1 × G2 → GT that satisfies in particular the following two properties, where
g1 (resp., g2) is an arbitrary generator of G1 (resp., G2): (i) ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) =

ê(g1, g2)
ab. Thus, if ê(ga1 , g

b
2) = ê(gc1, g

d
2) then ab ≡ cd (mod p). We also give BP another input,

– 95 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

n (intuitively, the input length), and allow p to depend on n. We assume that all algorithms
that handle group elements verify by default that their inputs belong to corresponding groups and
reject if they do not. In the case of many practically relevant pairings, arithmetic in (say) G1 is
considerably cheaper than in G2; hence, we count separately exponentiations in both groups.

For κ = 128, the current recommendation is to use an optimal (asymmetric) Ate pairing over
Barreto-Naehrig curves [2]. In that case, at security level of κ = 128, an element of G1/G2/GT can
be represented in respectively 256/512/3072 bits. To speed up interpolation, we will additionally
need the existence of the n-th, where n is a power of 2, primitive root of unity modulo p (under this
condition, one can interpolate in time Θ(n log n), otherwise, interpolation takes time Θ(n log2 n)).
For this, it suffices that (n+1) | (p−1) (recall that p is the elliptic curve group order). Fortunately,
given κ and a practically relevant value of n, one can easily find a Barreto-Naehrig curve such that
(n + 1) | (p − 1) holds; such an observation was made also in [6]. For example, if κ = 128 and
n = 210, one can use Alg. 1 of [2] to find an elliptic curve group of prime order N(x0) over a finite
field of prime order P (−x0) for x0 = 1753449050, where P (x) = 36x4 + 36x3 + 24x2 + 6x + 1,
T (x) = 6x2 + 1, and N(x) = P (x) + 1− T (x). One can then use the curve E : y2 = x3 + 6.

In proof bootstrapping [13], one needs an additional elliptic curve group Ẽ over a finite field of
order N(x0) (see [13] for additional details). Such elliptic curve group can be found by using the
Cocks-Pinch method; note that Ẽ has somewhat less efficient arithmetic than E.

The security of the new commitment scheme and of the new SNARKs depends on the following
q-type assumptions, variants of which have been used in many previous papers. The assumptions
are parameterized but non-interactive in the sense that q is related to the parameters of the language
(most generally, to the input length) and not to the number of the adversarial queries. All known
(to us) adaptive zk-SNARKs are based on q-type assumptions about BP.

Let d(n) ∈ poly(n) be a function. Then, BP is
• d(n)-PDL (Power Discrete Logarithm) secure if for any n ∈ poly(κ) and any non-uniform

probabilistic polynomial-time (NUPPT) adversary A, Pr[gk← BP(1κ, n), (g1, g2, χ)←r G∗1×
G∗2 × Zp : A(gk; ((g1, g2)

χi)
d(n)
i=0) = χ] ≈κ 0 .

• n-TSDH (Target Strong Diffie-Hellman) secure if for any n ∈ poly(κ) and any NUPPT
adversary A, Pr[gk ← BP(1κ, n), (g1, g2, χ) ←r G∗1 × G∗2 × Zp : A(gk; ((g1, g2)

χi)ni=0) =
(r, ê(g1, g2)

1/(χ−r))] ≈κ 0 .
For algorithms A and XA, we write (y; y′)← (A||XA)(χ) if A on input χ outputs y, and XA on

the same input (including the random tape of A) outputs y′. We will need knowledge assumptions
w.r.t. several knowledge secrets γi. Let m be the number of different knowledge secrets in any
concrete SNARK. Let F = (Pi)

n
i=0 be a tuple of univariate polynomials, and G1 (resp., G2) be a

tuple of univariate (resp., m-variate) polynomials. Let i ∈ [1 ..m]. Then, BP is (F ,G1,G2, i)-PKE
(Power Knowledge of Exponent) secure if for any NUPPT adversary A there exists an NUPPT
extractor XA, such that

Pr

gk← BP(1κ, n), (g1, g2, χ,~γ)←r G∗1 ×G∗2 × Zp × Zmp ,

~γ−i ← (γ1, . . . , γi−1, γi+1, . . . , γm), aux← (g
G1(χ)
1 , g

G2(χ, ~γ−i)
2),

(h1, h2; (ai)
n
i=0)← (A||XA)(gk; (g1, g

γi
2)F(χ), aux) :

ê(h1, g
γi
2) = ê(g1, h2) ∧ h1 6= g

∑n
i=0 aiPi(χ)

1

≈κ 0 .

Here, aux can be seen as the common auxiliary input to A and XA that is generated by using benign
auxiliary input generation. If F = (Xi)di=0 for some d = d(n), then we replace the first argument
in (F , . . .)-PKE with d. If m = 1, then we omit the last argument i in (F , . . . , i)-PKE. While
knowledge assumptions are non-falsifiable, we recall that non-falsifiable assumptions are needed to

– 96 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

design succincts SNARKs for interesting languages [20].

By generalizing [8, 21, 26], one can show that the TSDH, PDL, and PKE assumptions hold in
the generic bilinear group model.

Within this paper, m ≤ 2, and hence we denote γ1 just by γ, and γ2 by δ.

An extractable trapdoor commitment scheme in the CRS model consists of two efficient algo-
rithms Gcom (that outputs a CRS ck and a trapdoor) and C (that, given ck, a message m and a
randomizer r, outputs a commitment Cck(m; r)), and must satisfy the following security properties.

Computational binding: without access to the trapdoor, it is intractable to open a commitment
to two different messages.

Trapdoor: given access to the original message, the randomizer and the trapdoor, one can open
the commitment to any other message.

Perfect hiding: commitments of any two messages have the same distribution.
Extractability: given access to the CRS, the commitment, and the random coins of the committer,

one can open the commitment to the committed message.

See, e.g., [21] for formal definitions. In the context of the current paper, the message is a vector
from Znp . We denote the randomizer space by R.

LetR = {(u,w)} be an efficiently verifiable relation with |w| = poly(|u|). Here, u is a statement,
and w is a witness. Let L = {u : ∃w, (u,w) ∈ R} be an NP-language. Let n = |u| be the input
length. For fixed n, we have a relation Rn and a language Ln.

Following [10,23], we will define commit-and-prove (CaP) argument systems. Intuitively, a CaP
non-interactive zero knowledge argument system for R allows to create a common reference string
(CRS) crs, commit to some values wi (say, ui = Cck(wi; ri), where ck is a part of crs), and then

prove that a subset u := (uij , wij , rij)
`m(n)
j=1 (for publicly known indices ij) satisfies that uij is a

commitment of wij with randomizer rij , and that (wij) ∈ R.

Differently from most of the previous work (but see also [13]), our CaP argument systems
will use computationally binding trapdoor commitment schemes. This means that without their
openings, commitments ui = Cck(ai; ri) themselves do not define a valid relation, since ui can be
a commitment to any a′i, given a suitable r′i. Rather, we define a new relation Rck := {(~u, ~w,~r) :
(∀i, ui = Cck(wi; ri)) ∧ ~w ∈ R}, and construct argument systems for Rck.

Within this subsubsection, we let vectors ~u, ~w, and ~r be of dimension `m(n) for some polynomial
`m(n). However, we allow committed messages wi themselves to be vectors of dimension n. Thus,
`m(n) is usually very small. In some argument systems (like the Subset-Sum SNARK in Sect. 5.6),
also the argument will include some commitments. In such cases, technically speaking, ~w and ~r are
of higher dimension than ~u. To simplify notation, we will ignore this issue.

A commit-and-prove non-interactive zero-knowledge argument system [10, 23] Π for R consists
of an (R-independent) trapdoor commitment scheme Γ = (Gcom,C) and of a non-interactive zero-
knowledge argument system (G,P,V), that are combined as follows: 1. the CRS generator G (that,
in particular, invokes (ck, tdC) ← Gcom(1κ, n)) outputs (crs = (crsp, crsv), td) ← G(1κ, n), where
both crsp and crsv include ck, and td includes tdC. 2. the prover P produces an argument π,
π ← P(crsp; ~u; ~w,~r), where presumably ui = Cck(wi; ri). 3. the verifier V, V(crsv; ~u, π), out-
puts either 1 (accept) or 0 (reject). [(i)] Now, Π is perfectly complete, if for all n = poly(κ),
Pr [(crs, td)← G(1κ, n), (~u, ~w,~r)← Rck,n : V(crsv; ~u,P(crsp; ~u, ~w,~r)) = 1] = 1.

Since Γ is computationally binding and trapdoor (and hence ui can be commitments to any
messages), soundness of the CaP argument systems only makes sense together with the argument
of knowledge property.

Let b(X) be a non-negative polynomial. Π is a (b-bounded-auxiliary-input) argument of knowl-
edge for R, if for all n = poly(κ) and every NUPPT A, there exists an NUPPT extractor XA,

– 97 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

such that for every auxiliary input aux ∈ {0, 1}b(κ), Pr[(crs, td) ← G(1κ, n), ((~u, π); ~w,~r) ←
(A||XA)(crs; aux) : (~u,~w,~r) 6∈ Rck,n ∧ V(crsv; ~u, π) = 1] ≈κ 0 . As in the definition of PKE,
we can restrict the definition of an argument of knowledge to benign auxiliary information genera-
tors, where aux is known to come from; we omit further discussion.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), it holds that if (crs, td) ∈ G(1κ, n)
and ((~u; ~w,~r), (~u; ~w′, ~r′)) ∈ R2

ck,n with ri, r
′
i ←r R, then the distributions P(crsp; ~u; ~w,~r) and

P(crsp; ~u; ~w′, ~r′) are equal. Note that a witness-indistinguishable argument system does not have to
have a trapdoor.

Π is perfectly composable zero-knowledge, if there exists a probabilistic poly-time simulator S,
s.t. for all stateful NUPPT adversaries A and n = poly(κ), Pr[(crs, td) ← G(1κ, n), (~u, ~w,~r) ←
A(crs), π ← P(crsp; ~u; ~w,~r) : (~u, ~w,~r) ∈ Rck,n ∧ A(π) = 1] = Pr[(crs, td) ← G(1κ, n), (~u, ~w,~r) ←
A(crs), π ← S(crs; ~u, td) : (~u, ~w,~r) ∈ Rck,n ∧ A(π) = 1]. Here, the prover and the simulator use the
same CRS, and thus we have same-string zero knowledge. Same-string statistical zero knowledge
allows to use the same CRS an unbounded number of times.

An argument system that satisfies above requirements is known as adaptive. An argument
system where the CRS depends on the statement is often called non-adaptive. It is not surprising
that non-adaptive SNARKs can be much more efficient than adaptive SNARKs.

A non-interactive argument system is succinct if the output length of P and the running time of V
are polylogarithmic in the P’s input length (and polynomial in the security parameter). A succinct
non-interactive argument of knowledge is usually called SNARK. A zero-knowledge SNARK is
abbreviated to zk-SNARK.

5.3 New Extractable Trapdoor Commitment Scheme

We now define a new extractable trapdoor commitment scheme. It uses the following polynomials.
Assume n is a power of two, and let ω be the n-th primitive root of unity modulo p. Then,

• Z(X) :=
∏n
i=1(X − ωi−1) = Xn − 1 is the unique degree n monic polynomial, such that

Z(ωi−1) = 0 for all i ∈ [1 .. n].
• `i(X) :=

∏
j 6=i((X − ωj−1)/(ωi−1 − ωj−1)), the ith Lagrange basis polynomial, is the unique

degree n− 1 polynomial, such that `i(ω
i−1) = 1 and `i(ω

j−1) = 0 for j 6= i.

Clearly, L~a(X) =
∑n

i=1 ai`i(X) is the interpolating polynomial of ~a at points ωi−1, with L~a(ω
i−1) =

ai, and can thus be computed by executing an inverse Fast Fourier Transform. Moreover, (`i(ω
j−1))nj=1 =

~ei (the ith unit vector) and (Z(ωj−1))nj=1 = ~0n. Thus, Z(X) and (`i(X))ni=1 are n+ 1 linearly inde-
pendent degree ≤ n polynomials, and hence FC := (Z(X), (`i(X))ni=1) is a basis of such polynomials.
Clearly, Z−1(0) = {j : Z(j) = 0} = {ωi−1}ni=1.

Definition 1 (Interpolating Commitment Scheme). Let n = poly(κ), n > 0, be a power of two.
First, Gcom(1κ, n) sets gk ← BP(1κ, n), picks g1 ←r G∗1, g2 ←r G∗2, and then outputs the CRS

ck← (gk; (g
f(χ)
1 , g

γf(χ)
2)f∈FC

) for χ←r Zp \ Z−1(0) and γ ←r Z∗p. The trapdoor is equal to χ.

The commitment of ~a ∈ Znp , given a randomizer r ←r Zp, is Cck(~a; r) := (g
Z(χ)
1 , g

γZ(χ)
2)r ·

∏n
i=1(g

`i(χ)
1 , g

γ`i(χ)
2)ai ∈ G1 × G2, i.e., Cck(~a; r) := (g1, g

γ
2)r(χ

n−1)+L~a(χ). The validity of a commit-

ment (A1, A
γ
2) is checked by verifying that ê(A1, g

γZ(χ)
2) = ê(g

Z(χ)
1 , Aγ2). To open a commitment,

the committer sends (~a, r) to the verifier.

The condition Z(χ) 6= 0 is needed in Thm. 1 to get perfect hiding and the trapdoor property.
The condition γ 6= 0 is only needed in Thm. 5 to get perfect zero knowledge. Also, (a function of)
γ is a part of the trapdoor in the range SNARK of Sect. 5.7.

– 98 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Clearly, logg1 A1 = loggγ2 A
γ
2 = rZ(χ) +

∑n
i=1 ai`i(χ). The second element, Aγ2 , of the commit-

ment is known as the knowledge component.

Theorem 1. The interpolating commitment scheme is perfectly hiding and trapdoor. If BP is n-
PDL secure, then it is computationally binding. If BP is (n, ∅, ∅)-PKE secure, then it is extractable.

Proof. Perfect Hiding: since Z(χ) 6= 0, then rZ(χ) (and thus also logg1 A1) is uniformly random
in Zp. Hence, (A1, A

γ
2) is a uniformly random element of the multiplicative subgroup 〈(g1, gγ2)〉 ⊂

G∗1 × G∗2 generated by (g1, g
γ
2), independently of the committed value. Trapdoor: given χ, ~a, r,

~a∗, and c = Cck(~a; r), we compute r∗ s.t. (r∗ − r)Z(χ) +
∑n

i=1(a
∗
i − ai)`i(χ) = 0. This is possible

since Z(χ) 6= 0. Clearly, c = Cck(~a∗; r∗). Extractability: clear from the statement.
Computational Binding: assume that there exists an adversary AC that outputs (~a, ra) and

(~b, rb) with (~a, ra) 6= (~b, rb), s.t. the polynomial d(X) := (raZ(X) +
∑n

i=1 ai`i(X))−(rbZ(X) +
∑n

i=1 bi`i(X))
has a root at χ.

Construct now the following adversary Apdl that breaks the PDL assumption. Given an n-
PDL challenge, since FC consists of degree ≤ n polynomials, Apdl can compute a valid ck from
(a distribution that is statistically close to) the correct distribution. He sends ck to AC. If AC is
successful, then d(X) ∈ Zp[X] is a non-trivial degree-≤ n polynomial. Since the coefficients of d
are known, Apdl can use an efficient polynomial factorization algorithm to compute all roots ri of
d(X). One of these roots has to be equal to χ. Apdl can establish which one by comparing each

(say) g
`1(ri)
1 to the element g

`1(χ)
1 given in the CRS. Clearly, g

`1(ri)
1 is computed from g1 (which can

be computed, given the CRS, since 1 ∈ span(FC)), the coefficients of `1(X), and ri. Apdl has the
same success probability as AC, while her running time is dominated by that of AC plus the time
to factor a degree-≤ n polynomial.

Thm. 1 also holds when instead of Z(X) and `i(X) one uses any n + 1 linearly independent
low-degree polynomials (say) P0(X) and Pi(X). Given the statement of Thm. 1, this choice of the
concrete polynomials is very natural: `i(X) interpolate linearly independent vectors (and thus are
linearly independent; in fact, they constitute a basis), and the choice to interpolate unit vectors
is the conceptually clearest way of choosing Pi(X). Another natural choice of independent poly-
nomials is to set Pi(X) = Xi as in [21], but that choice has resulted in much less efficient (CaP)
SNARKs.

In the full version [29] we show how to use batch-verification techniques to speed up simultaneous
validity verification of many commitments.

5.4 New Product SNARK

Assume the use of the interpolating commitment scheme. In a CaP product SNARK [21], the prover
aims to convince the verifier that she knows how to open three commitments (A,Aγ), (B,Bγ), and
(C,Cγ) to vectors ~a, ~b and ~c (together with the used randomizers), such that ~a ◦~b = ~c. Thus,

R×ck,n :=

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2), (C1, C

γ
2))∧

w× = (~a,~b,~c) ∧ r× = (ra, rb, rc) ∧ (A1, A
γ
2) = Cck(~a; ra)∧

(B1, B
γ
2) = Cck(~b; rb) ∧ (C1, C

γ
2) = Cck(~c; rc) ∧ ~a ◦~b = ~c

.

Next, we propose an efficient CaP product SNARK. For this, we need Lem. 1.

Lemma 1. Let A(X), B(X) and C(X) be polynomials with A(ωi−1) = ai, B(ωi−1) = bi and
C(ωi−1) = ci, ∀i ∈ [1 .. n]. Let Q(X) = A(X)B(X)−C(X). Assume that (i) A(X), B(X), C(X) ∈

– 99 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

span{`i(X)}ni=1, and (ii) there exists a degree n − 2 polynomial π(X), s.t. π(X) = Q(X)/Z(X).

Then ~a ◦~b = ~c.

Proof. From (i) it follows that A(X) = L~a(X), B(X) = L~b(X), and C(X) = L~c(X), and thus
Q(ωi−1) = aibi − ci for all i ∈ [1 .. n]. But (ii) iff Z(X) | Q(X), which holds iff Q(X) evaluates
to 0 at all n values ωi−1. Thus, ~a ◦~b = ~c. Finally, if (i) holds then degQ(X) = 2n − 2 and thus
deg π(X) = n− 2.

If privacy and succinctness are not needed, one can think of the product argument being equal to
π(X). We achieve privacy by picking ra, rb, rc ←r Zp, and definingQwi(X) := (L~a(X) + raZ(X))

(
L~b(X) + rbZ(X)

)
−

(L~c(X) + rcZ(X)). Here, the new addends of type raZ(X) guarantee hiding. On the other hand,
Qwi(X) remains divisible by Z(X) iff ~c = ~a ◦~b. Thus, ~a ◦~b = ~c iff

(i’) Qwi(X) can be expressed as Qwi(X) = A(X)B(X)−C(X) for some polynomials A(X), B(X)
and C(X) that belong to the span of FC, and

(ii’) there exists a polynomial πwi(X), such that

πwi(X) = Qwi(X)/Z(X) . (5.1)

The degree of Qwi(X) is 2n, thus, if πwi(X) exists, then it has degree n.
However, |πwi(X)| is not sublinear in n. To minimize communication, we let the prover transfer

a “garbled” evaluation of πwi(X) at a random secret point χ. More precisely, the prover computes

π× := g
πwi(χ)
1 , using the values gχ

i

1 (given in the CRS) and the coefficients πi of πwi(X) =
∑n

i=0 πiX
i,

as follows:

π× := g
πwi(χ)
1 ←

n∏

i=0

(gχ
i

1)πi . (5.2)

Similarly, instead of (say) L~a(X) + raZ(X), the verifier has the succinct interpolating commitment
Cck(~a; ra) = (g1, g

γ
2)L~a(χ)+raZ(χ) of ~a.

We now give a full description of the new product SNARK Π×, given the interpolating commit-
ment scheme (Gcom,C) and the following tuple of algorithms, (G×,P×,V×). Note that Cck(~1n; 0) =
(g1, g

γ
2).

CRS generation G×(1κ, n): Let gk← BP(1κ), (g1, g2, χ, γ)←r G∗1 ×G∗2 × Z2
p with Z(χ) 6= 0 and

γ 6= 0. Let crsp = ck← (gk; (g1, g
γ
2)FC(χ)) and crsv ← (gk; g

γZ(χ)
2). Output crs× = (crsp, crsv).

Common input: u× = ((A1, A
γ
2), (B1, B

γ
2), (C1, C

γ
2)).

Proving P×(crsp;u×;w× = (~a,~b,~c), r× = (ra, rb, rc)): Compute πwi(X) =
∑n

i=0 πiX
i as in Eq. (5.1)

and π× as in Eq. (5.2). Output π×.

Verification V×(crsv;u×;π×): accept if ê(A1, B
γ
2) = ê(g1, C

γ
2) · ê(π×, gγZ(χ)2).

Since one can recompute it from ck, inclusion of g
γZ(χ)
2 in the CRS is only needed to speed up the

verification. Here as in the shift SNARK of Sect. 5.5, validity of the commitments will be verified
in the master SNARK. This is since the master SNARKs use some of the commitments in several
sub-SNARKs, while it suffices to verify the validity of every commitment only once.

To obtain an argument of knowledge, we use knowledge assumptions in all following proofs.
This SNARK is not zero-knowledge since the possible simulator gets three commitments as inputs
but not their openings; to create an accepting argument the simulator must at least know how to
open the commitment (A1B1/C1, A

γ
2B

γ
2 /C

γ
2) to ~a ◦~b − ~c. It is witness-indistinguishable, and this

suffices for the Subset-Sum and other master SNARKs to be zero-knowledge.

Theorem 2. Π× is perfectly complete and witness-indistinguishable. If the input consists of valid
commitments, and BP is n-TSDH and (n, ∅, ∅)-PKE secure, then Π× is an (Θ(n)-bounded-auxiliary-
input) adaptive argument of knowledge.

– 100 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Proof. Perfect completeness: follows from the discussion in the beginning of this section.
Perfect witness-indistinguishability: since the argument π× that satisfies the verification
equations is unique, all witnesses result in the same argument, and thus this argument is witness-
indistinguishable.

Argument of knowledge: Assume that Aaok is an adversary that, given crs×, returns (u×, π)
such that V×(crsv;u×, π) = 1. Assume that the PKE assumption holds, and let XA be the extractor
thatreturns openings of the commitments in u×, i.e., (~a, ra), (~b, rb), and (~c, rc). We now claim that
XA is also the extractor needed to achieve the argument of knowledge property.

Assume that this is not the case. We construct an adversary Atsdh against n-TSDH. Given
an n-TSDH challenge ch = (gk, ((g1, g2)

χi)ni=0), Atsdh first generates γ ←r Z∗p, and then com-
putes (this is possible since FC consists of degree ≤ n polynomials) and sends crs× to Aaok.
Assume (Aaok||XA)(crs×) returns ((u× = ((A1, A

γ
2), (B1, B

γ
2), (C1, C

γ
2)), π), (w× = (~a,~b,~c), r× =

(ra, rb, rC))), s.t. ui = Cck(wi; ri) but (u×, w×, r×) 6∈ R×ck,n. Since the openings are correct, ~a◦~b 6= ~c
but π is accepting. According to Lem. 1, thus Z(X) - Qwi(X).

Since Z(X) - Qwi(X), then for some i ∈ [1 .. n], (X − ωi−1) - Qwi(X). Write Qwi(X) =
q(X)(X−ωi−1)+r for r ∈ Z∗p. Clearly, deg q(X) ≤ 2n−1. Moreover, we write q(X) = q1(X)Z(X)+

q2(X) with deg qi(X) ≤ n − 1. Since the verification succeeds, ê(g1, g
γ
2)Qwi(χ) = ê(π×, g

γZ(χ)
2),

or ê(g1, g
γ
2)q(χ)(χ−ω

i−1)+r = ê(π×, g
γZ(χ)
2), or ê(g1, g

γ
2)q(χ)+r/(χ−ω

i−1) = ê(π×, g
γZ(χ)/(χ−ωi−1)
2), or

ê(g1, g
γ
2)1/(χ−ω

i−1) = (ê(π×, g
γZ(χ)/(χ−ωi−1)
2)/ê(g

q(χ)
1 , gγ2))r

−1
.

Now, ê(g
q(χ)
1 , gγ2) = ê(g

q1(χ)
1 , g

γZ(χ)
2)ê(g

q2(χ)
1 , gγ2), and thus it can be efficiently computed from

((gχ
i

1)n−1i=0 , g
γ
2 , g

γZ(χ)
2) ⊂ crs. Moreover, Z(X)/(X − ωi−1) = `i(X) · ∏j 6=i(ω

i−1 − ωj−1), and

thus g
γZ(χ)/(χ−ωi−1)
2 can be computed from g

γ`i(χ)
2 by using generic group operations. Hence,

ê(g1, g
γ
2)1/(χ−ω

i−1) can be computed from ((gχ
i

1)n−1i=0 , g
γ
2 , g

γZ(χ)
2 , (g

γ`i(χ)
2)ni=1) (that can be computed

from ch), by using generic group operations. Thus, the adversary has computed (r = ωi−1, ê(g1, g
γ
2)1/(χ−r)),

for r 6= χ. Since Atsdh knows γ 6= 0, he can finally compute (r, ê(g1, g2)
1/(χ−r)), and thus break the

n-TSDH assumption.

Hence, the argument of knowledge property follows.

We remark that the product SNARK (but not the shift SNARK of Sect. 5.5) can be seen as
a QAP-based SNARK [19], namely for the relation ~a ◦ ~b − ~c. (Constructing a QAP-based shift
SNARK is possible, but results in using different polynomials and thus in a different commitment
scheme.)

The prover computation is dominated by the following: (i) one (n+1)-wide multi-exponentiation
in G1. By using the Pippenger’s multi-exponentiation algorithm for large n this means approxi-
mately n + 1 bilinear-group multiplications, see [32]. For small values of n, one can use the algo-
rithm by Straus [35]; then one has to execute Θ(n/ log n) bilinear-group exponentiations. (ii) three
polynomial interpolations, one polynomial multiplication, and one polynomial division to compute
the coefficients of the polynomial πwi(X). Since polynomial division can be implemented as 2
polynomial multiplications (by using pre-computation and storing some extra information in the
CRS, [27]), this part is dominated by two inverse FFT-s and three polynomial multiplications.

The verifier computation is dominated by 3 pairings. (We will count the cost of validity ver-
ifications separately in the master SNARKs.) In the special case C1 = A1 (e.g., in the Boolean
SNARK, where we need to prove that ~a ◦ ~a = ~a, or in the restriction SNARK [21], where we need
to prove that ~a ◦~b = ~a for a public Boolean vector ~b), the verification equation can be simplified

to ê(A1, B
γ
2 /g

γ
2) = ê(π×, g

γZ(χ)
2), which saves one more pairing. In the full version [29], we will

describe a batch-verification technique that allows to speed up simultaneous verification of several

– 101 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

product SNARKs.

Excluding gk, the prover CRS together with ck consists of 2(n + 1) group elements, while the
verifier CRS consists of 1 group element. The CRS can be computed in time Θ(n), by using an
algorithm from [4].

5.5 New Shift SNARK

In a shift-right-by-z SNARK [16] (shift SNARK, for short), the prover aims to convince the verifier
that for 2 commitments (A,Aγ) and (B,Bγ), he knows how to open them as (A,Aγ) = Cck(~a; ra)
and (B,Bγ) = Cck(~b; rb), s.t. ~a = ~b � z. I.e., ai = bi+z for i ∈ [1 .. n − z] and ai = 0 for
i ∈ [n− z + 1 .. n]. Thus,

Rrsft
ck,n :=

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2)) ∧ w× = (~a,~b)∧

r× = (ra, rb) ∧ (A1, A
γ
2) = Cck(~a; ra)∧

(B1, B
γ
2) = Cck(~b; rb) ∧ (~a = ~b� z)

.

An efficient shift SNARK was described in [16]. We now reconstruct this SNARK so that it can
be used together with the interpolating commitment scheme. We can do it since the shift SNARK
of [16] is almost independent of the commitment scheme. We also slightly optimize the resulting
SNARK; in particular, the verifier has to execute one less pairing compared to [16].

Our strategy of constructing a shift SNARK follows the strategy of [21, 26]. We start with a
concrete verification equation that also contains the argument, that we denote by π1. We write the
discrete logarithm of π1 (that follows from this equation) as Fπ(χ) + Fcon(χ), where χ is a secret
key, and Fπ(X) and Fcon(X) are two polynomials. The first polynomial, Fπ(X), is identically
zero iff the prover is honest. Since the spans of certain two polynomial sets do not intersect, this
results in an efficient adaptive shift SNARK that is an argument of knowledge under (two) PKE
assumptions.

Now, for a non-zero polynomial Z∗(X) to be defined later, consider the verification equation

ê(A1, g
γZ∗(χ)
2)/ê(B1π1, g

γ
2) = 1 (due to the properties of pairing, this is equivalent to verifying that

π1 = A
Z∗(χ)
1 /B1), with (A1, A

γ
2) and (B1, B

γ
2) being interpolating commitments to ~a and ~b, and

π1 = g
π(χ)
1 for some polynomial π(X). Denote r(X) := (raZ

∗(X) − rb)Z(X). Taking a discrete
logarithm of the verification equation, we get that π(X) = (raZ(X) +

∑n
i=1 ai`i(X))Z∗(X) −

(rbZ(X) +
∑n

i=1 bi`i(X)) = Z∗(X)
∑n

i=1 ai`i(X)−∑n
i=1 bi`i(X)+r(X) =

(∑n−z
i=1 ai`i(X) +

∑n
i=n−z+1 ai`i(X)

)
Z∗(X)+

r(X)−∑n−z
i=1 bi+z`i+z(X)−∑z

i=1 bi`i(X). Hence, π(X) = Fπ(X) + Fcon(X), where

Fπ(X) =
(∑n−z

i=1 (ai − bi+z)`i(X) +
∑n

i=n−z+1 ai`i(X)
)
· Z∗(X) ,

Fcon(X) =
(∑n

i=z+1 bi(`i−z(X)Z∗(X)− `i(X))−∑z
i=1 bi`i(X)

)
+ r(X) .

Clearly, the prover is honest iff Fπ(X) = 0, which holds iff π(X) = Fcon(X), i.e., π(X) belongs
to the span of Fz−rsft := (`i−z(X)Z∗(X) − `i(X))ni=z+1, (`i(X))zi=1, Z(X)Z∗(X), Z(X)). For the
shift SNARK to be an argument of knowledge, we need that

(i) (`i(X)Z∗(X))ni=1 is linearly independent, and
(ii) Fπ(X) ∩ span(Fz−rsft) = ∅.

Together, (i) and (ii) guarantee that from π(X) ∈ span(Fz−rsft) it follows that ~a is a shift of ~b.

We guarantee that π(X) ∈ span(Fz−rsft) by a knowledge assumption (w.r.t. another knowledge
secret δ); for this we will also show that Fz−rsft is linearly independent. As in the case of the product

– 102 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

SNARK, we also need that (A1, A
γ
2) and (B1, B

γ
2) are actually commitments of n-dimensional

vectors (w.r.t. γ), i.e., we rely on two PKE assumptions.

Denote Fπ := {`i(X)Z∗(X)}ni=1. For a certain choice of Z∗(X), both (i) and (ii) follow from
the next lemma.

Lemma 2. Let Z∗(X) = Z(X)2. Then Fπ ∪ Fz−rsft is linearly independent.

Proof. Assume that there exist ~a ∈ Znp ,~b ∈ Znp , c ∈ Zp, and d ∈ Zp, s.t. f(X) :=
∑n

i=1 ai`i(X)Z∗(X)+∑n
i=z+1 bi (`i−z(X)Z∗(X)− `i(X)) −∑z

i=1 bi`i(X) + cZ(X)Z∗(X) + dZ(X) = 0. But then also
f(ωj−1) = 0, for j ∈ [1 .. n]. Thus, due to the definition of `i(X) and Z(X),

∑n
i=1 bi~ei =

~0n which is only possible if bi = 0 for all i ∈ [1 .. n]. Thus also f ′(X) := f(X)/Z(X) =∑n
i=1 ai`i(X)Z∗(X)/Z(X) + cZ∗(X) + d = 0. But then also f ′(ωj−1) = 0 for j ∈ [1 .. n]. Hence,

cZ∗(ωj−1) + d = d = 0. Finally, f ′′(X) := f(X)/Z∗(X) =
∑n

i=1 ai`i(X) + cZ(X) = 0, and from
f ′′(ωj−1) = 0 for j ∈ [1 .. n], we get ~a = ~0n. Thus also c = 0. This finishes the proof.

Since the argument of knowledge property of the new shift SNARK relies on π(X) belonging
to a certain span, similarly to [16], we will use an additional knowledge assumption. That is, it is
necessary that there exists an extractor that outputs a witness that π(X) = Fcon(X) belongs to
the span of Fz−rsft.

Similarly to the product SNARK, the shift SNARK does not contain π(X) = Fcon(X), but
the value πrsft = (g1, g

δ
2)π(χ) for random χ and δ (necessary due to the use of the second PKE

assumption), computed as

πrsft ←(π1, π
δ
2) = (g1, g

δ
2)π(χ)

=
∏n
i=z+1((g1, g

δ
2)`i−z(χ)Z

∗(χ)−`i(χ))bi ·∏z
i=1((g1, g

δ
2)`i(χ))−bi · (5.3)

((g1, g
δ
2)Z(χ)Z

∗(χ))ra · ((g1, gδ2)Z(χ))−rb .

We are now ready to state the new shift-right-by-z SNARK Πrsft. It consists of the interpolating
commitment scheme and of the following three algorithms:

CRS generation Grsft(1
κ, n): Let Z∗(X) = Z(X)2. Let gk ← BP(1κ), (g1, g2, χ, γ, δ) ← G∗1 ×

G∗2 × Z3
p, s.t. Z(χ) 6= 0, γ 6= 0. Set ck ← (gk; (g1, g

γ
2)FC(χ)), crsp ← (gk; (g1, g

δ
2)Fz−rsft(χ)),

crsv ← (gk; (g1, g
δ
2)Z(χ), g

δZ(χ)Z∗(χ)
2). Return crsrsft = (ck, crsp, crsv).

Common input: ursft = ((A1, A
γ
2), (B1, B

γ
2)).

Proving Prsft(crsp;ursft;wrsft = (~a,~b), rrsft = (ra, rb)): return πrsft ← (π1, π
δ
2) from Eq. (5.3).

Verification Vrsft(crsv;ursft;πrsft = (π1, π
δ
2)): accept if ê(π1, g

δZ(χ)
2) = ê(g

Z(χ)
1 , πδ2) and ê(B1π1, g

δZ(χ)
2) =

ê(A1, g
δZ(χ)Z∗(χ)
2).

Since crsv can be recomputed from ck ∪ crsp, then clearly it suffices to take CRS to be crsrsft =

(gk; g
FC(χ)∪Fz−rsft(χ)
1 , g

γFC(χ)∪δFz−rsft(χ)
2).

Theorem 3. Let Z∗(X) = Z(X)2, y = deg(Z(X)Z∗(X)) = 3n. Πrsft is perfectly complete
and witness-indistinguishable. If the input consists of valid commitments, and BP is y-PDL,
(n,Fz−rsft, Y2Fz−rsft, 1)-PKE, and (Fz−rsft,FC, Y1FC, 2)-PKE secure, then Πrsft is an (Θ(n)-bounded-
auxiliary-input) adaptive argument of knowledge.

The prover computation is dominated by two (n + 2)-wide multi-exponentiations (one in G1

and one in G2); there is no need for polynomial interpolation, multiplication or division. The
communication is 2 group elements. The verifier computation is dominated by 4 pairings. In the
full version [29], we describe a batch-verification technique that allows to speed up simultaneous

– 103 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Let ~b ∈ {0, 1}n be such that
∑n

i=1 Sibi = s.

Let (B1, B
γ
2) be a commitment to ~b.

Construct a product argument π1 to show that ~b ◦~b = ~b.
Let (C1, C

γ
2) be a commitment to ~c← ~S ◦~b.

Construct a product argument π2 to show that ~c = ~S ◦~b.
Let (D1, D

γ
2) be a commitment to ~d, where di =

∑
j≥i cj .

Construct a shift-right-by-1 argument (π31, π
δ
32) to show that ~d = (~d− ~c)� 1.

Construct a product argument π4 to show that ~e1 ◦ (~d− s~e1) = ~0n.
Output πssum = (B1, B

γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Figure 5.1: The new Subset-Sum SNARK Πssum (prover’s operations)

verification of several shift SNARKs. Apart from gk, the prover CRS and ck together contain 4n+6
group elements, and the verifier CRS contains 3 group elements.

A shift-left-by-z (necessary in [28] to construct a permutation SNARK) SNARK can be con-
structed similarly. A rotation-left/right-by-z SNARK (one committed vector is a rotation of another
committed vector) requires only small modifications, see [16].

5.6 New Subset-Sum SNARK

For fixed n and p = nω(1), the NP-complete language Subset-Sum over Zp is defined as the

language LSubset-Sumn of tuples (~S = (S1, . . . , Sn), s), with Si, s ∈ Zp, such that there exists a vector
~b ∈ {0, 1}n with

∑n
i=1 Sibi = s in Zp. Subset-Sum can be solved in pseudo-polynomial time O(pn)

by using dynamic programming. In the current paper, since n = κo(1) and p = 2O(κ), pn is not
polynomial in the input size n log2 p.

In a Subset-Sum SNARK, the prover aims to convince the verifier that he knows how to open
commitment (B1, B

γ
2) to a vector ~b ∈ {0, 1}n, such that

∑n
i=1 Sibi = s. We show that by using

the new product and shift SNARKs, one can design a prover-efficient adaptive Subset-Sum zk-
SNARK Πssum. We emphasize that Subset-Sum is just one of the languages for which we can
construct an efficient zk-SNARK; Sect. 5.7 and the full version [29] have more examples.

First, we use the interpolating commitment scheme. The CRS generation Gssum invokes CRS
generations of the commitment scheme, the product SNARK and the shift SNARK, sharing the
same gk, g1, g2, γ, and trapdoor td = χ between the different invocations. (Since here the argument
must be zero knowledge, it needs a trapdoor.) Thus, crsssum = crsrsft for z = 1.

Let ~ei be the ith unit vector. The prover’s actions are depicted by Fig. 5.1 (a precise explanation
of this SNARK will be given in the completeness proof in Thm. 4). This SNARK, even without
taking into account the differences in the product and shift SNARKs, is both simpler and moth
efficient than the Subset-Sum SNARK presented in [16] where one needed an additional step of
proving that ~b 6= ~0n.

We remark that the vector ~d, with di =
∑

j≥i cj , is called either a vector scan, an all-prefix-sums,

or a prefix-sum of ~c, and (π31, π
δ
32) can be thought of as a scan SNARK [16] that ~d is a correct scan

of ~c.

After receiving πssum, the verifier computes S′1 ←
∏
i(g

`i(χ)
1)Si as the first half of a com-

mitment to ~S, and then performs the following verifications: (i) Three commitment valida-
tions: ê(B1, g

γ
2) = ê(g1, B

γ
2), ê(C1, g

γ
2) = ê(g1, C

γ
2), ê(D1, g

γ
2) = ê(g1, D

γ
2). (ii) Three prod-

– 104 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

uct argument verifications: ê(B1/g1, B
γ
2) = ê(π1, g

γZ(χ)
2), ê(S′1, B

γ
2) = ê(g1, C

γ
2) · ê(π2, gγZ(χ)2),

ê(g
`1(χ)
1 , Dγ

2/(g
γ`1(χ)
2)s) = ê(π4, g

γZ(χ)
2). (iii) One shift argument verification, consisting of two

equality tests: ê(π31, g
δZ(χ)
2) = ê(g

Z(χ)
1 , πδ32), ê(D1/C1π31, g

δZ(χ)
2) = ê(D1, g

δZ(χ)Z∗(χ)
2).

Theorem 4. Πssum is perfectly complete and perfectly composable zero-knowledge. It is an (Θ(n)-
bounded-auxiliary-input) adaptive argument of knowledge if BP satisfies n-TSDH and the same
assumptions as in Thm. 3 (for z = 1).

The prover computation is dominated by three commitments and the application of 3 product
SNARKs and 1 shift SNARK, i.e., by Θ(n log n) non-cryptographic operations and Θ(n) cryp-
tographic operations. The latter is dominated by nine (≈ n)-wide multi-exponentiations (2 in
commitments to ~c and ~d and in the shift argument, and 1 in each product argument), 7 in G1 and
4 in G2. The argument size is constant (11 group elements), and the verifier computation is dom-
inated by offline computation of two (n + 1)-wide multi-exponentiations (needed to once commit
to ~S) and online computation of 17 pairings (3 pairings to verify π2, 2 pairings to verify each of
the other product arguments, 4 pairings to verify the shift argument, and 6 pairings to verify the
validity of 3 commitments). In the full version [29], we will describe a batch-verification technique
that allows to speed up on-line part of the verification of the Subset-Sum SNARK.

As always, multi-exponentiation can be sped up by using algorithms from [32,35]; it can also be
highly parallelized, potentially resulting in very fast parallel implementations of the zk-SNARK.

5.7 New Range SNARK

In a range SNARK, given public range [L ..H], the prover aims to convince the verifier that he
knows how to open commitment (A1, A

γ
2) to a value a ∈ [L ..H]. That is, that the common input

(A1, A
γ
2) is a commitment to vector ~a with a1 = a and ai = 0 for i > 1.

We first remark that instead of the range [L ..H], one can consider the range [0 .. H − L], and
then use the homomorphic properties of the commitment scheme to add L to the committed value.
Hence, we will just assume that the range is equal to [0 .. H] for some H ≥ 1. Moreover, the
efficiency of the following SNARK depends on the range length.

The new range SNARK Πrng is very similar to Πssum, except that one has to additionally commit

to a value a ∈ [0 .. H], use a specific sparse ~S with Si =
⌊
(H + 2i−1)/2i

⌋
[11, 30], and prove that

a =
∑n

i=1 Sibi for the committed a. Since ~S = (Si)
n
i=1 does not depend on the instance (i.e., on

a), the verifier computation is Θ(1). On the other hand, since the commitment to a is given as an
input to the prover (and not created by prover as part of the argument), Πrng has a more complex
simulation strategy, with one more element in the trapdoor.

Let n = blog2Hc + 1. Define Si =
⌊
(H + 2i−1)/2i

⌋
for i ∈ [1 .. n] and ~S = (Si). We again use

the interpolating commitment scheme. To prove that a ∈ [0 .. H], we do the following.
The CRS generation Grng invokes the CRS generations of the commitment scheme, the product

SNARK and the shift SNARK, sharing the same gk and trapdoor td = (χ, δ/γ) between the different
invocations. In this case, the trapdoor has to include δ/γ (which is well defined, since γ 6= 0) since
the simulator does not know how to open (A1, A

γ
2); see the proof of Thm. 5 for more details. We

note that the trapdoor only has to contain δ/γ, and not γ and δ separately. The CRS also contains

the first half of a commitment S′1 ←
∏

(g
`i(χ)
1)Si to ~S, needed for a later efficient verification of the

argument π2. Clearly, the CRS can be computed efficiently from crsrsft (for z = 1).
The prover’s actions on input (A1, A

γ
2) are depicted by Fig. 5.2 (further explanations are given

in the concise completeness proof in Thm.5). The only differences, compared to the prover com-
putation of Πssum, are the computation of bi on step 1, and of π4 on step 2. After receiving

– 105 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

1 Let a =
∑n

i=1 Sibi for bi ∈ {0, 1}.
Let (B1, B

γ
2) be a commitment to ~b.

Construct a product argument π1 to show that ~b = ~b ◦~b.
Let (C1, C

γ
2) be a commitment to ~c← ~S ◦~b.

Construct a product argument π2 to show that ~c = ~S ◦~b.
Let (D1, D

γ
2) be a commitment to ~d, where di =

∑
j≥i ci.

Construct a shift argument (π31, π
δ
32) to show that ~d = (~d− ~c)� 1.

2 Construct a product argument π4 to show that ~e1 ◦ (~d− ~a) = ~0n.

Output πrng = (B1, B
γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Figure 5.2: The new range argument Πrng

πrng, the verifier performs the following checks: (i) Four commitment validations: ê(A1, g
γ
2) =

ê(g1, A
γ
2), ê(B1, g

γ
2) = ê(g1, B

γ
2), ê(C1, g

γ
2) = ê(g1, C

γ
2), ê(D1, g

γ
2) = ê(g1, D

γ
2). (ii) Three prod-

uct argument verifications: ê(B1/g1, B
γ
2) = ê(π1, g

γZ(χ)
2), ê(S′1, B

γ
2) = ê(g1, C

γ
2) · ê(π2, gγZ(χ)2),

ê(g
`1(χ)
1 , Dγ

2/A
γ
2) = ê(π4, g

γZ(χ)
2). (iii) One shift argument verification, consisting of two equality

tests: ê(π31, g
δZ(χ)
2) = ê(g

Z(χ)
1 , πδ32), ê(D1/C1π31, g

δZ(χ)
2) = ê(D1, g

δZ(χ)Z∗(χ)
2).

Theorem 5. Πrng is perfectly complete and composable zero-knowledge. If BP satisfies n-TSDH
and the assumptions of Thm. 3, then Πrng is an adaptive (Θ(n)-bounded-auxiliary-input) argument
of knowledge.

The prover computation is dominated by three commitments and the application of three prod-
uct arguments and one shift argument, that is, by Θ(n log n) non-cryptographic operations and
Θ(n) cryptographic operations. The latter is dominated by nine (≈ n)-wide multi-exponentiations
(2 in commitments to ~c and ~d and in the shift argument, and 1 in each product argument), seven in
G1 and four in G2. The argument size is constant (11 group elements), and the verifier computation
is dominated by 19 pairings (3 pairings to verify π2, 2 pairings to verify each of the other product
arguments, 4 pairings to verify the shift argument, and 8 pairings to verify the validity of 4 com-
mitments). In this case, since the verifier does not have to commit to ~S, the verifier computation
is dominated by Θ(1) cryptographic operations.

The new range SNARK is significantly more computation-efficient for the prover than the
previous range SNARKs [12, 16] that have prover computation Θ(r−13 (n) log n). Πrng has better
communication (11 versus 31 group elements in [16]), and verification complexity (19 versus 65
pairings in [16]). Moreover, Πrng is also simpler: since the prover computation is quasi-linear, we
do not have to consider various trade-offs (though they are still available) between computation
and communication as in [12, 16]. In the full version [29], we will use batch verification to further
speed up the verification of the Range SNARK.

– 106 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] Aranha, D.F., Barreto, S. L. M., Longa, P., Ricardini, J.E.: The Realm of the Pairings, In:
SAC 2013. LNCS, vol. 8282, pp. 3–25

[2] Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: SAC
2005. LNCS, vol. 3897, pp. 319–331

[3] Bellare, M., Garay, J.A., Rabin, T.: Batch Verification with Applications to Cryptography
and Checking. In: LATIN 1998. LNCS, vol. 1380, pp. 170–191

[4] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying
Program Executions Succinctly and in Zero Knowledge. In: CRYPTO (2) 2013. LNCS, vol.
8043, pp. 90–108

[5] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable Zero Knowledge via Cycles of
Elliptic Curves. In: CRYPTO (2) 2014. LNCS, vol. 8617, pp. 276–294

[6] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-Interactive Zero Knowledge
for a von Neumann Architecture. In: USENIX 2014, pp. 781–796

[7] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-interactive
Arguments via Linear Interactive Proofs. In: TCC 2013. LNCS, vol. 7785, pp. 315–333

[8] Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH Assumption
in Bilinear Groups. J. Cryptology 21(2) (2008) pp. 149–177

[9] Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in Pairing Groups. In: SAC 2013. LNCS,
vol. 8282, pp. 438–455

[10] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and
Multi-Party Secure Computation. In: STOC 2002, pp. 494–503

[11] Chaabouni, R., Lipmaa, H., shelat, a.: Additive Combinatorics and Discrete Logarithm Based
Range Protocols. In: ACISP 2010. LNCS, vol. 6168, pp. 336–351

[12] Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Constant Com-
munication. In: FC 2012. LNCS, vol. 7397, pp. 179–199

[13] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B.,
Zahur, S.: Geppetto: Versatile Verifiable Computation. In: IEEE SP 2015, pp. 253–270

[14] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square Span Programs with Applications
to Succinct NIZK Arguments. In: ASIACRYPT 2014 (1). LNCS, vol. 8873, pp. 532–550

– 107 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[15] Fauzi, P., Lipmaa, H.: Efficient Culpably Sound NIZK Shuffle Argument without Random
Oracles. In: CT-RSA 2016. LNCS, vol. 9610

[16] Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift and Product.
In: CANS 2013. LNCS, vol. 8257, pp. 92–121

[17] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman (1979)

[18] Gathen, J., Gerhard, J.: Modern Computer Algebra. 2 edn. Cambridge University Press
(2003)

[19] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and NIZKs
without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645

[20] Gentry, C., Wichs, D.: Separating Succinct Non-Interactive Arguments from All Falsifiable
Assumptions. In: STOC 2011, pp. 99–108

[21] Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: ASIACRYPT
2010. LNCS, vol. 6477, pp. 321–340

[22] Groth, J., Ostrovsky, R., Sahai, A.: New Techniques for Noninteractive Zero-Knowledge.
Journal of the ACM 59(3) (2012)

[23] Kilian, J.: Uses of Randomness in Algorithms and Protocols. PhD thesis, Massachusetts
Institute of Technology, USA (1989)

[24] Kolesnikov, V., Schneider, T.: A Practical Universal Circuit Construction and Secure Evalu-
ation of Private Functions. In: FC 2008. LNCS, vol. 5143, pp. 83–97

[25] Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In:
ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415

[26] Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-
Knowledge Arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169–189

[27] Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and
Linear Error-Correcting Codes. In: ASIACRYPT 2013 (1). LNCS, vol. 8269, pp. 41–60

[28] Lipmaa, H.: Efficient NIZK Arguments via Parallel Verification of Benes Networks. In: SCN
2014. LNCS, vol. 8642, pp. 416–434

[29] Lipmaa, H.: Prover-Efficient Commit-And-Prove Zero-Knowledge SNARKs. TR 2014/396,
IACR (2014) Available at http://eprint.iacr.org/2014/396

[30] Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold Trust. In:
FC 2002. LNCS, vol. 2357, pp. 87–101

[31] Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly Practical Verifiable Com-
putation. In: IEEE SP 2013, pp. 238–252

[32] Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Comput. 9(2) (1980)
pp. 230–250

– 108 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[33] Raz, R.: Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of Computing
6(1) (2010) pp. 135–177

[34] Sadeghi, A.R., Schneider, T.: Generalized Universal Circuits for Secure Evaluation of Private
Functions with Application to Data Classification. In: ICISC 2008. LNCS, vol. 5461, pp.
336–353

[35] Straus, E.G.: Addition Chains of Vectors. Amer. Math. Monthly 70 (1964) pp. 806–808

[36] Valiant, L.G.: Universal Circuits (Preliminary Report). In: STOC 1976, pp. 196–203

– 109 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 110 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

6. Initial design options for mix-nets:
Perfectly Anonymous Messaging via
Secure Multiparty Computation

In this chapter, we present below ‘XYZ’, a design of anonymous messaging system that provides
perfect anonymity and can scale in the order of hundreds of thousands of users. The main
approach of the presented solution is to isolate two suitable ideal functionalities, called dialing
and conversation, that when used in succession realize anonymous messaging. With this as
a starting point, the proposed solution applies a secure multiparty computation (SMC) to
instantiate them with information theoretic security in the semi-honest model. The use of
a parallelization technique enables to scale to a large number of users, without sacryfying
privacy. The presented solution can also provide a degree of forward security on the client
side and can be instantiated in a variety of different ways with different SMC implementations
overall, illustrating how SMC is a competitive alternative to traditional mix-nets and DC-nets
for anonymous communication serving a new design option for WP4 and WP7 of PANORAMIX
project.

6.1 Introduction

In an era in which privacy in communications is becoming increasingly important, it is often the
case that two parties want to communicate anonymously, that is they want to exchange messages
while hiding the very fact that they are in conversation. A major problem in this setting is hiding
the communication metadata: while existing cryptographic techniques (e.g., secure point-to-
point channels implemented with TLS) are sufficiently well developed to hide the communication
content, they are not intended for hiding the metadata of the communication such as its length,
its directionality, and the identities of the communicating end points. Metadata are particularly
important, arguably some times as important to protect as the communication content. The
importance of metadata is reflected in General Michael Hayden’s quote “We kill people based
on metadata”1 and in the persistence of security agencies with programs like PRISM (by the
NSA) and TEMPORA (by the GCHQ) in collecting metadata for storage and mining.

Anonymous communication has been pioneered in the work of Chaum, with mix-nets [8] and
DC-nets [7] providing the first solutions to the problem of sender-anonymous communication.
In particular, a mix-net enables the delivery of a set of messages from n senders to a recipient
so that the recipient is incapable of mapping messages to their respective senders. A DC-net
on the other hand, allows n parties to implement an anonymous broadcast channel so that any
one of them can use it to broadcast a message to the set of parties without any participant
being able to distinguish the source. While initially posed as theoretical constructs, these works
have evolved to actual systems that have been implemented and tested, for instance in the

1Complete quote: “We kill people based on metadata. But that’s not what we do with this metadata.”
General M. Hayden. The Johns Hopkins Foreign Affairs Symposium. 1/4/2014.

– 111 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

case of Mixminion [13], that applies the mix-net concept to e-mail, in the case of Vuvuzela [28]
that applies the mix-nets concept to messaging and in the case of Dissent [29] that implements
DC-nets in a client-server model.

It is important to emphasize that the adversarial setting that we wish to protect against
is a model where the adversary has a global view of the network, akin say to what a global
eavesdropper would have if they were passively observing the Internet backbone, rather than
a localized view that a specific server or sub-network may have. Furthermore, the adversary
may manipulate messages as they are transmitted and received from users as well as block users
adaptively. Note that in a more “localized” adversary setting one may apply concepts like Onion
routing [27], e.g., as implemented in the Tor system [15], or Freenet [10] to obtain a reasonable
level of anonymity with very low latency. Unfortunately such systems are susceptible to traffic
analysis, see e.g., [20], and thus they cannot withstand a global adversary.

Given the complexity of the anonymous communication problem in general, we focus our
application objective to the important special case of anonymous messaging, i.e., bidirectional
communication with moderately low latency that has small payloads. The question we ask is
whether it is possible to achieve it with perfect privacy while scaling to hundreds of thousands
of users. In particular we consider two types of entities in our problem specification, clients
and servers, and we ask how is it possible that the servers assist the clients that are online to
communicate privately without leaking any type of metadata to a global adversary, apart that
they are using the system. Furthermore, we seek a decentralized solution, specifically one that
no single entity in the system can break the privacy of the clients even if it is compromised.
We allow the adversary to completely control the network as well as a subset of the servers and
adaptively drop clients’ messages or manipulate them as it wishes.

Our Results We present “XYZ”, an anonymous private messaging service that supports
perfect privacy, under a well specified set of assumptions, and can scale to hundreds of thousands
of users. In our solution we adopt a different strategy compared to previous approaches to
anonymous communication. Specifically, we provide a way to cast the problem of anonymous
messaging natively in the setting of secure multiparty computation (SMC). SMC, since its initial
proposal, [17], is known to be able to distribute and compute securely any function, nevertheless,
it is typically considered to be not particularly efficient for a large number of parties and
thus inconsistent with problems like anonymous messaging. Nevertheless, the commodity-based
approach [3] (client-server model), and more recent implementation efforts such as Fairplay [4],
VIFF [12], Sharemind [6], PICCO [31], ObliVM [22] increasingly suggest otherwise.

We first propose two ideal functionalities that correspond to the dialing operation and the
conversation operation. The XYZ system operation proceeds in distinct rounds, where in each
round an invocation of either the dialing or the conversation ideal functionality is performed.
The dialing functionality enables clients to either choose to dial another client or check whether
anyone is trying to dial them (in practice in most rounds the overwhelming majority of clients
will be in dial-checking mode). If a matching pair is determined by the ideal functionality, the
caller will be notified that the other client has accepted their call and the callee will be notified
about the caller. Moreover, the ideal functionality will deliver to both clients a random tag (that
can be thought of the equivalent of a “dead drop” or “rendezvous” point). Subsequently the
clients can access the conversation functionality using the established random tag. When two
clients use the same random tag in the conversation functionality, their messages are swapped
and thus they can send messages to each other (even concurrently).

The two ideal functionalities provide a useful abstraction of the anonymous messaging prob-
lem. We proceed now to describe how they can be implemented by an SMC system. It is
easy to see that a straightforward implementation of the functionality programs will result in a
circuit of size Θ(n2) where n is the number of online users accessing the functionalities. Such a
solution would be clearly not scalable. We provide more efficient implementations that achieve

– 112 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

O(n log n) circuit complexity in both cases with very efficient constants using state of the art
oblivious sorting algorithms.

Given our high level functionality realizations we proceed to an explicit implementation in
the Sharemind system, [6]. We provide code in the Qt platform of Sharemind and explicit
benchmarks for the Dialing and Conversation solutions. The Sharemind platform provides
a 3-server implementation of information theoretically secure SMC. Our results benchmark
for thousands of users in a reasonable latency (little over a minute) that is consistent with
messaging.

In order to increase our performance and scale to the order of hundreds of thousands of
users we provide a parallelized implementation of the conversation functionality that maintains
perfect privacy. Parallelization is a non-trivial problem in our setting since we would like to
maintain perfect privacy across the whole user set; thus, a simplistic approach that breaks
users into chunks solving dialing and conversation independently will isolate them to smaller
“communication islands”; if two users have to be on the same island in order to communicate,
this will lead to privacy loss that we would like to avoid. Our parallelized solution manages
to make completely oblivious the interaction between islands essentially providing the same
level of security as the single SMC instance solution. In this way, by utilizing a large number
of servers we are able to scale the system hundreds of thousands of users, cf. Figure ??.
Beyond the enhanced level of privacy that our approach provides (perfect privacy assuming
an honest majority among the servers realizing the two functionalities) our system has the
unique characteristic that it is highly extensible to incorporate policies for spam and malware
prevention that are expressed as regular expressions. This is another feature that stems from
our SMC approach that distinguishes our solution from previous solutions based on DC-nets or
mix-nets (where it is hard to process the transmitted information through a regular expression
filter). Finally, our system also provides forward secrecy, in the sense that if any client or server
is compromised it will be impossible to decrypt previous communication contents or metadata.

Related Work in Anonymous Messaging Our work is most closely related to the Vuvuzela
system [28] that uses mixnets and addition of fake messages as noise to achieve a differentially
private (cf. [16]) solution to anonymous messaging. Expectedly, differential privacy provides a
guarantee that is weaker than perfect privacy. In the context of anonymous messaging differen-
tial privacy provides a bound that any observation strategy of the attacker is subject to, when
trying to distinguish between two possible user actions (e.g., dialing or dial-checking) while
every other entity is stable in its operation. The Vuvuzela system uses mix-nets to facilitate the
dialing and conversation operations something that results in leakage. As it is demonstrated,
this leakage can be controlled with the addition of fake messages by each server in order to
obscure the real number of messages exchanged. Further comparison to Vuvuzela, especially
its dialing protocol is provided in Table 6.1. Another related system is Riposte, [11] which uses
DC-nets and SMC to implement a distributed database that users can anonymously write and
read from. Specifically, they implement the write stage on the database as a “reverse” private
information retrieval (PIR, [9]) where the client spreads suitable information for writing in the
database. Subsequently, when used for messaging, users can read using PIR from the position
in the database that the sender wrote the message (which can be a random position calculated
from key information available to the users). In the end, Riposte can scale to millions of users
but it requires many hours to perform a complete operation; a significant bottleneck is the write-
operation that requires O(

√
L) client communication for an L-long database (where L should

be proportional to the number of users in order to handle collisions between write requests in
the setting of messaging). In contrast, in our system, client bandwidth is independent from
the number of users. Other related schemes like Herbivore, [23] Dissent [29] and Pynchon Gate
[24] use much smaller anonymity sets than Vuvuzela and Riposte because they scale essentially
quadratically in the number of active users.

– 113 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Organization After shortly presenting some preliminary topics in section 6.2, we present
the two ideal functionalities, Dialing and Conversation, that together solve the anonymous
messaging problem (section 6.3). In sections 6.4 and 6.5 we will propose a way to implement the
aforementioned functionalities in a secure and privacy-preserving way, using secure multiparty
computation. In section 6.6, we introduce a novel way to parallelize our protocols in order
to achieve even better performance. Finally, in section 6.7, we combine the results of the
previous sections and describe the architecture of a system that enables users to communicate
anonymously.

6.2 Preliminaries

Secure Multiparty computation Secure Multiparty Computation (SMC or MPC), is an
area of cryptography concerned with methods and protocols that enable a set of users u1, . . . , un
with private data d1, . . . , dn to compute the result of a public function
F (d1, . . . , dn), without revealing their private inputs. Secure computation was formally in-
troduced as secure two-party computation (2PC) in 1982 by Andrew Yao, [30] and was soon
expanded to the multi-party setting. There exist several generic SMC constructions that receive
as input a description of an algorithm (in some form) and the distribution of the inputs among
the data owners and produce as output the description of a secure protocol that implements
the algorithm in a privacy-preserving manner. In most cases, some form of secret sharing of
the inputs, such as additive or Shamir secret sharing [25] is used and the protocol proceeds to
produce a sharing of the output. Most known SMC frameworks, such as Fairplay [4], VIFF
[12], Sharemind [6] etc. need the function as a circuit, either made up of boolean gates or as
an arithmetic circuit over a sufficiently large field GF (p). This is a highly non-trivial matter
as most useful functions use loops or recursion. Generally, each implementation follows either
the Yao paradigm, the GMW [17] or some combination of those. The main difference of these
two approaches is that Yao’s approach requires the generation of a garbled circuit and the eval-
uation of the function on it, whereas the GMW approach requires communication during the
evaluation of any multiplication (or binary AND) gate.

Our work will be presented in a manner that makes it easy to implement using any of the
aforementioned protocols and therefore we will not elaborate further on them. As a general
idea, clients will break their input into shares and forward each share to a server. Then, the
servers will interactively compute the desired output shares, which in turn will be returned
to the respective clients. More specifically, each client will be allocated a virtual wire with a
specific wire id that will be the same in all servers and her input and output will be transferred
by this wire.

Oblivious sorting Sorting is used as a vital part of many algorithms. In the context of
secure multiparty computation, sorting an array of values without revealing their final position,
is called oblivious sorting.

The first approach to sorting obliviously is using a data-independent algorithm and perform-
ing each compare and exchange execution obliviously. This approach uses sorting networks to
perform oblivious sorting. Sorting networks are circuits that solve the sorting problem on any
set with an order relation. Sorting networks are devices built up only of wires carrying values
and comparator modules that connect pairs of wires and that swap these values if they are not
in the desired order (according to a given order relation). What sets sorting networks apart
from general comparison sorts is that their sequence of comparisons is set in advance, regardless
of the outcome of previous comparisons. Various algorithms exist to construct simple and effi-
cient networks of depth O(log2n) and size O(nlog2n) . The three more used ones are Batcher’s
odd-even mergesort and bitonic sort [2] and Shellsort [26]. All three of these networks are simple
in principle and efficient. Sorting networks that achieve the theoretically optimal O(logn) and

– 114 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

O(nlogn) complexity in depth and total number of comparisons, such as the AKS-network [1]
exist, but the constants involved are so large that make them impractical for use. Note that
even for 1 billion values, i.e., n = 109, it holds that log n < 30 so, in practice, the extra log
factor is preferable to the large constants. A major drawback of all sorting network approaches
is that sorting a matrix by one of its columns would require oblivious exchange operations of
complete matrix rows, which would be very expensive.

In recent years techniques have been proposed from Hamada et. al [19] to use well known
data-dependent algorithms such as quicksort or radix sort in an oblivious manner to achieve very
efficient implementations, especially when considering a small number of SMC servers, which
is very often the case. This approach uses the “shuffling before sorting“ idea, which means
that if a vector has already been randomly permuted, information leaked about the outcome of
comparisons does not leak information about the initial and final position of any element of the
vector. More specifically, the variant of quicksort proposed in [19], needs on average O(log n)
rounds and a total of O(n log n) oblivious comparisons. Complete privacy is guaranteed when
the input vector contains no equal sorting keys, and in the case of equal keys, their number may
leak. Furthermore, performance of the algorithm is data-dependent and generally depends on
the number of equal elements, with the optimal case being that no equal pairs exist. Practical
results have shown [5] that this quicksort variant is the most efficient oblivious sorting algorithm
available, when the input keys are constructed in a way that makes them unique.

Another algorithm following the ideas above, is Hamada’s oblivious radix sort [18]. This
variant of radix sort is not based on comparisons and it is very efficient, when considering
a rather small fixed number of servers and a reasonable fixed size of the sorting keys (e.g.
32 or 64 bits). In this setting, the algorithm has a round complexity of O(1) and a total
communication complexity of O(n log n). Furthermore, its running time is data-independent
and it can also handle vectors with equal values without leakage. Practical results have shown
that this algorithm is the optimal solution when dealing with inputs which may have equal
elements.

To sum up, we have briefly introduced three approaches to oblivious sorting. Sorting net-
works are inherently data oblivious but their performance is not practical when dealing with a
large number of inputs and/or with large amount of data to be sorted according to a key. The
other two approaches use shuffling techniques before sorting and are able to produce practically
interesting results. More specifically, in our algorithms we will use oblivious radix sort when we
care about leaking the number of equal elements, and quicksort when elements are guaranteed
to be distinct, or when leaking the number of equals can be tolerated.

Sharemind Sharemind [6] is a secure multiparty computation framework that offers a higher
level representation of the circuit being computed in the form of a program written in a C-like
language, namely the SecreC language. It uses three-server protocols that offer security in the
presence of an honest server majority. That is, we assume that no two servers will collude in
order to brake the systems privacy. In the presentation of our solution we will use Sharemind
as a prototype building platform but that does not mean that our solution cannot be easily
customized to be compatible with any multiparty computation framework. Sharemind offers
many built-in functions that make programming of privacy-preserving software easier. Of special
interest are the oblivious sorting and oblivious choice methods implemented. Considering that
our approach relies heavily on those two operations, Sharemind enabled us to produce working
code easily in order to emulate and test our proposals.

6.3 Ideal anonymous messaging

We will present a solution in the form of two ideal functionalities that together solve the problem
of anonymous communication. An ideal functionality is a protocol run by a trusted third party

– 115 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

that computes the desired result. Our solution will make use of the idea of rendezvous points,
inspired by Vuvuzela and encompass two distinct functionalities. The Dialing functionality,
which consists of the computation of a rendezvous point for a given pair of users who want
to communicate, and the Conversation functionality which represents the actual exchange of
messages. It is important to note that we have made the assumption that a user who wants
to dial another user knows the said user’s public key. This assumption is non trivial, but the
problem of an anonymous public key infrastructure is out of the scope of this paper. The two
ideal functionalities are presented in figures ?? and ??, respectively.

Dialing Functionality FDIAL

Running with a set of users D = {u1, . . . , un} and an ideal adversary A, proceeds as follows:

– Upon receiving:

– (DIAL, ui, uj) requests from k users, each originating from user ui,

– (DIALCHECK, uj) requests from n− k users, each originating from user uj ,

compute a random value tui,uj if two requests of the form (DIALCHECK, uj) and
(DIAL, ui, uj) have been received and forward it to both users ui, uj . If more DIAL re-
quests have been received that match the same DIALCHECK request, any of them may be
chosen by A. If no DIAL requests have been received for a DIALCHECK, return void.

Figure 6.1: The ideal functionality FDIAL.

Conversation Functionality FCONV

Running with a set of users D = {u1, . . . , un} and an ideal adversary A, proceeds as follows:

– Upon receiving:

(a) (CONV, ti, yi) from all parties ui ∈ D (some may be controlled by A),

(b) a list L = {uk, · · · , ul} of blocked users from A,

compute the permutation π (as defined in section 6.3) over the unblocked users and send
message yπi to user i.

Figure 6.2: The ideal functionality FCONV.

Explaining the symbols:

• yi : the message that some user ui sends to a user uj , encrypted with a key known to uj .

• ti : A string that stands for the rendezvous point. It contains information about the
receiver of the message and is a value that will be shared by the two communicating
parties.

• A : The adversary has full control of the network and the ability to corrupt all but the
two users communicating and some of the servers.

• π : The permutation π used in figure ?? is defined based on tuples of the form (ti, yi) as
shown below :

– 116 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– if ti = tj ⇒
{
π(i) = j

π(j) = i

– else if ∀j 6= i : ti 6= tj ⇒ π(i) = i

If more than two tuples have the same t value, then let the ideal adversary A choose how
they are going to be paired. Intuitively π represents the exchange of messages.

The Dialing functionality aims at computing a shared random value between two users that
want to communicate. When a user ui wants to start a conversation session with another user
uj , she sends a dial request and the functionality generates a random shared value. This shared
value is then used by the Conversation functionality to match users who want to exchange
messages and to facilitate this exchange. Specifically, two message requests that have the same
t value are matched together and their contents are swapped. The use of a random rendezvous
point in the establishment of a communication channel between two users averts any denial
of service attacks targeting specific users by other users at the conversation phase. This ideal
functionality serves as a general idea of what we are trying to achieve with more specific details
coming along with the respective implementations in the next sections.

The remainder of this paper focuses on achieving the functionalities described above in a
distributed and secure way. As a general design, we are going to implement two protocols,
the Dialing and the Conversation protocol, using secure multiparty computation techniques to
securely evaluate the corresponding functions with the presence of a number of servers (3 in our
implementation), assuming an honest server majority (server number count can vary depending
on the implementation framework). Clients will divide their input into shares and forward each
one to a server using a secure channel. The servers will proceed to produce the desired output
shares and then return these to the respective clients in order for them to be reproduced.

6.4 Implementing the Dialing functionality

6.4.1 Dialing Protocol

The Dialing or Dial-Dialcheck protocol will enable clients to notify others that they want to start
a conversation, assuming they know the other party’s public key, much like how the telephone
protocol works. The protocol will work in rounds to deter possible timing attacks and in each
round each online client will either send a Dial request or a Dialcheck request, which will
be indiscriminate from each other. The protocol given will implement the ideal functionality
FDIAL. First we will present an intermediate representation describing the functionality in a
mathematical manner and then we will proceed with an efficient algorithm implementing it.
Below we will use the character ”C” as a label to denote a DIALCHEK.

Dialing Functionality round r intermediate representation

Input: a sequence of n tuples 〈a1, . . . , an〉 =
〈(i1, j1), (i2, j2), . . . , (in, jn)〉
and a sequence of public keys 〈k1, . . . , kn〉
Output: a sequence of size n, 〈b1, . . . , bn〉 returning dialers’ pk’s to DIALCHECK requests (or
zero)

For each i← 1, . . . , n
if ai.1 6= ki AND ai.2 6= ki then
ai.1 = 0
ai.2 = 0

– 117 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

end if

For each i = 1, . . . , n
if ai.1 = C AND ∃j ∈ {1, . . . , n} : (aj .2 = ai.2) then
bi ← aj .1

else
bi ← 0

end if
return sequence b
Comment: each user computes the shared value tui,uj as shown later in this section

Dialers input a tuple of the form (i, j) where i and j are the public keys of the dialer and
the dialee respectively. Dial checkers input a tuple of the form (C, j), where C is a special
value designated to show a dial check and different from any possible id/public key value, and
j is the checker’s own pk. Additionally, a list of the user’s public keys is provided as input by
an untrusted third party (more on this on later sections) with public key ki belonging to the
submitter of tuple ai. As a first step, the protocol checks if any of the first two members of
each tuple (namely ai.1 and ai.2) is equal to the submitter’s public key. This check serves two
purposes. First, it averts impersonation attacks, where a user might pose as another user to
get access to dialing requests destined for the latter one. In a tuple of the form (C, ji), which
signifies a dial check, if the second member of the tuple is not the submitter’s public key, then
the dial check is discarded. The second use of this check is that any denial of service attack that
floods a specific user with dials, in order to avert him from collecting the genuine ones, cannot be
made anonymously. In the case of a dial to a user other than one’s self, the first member of the
dial tuple is guaranteed to be the submitter’s own public key and thus the source of a dos attack
cannot be hidden. How the list of the submitters’ public keys is generated and guaranteed to
be correct will be discussed in section 6.7 where we talk about the general architecture of the
system.

At the end, the protocol produces meaningful output only for dial checkers who have a dial
request by another user. This output is the pk of the user who dialed them. All other outputs
are meaningless and could be zero or have another special value. It has to be noted that a
dial checker can have multiple incoming dial requests. In this protocol it is not specified which
request will actually come through, but that one of them will.

After having received (or having sent) a dial request from (to) a user uj , user ui can calculate
the shared rendezvous point for each (conversation) round r as follows:

ti = H(sui,uj , r)

where sui,uj = DH(pkui , pkuj)

where H is a standard cryptographic hash function, r is the round number, pkui is the public
key of user ui, and DH marks a (non interactive) Diffie-Hellman key exchange operation. We
emphasize the fact that this t value is at least 64 bits long. If user ui doesn’t want to commu-
nicate, but wants to protect her privacy she computes a rendezvous point as above with pkuj =
rand and sends a zero or random message. In this case, the message returned is the message she
sent. Here it has to be noted that the random rendezvous point calculation can be considered
to be somewhere in the middle between the Dialing and Conversation functionalities as the seed
of the pseudorandom hash function is generated from the first functionality and the specific
rendezvous point for each round from the second. The algorithm realizing the Dialing protocol
is presented next.

Algorithm 1 describes an implementation of functionality FDIALin a manner suitable for
secure multiparty computation. More precisely, inputs are considered wires bearing a wire
id (wid). First checking is performed for each input tuple, in a possibly parallel manner, to
exclude rogue requests by setting them to zero. Sorting is then performed using the oblivious

– 118 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Algorithm 1 Dialing round r

Input: a sequence of n tuples 〈a1, . . . , an〉 = 〈(i1, j1, wid1), (i2, j2, wid2), . . . , (in, jn, widn)〉
along with a sequence of n public keys 〈k1, . . . , kn〉
Output: a sequence of size n, 〈b1, . . . , bn〉 returning dialers’ pk’s to check requests (or
zero)

1. For each i← 1, . . . , n
if ai.1 6= ki AND ai.2 6= ki then
ai.1← 0
ai.2← 0

end if
2. Sort tuples 〈a1, . . . , an〉 according to second coordinate using oblivious radix sort.
3. For each i← 1, . . . , n
if ai.1 = C AND ai.2 = ai−1.2 then
b′i ← (ai−1.1, ai.3)

else if ai.1 = C AND ai.2 = ai+1.2 then
b′i ← (ai+1.1, ai.3)

else
b′i ← (0, ai.3)

end if
4. Sort tuples 〈b′1, . . . , b′n〉 according to second coordinate using quicksort, then ignore second
coordinate and produce sequence 〈b1, . . . , bn〉 = 〈b′1.1, . . . , b′n.1〉
return sequence b
Post-processing: Each client calculates rendezvous point ti for each round r, r + 1, . . . she
needs.

radix sort algorithm of [18] to sort the tuples according to their second coordinate, which in
the case of a Dial is the recipient’s pk and in the case of a Dialcheck is a checker’s own pk. In
reality, due to the fact that radix sort scales linearly to the length of the sorting key, we need
to use an alternative to the public key specified in the algorithm. As this value will not be used
for encryption, but only for identification purposes, it can be a short username acquired be a
client when entering the system and agreed upon by all the involved servers. Another more
straightforward option would be to use a public key fingerprint (e.g. 128 bit MD5). Then,
requests are processed individually by looking at both of their neighbours to determine if there
is a Dial for any given Dialcheck request. Of course, requests at the first and last place of the
sorted vector need only look at one neighbour. Sorting enables us to claim that any Dialcheck
request of a user will have a suitable Dial request as its neighbour or not at all. After checking
and producing an intermediate result b′, the algorithm needs to sort the requests according
to their wire id’s in order for the correct requests to be forwarded to each user. The latter
sort, performed according to the wire id’s of the requests can be implemented by the quicksort
algorithm of [19], as the key values, that is the wire id’s, are guaranteed to be distinct.

At the end, each user who submitted a valid dial check request gets one if any of the public
keys of possible users that dialed him in that given round. On the other hand, dialers get a
dummy output in order to be indiscriminable from dial checkers.

From everything presented in this section we can conclude that:

Theorem 1 Algorithm 1 implements the ideal functionality FDIAL of figure ??.

– 119 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 6.3: Dialing simulation results

6.4.2 Performance prediction of Dialing protocol

We have implemented the Dialing protocol by running a SecreC program on a local 1 Gbps
LAN cluster with 12-core 3 GHz Hyper-Threading CPU and 48 GB of RAM operated by the
Sharemind team. We used the offered implementations for the radix sort and the quicksort
algorithms. Our simulation results are presented in figure ??. As we expected, running times
scale nearly linearly, according to the O(nlogn) cost of our sorting algorithms. Our protocol
can serve 20.000 users with latency around 5 minutes and 40.000 users with latency around 10
minutes. These figures may appear large, but dialing need not be performed in very short time
intervals.

6.4.3 Comparison with previous solutions

An interesting comparison would be that of our Dialing protocol with the one presented in
Vuvuzela [28]. Vuvuzela uses an approach where all users submit dial requests, some of them
dummy, which consist of the sender’s public key encrypted by the recipient’s public key. Then,
all requests are mixed by a decryption mixnet consisting of three servers and real ones are
partitioned in big batches according to the subset of users they are intended for. Then each
user has to download the entire batch, which could be in the order of a few megabytes large, and
check if she can decrypt any of the said requests. This of course results in increased bandwidth
needs for both the server and the clients and additionally quite substantial computational burden
on the client’s side.

As our two protocols are independent, our Dialing protocol could be used in conjunction with
another system that uses shared values to exchange messages, such as Vuvuzela. As it is now
it could accommodate up to 50.000 clients with respectable total latency and thus substitute
Vuvuzela’s Dialing protocol, in this range of client populations. A comparison of our Dialing
protocol to that of Vuvuzela can be found in table 6.1. Further scaling is possible using a
parallelization technique that is presented in section 6.6.

Our Dialing protocol is very efficient in terms of both bandwidth needs for the server and the
client, and computational need on the client’s side. This is because it follows a point-to-point
approach that returns only one message to each client. Furthermore, security guarantees of our
protocol are these of the secure multiparty framework we use and in the case of Sharemind it is
cryptographic security with an honest server majority, compared with the differential privacy
offered by Vuvuzela. Concerning forward secrecy, our protocol can be made to offer a certain
degree by using ideas presented in section 6.7.2. Finally, when comparing according to total
latency and scalability, that is including the time allocated by the Vuvuzela client protocol for
the clients to download the requests, our protocol is slightly inferior to that of Vuvuzela. As
a final note on scalability, our Dialing protocol could be parallelized to run on multiple SMC

– 120 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 6.1: Comparison of Dialing protocols (n: number of users)

* latency can be decreased by parallelizing the Dialing protocol (see section 6.6)

this paper Vuvuzela

client computation 1 op O(n) ops

client bandwidth 1 request O(n) requests

server bandwidth n requests O(n2) requests

privacy cryptographic differential

forward secrecy possible no

latency medium* low

honest servers majority 1

systems in order to achieve much better performance, as presented in section 6.6.5.

6.5 Implementing the Conversation functionality

6.5.1 Conversation protocol

We will begin describing our Conversation protocol, which facilitates message exchange, by
presenting a mathematical intermediate step towards our algorithm. At this point, we have to
highlight our assumption that a valid message at the input has its least significant bit equal
to 0. This flag which could also be a discrete fourth member of our tuple, is useful at the
parallelization of our protocol presented in section 6.6.

Conversation functionality round r intermediate representation

Preliminary: each user computes a rendezvous point t value for round r
Input: a sequence of n tuples 〈a1, . . . , an〉 =
〈(t1,m1), (t2,m2), . . . , (tn,mn)〉
Output: a sequence of size n, 〈b1, . . . , bn〉 carrying messages to their intended recipients

For each i← 1, . . . , n
if ∃j ∈ {1, . . . , n} : aj .1 = ai.1 then
bi ← aj .2 + 1

else
bi ← ai.2

end if
return sequence b

The Conversation protocol, as described in functionality FCONV, works in rounds and facilitates
the exchange of messages having the same t value. This value represents the rendezvous point
computed by the two communicating parties (users ui and uj) at the final part of the Dialing
protocol. It is expected that no more than two messages will have the same t value due to its
large bit-size. We point out that when a message is exchanged its LSB is set to 1. Now let’s
proceed to the algorithmic implementation of our protocol.

As can be seen from algorithm 2, the Conversation protocol is implemented similarly to
the Dialing protocol. The input tuples are sorted by their rendezvous points (t) and then
messages are exchanged between neighbouring elements, when their t values match. Sorting
guarantees that requests with the same t value will reside in neighbouring indexes of the sorted

– 121 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Algorithm 2 Conversation round r

Input: a sequence of n tuples 〈a1, . . . , an〉 = 〈(t1,m1, wid1), (t2,m2, wid2), . . . , (tn,mn, widn)〉
Output: a sequence of size n, 〈b1, . . . , bn〉 carrying messages to their intended recipi-
ents

1. Sort tuples 〈a1, . . . , an〉 according to first coordinate (ai.1) using oblivious radix sort.
2. For each i← 1, . . . , n− 1
if ai.1 = ai+1.1 then
b′i ← (ai+1.1, ai.3)
b′i+1 ← (ai.1, ai+1.3)

end if
3. Sort tuples 〈b′1, . . . , b′n〉 according to second coordinate using quicksort, then ignore second
coordinate and produce sequence 〈b1, . . . , bn〉 = 〈b′1.1, . . . , b′n.1〉
return sequence b

vector. Furthermore, the random nature of the rendezvous points, along with their relatively
high bit length make it highly improbable that there will be a conflict in the t value. In this
case, a conversation may not take place as intended and it is up to the client to handle this
highly improbable case. We note here that if messages are end-to-end encrypted between the
conversing parties, then a collision will only result in a dropped message that will be detected
and re-transmitted by the client.

From everything presented in this section, we can conclude that:

Theorem 2 Algorithm 2 implements the ideal functionality FCONVof figure ??.

6.5.2 Spam / Malware detection

It is easy to see that our approach is directly extensible to incorporate any plaintext processing
operation that can be described as a boolean circuit on the input message. Specifically, given,
say a regular expression filter that checks for spam or malware based on e.g., signatures, we
can extract a short circuit description for fixed input length as long as the message size and
incorporate it as part of the SMC implementation. More specifically, the construct of Laud et
al. in [21] enables the oblivious evaluation of any DFA with the cost of only one multiplication
per input character when the DFA is publicly known.

6.6 Parallelizing our protocols

6.6.1 Introduction

As discussed in the previous sections, our protocols while satisfying very strong privacy guar-
antees, are by themselves not as scalable as desired to serve hundreds of thousands of users
in a real-time manner. Therefore, we would like to also propose a way to combine a number
of such protocols in a way that will lead to a more scalable system. Against the trend that
sacrifices privacy in order to gain scalability, we want to maintain the strict privacy guarantees
of our system. Therefore, in our novel parallelized approach we will relax our quality of service
guarantees. That is, in each round, an adjustably small number of requests that would have
been served when using algorithms 1 and 2 for the Dialing and the Conversation protocols
respectively will fail to do so. The probability that some client request will not be served can
be made arbitrarily small in the expense of performance, as described later in this section.
As evident by the mathematical and algorithmic representation of our two protocols, in both

– 122 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

cases, the integral part of our two functions is detecting duplicate key entries and performing
an action on these pairs. In this section, we will introduce a parallelized oblivious duplicate
detection approach for uniformly distributed key entries. Our approach will allow a margin for
error which will be measured by the quality of service metric, introduced below:

Definition 1 qos =
duplicatesfound
duplicatestotal

The above definition can straitforwardly be interpreted as the ratio of successful dials or
message exchanges in the parallelized version of our protocols over their count in our initial
non parallel approach. We leverage the fact that the pairing keys are uniformly distributed and
partition requests among the servers based on the fact that equal keys are likely to be located
at the same range of different arrays after sorting.

Our approach will be demonstrated by two algorithms, one for the Conversation and one
for the Dialing protocols. In our examples, we will use two SMC server islands (e.g. Sharemind
3-server platforms) to explain how parallelization is achieved but the method can easily be
applied to any number of such islands.

6.6.2 Parallelizing the Conversation protocol

In figure 6.2, we can see how we can combine two SMC islands, each one potentially consisting
of 3 or more servers, to achieve better performance and more decentralization.

In our figure, we assume two SMC islands, and assign half of the incoming requests (n2)
of the form (ti,mi, widi) to each of them. For example, the first island gets requests from
clients with wire id’s {1, . . . , n2 } and the second with wire id’s {n2 + 1, . . . , n}. Then, each island
independently sorts its requests according to their t coordinate. As a next step, intuitively we
want to send all low values of t to the first island and all high values of t to the second one.
Thus, the first island keeps the lower half (plus δ n4) of its sorted requests and receives the lower
half (plus δ n4) of the sorted requests of the second. The second island does the opposite, keeping
the upper half of its requests and receiving the upper half of the first island’s requests. Due
to the fact that these t values are randomly generated, they are uniformly distributed and we
expect identical values to generally fall in the same half. Practically, this transmission of data
can be made on a peer to peer level between each of the servers of the two islands. That is, the
first server of the first island will communicate through a secure channel with the first server of
the second island etc. The additional requests (d = δ n2), apart from the halves assigned to eacj
island, serve the purpose of calibrating the quality of service parameter of the mechanism. The
bigger the value of d, the less likely is that two requests with the same t values will end up in
different islands and communication will not take place.

As a next step, each island merges the two sorted lists according to their t values and
performs the necessary exchange of messages as described in the Conversation algorithm. Then,
after dropping the now useless t values, each island sorts its requests independently according
to their wid coordinate. After this step, it is guaranteed that the first n

4 + δ n4 requests of the
first island originated from the first island and the rest n

4 + δ n4 from the second. The same is
true for the second island. At this point, the message exchange has been performed and the
messages must reach their intended recipients, based on their wire id. Thus, each island sends
each message request back to the island it originated from. As a next step, each island merges
the requests designated for it and ends up with n

2 + d requests, some of which have duplicate
wire id’s. The duplicate requests must then be combined in a meaningful way before proceeding
with the algorithm.

For a pair of messages m1 and m2 that must be combined, one of the following must be
true:

• m1 = m2, either both of them are carrying a message from another user or none of them

– 123 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 6.4: Parallel operation of two SMC islands performing the Conversation Protocol.

– 124 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• m1 6= m2, that is one of the two requests carries a message from another user and the
other carries the original message sent.

So to combine the two messages, we apply algorithm 3. This algorithm eliminates duplicates
by combining two requests of the form (m1, wid), (m2, wid) with same wire id’s so that if one of
them carries a message that was the result of an exchange operation (LSB=1), then this is the
message that survives. At the end of this combination we have the valid message form a tuple
of the form (m,wid) and the invalid one a tuple (m′, 0), which will be discarded at the end.

Algorithm 3 Eliminate duplicates

Input: a sequence of n + d tuples {a1, . . . , an+d} = {(m1, wid1), (m2, wid2), . . . , (mn, widn)},
which is the sorted output (according to the wire id’s) of the merge step of the algorithm and
contains d duplicates.

Output: a sequence b of size n, that is the output of the proto-
col.

For each i← 1, . . . , n+ d− 1
if ai.2 = ai+1.2 then

if ai.1 mod 2 = 0 then
ai.1 = ai+1.1

end if
ai+1.1 = 0

end if
sort sequence a according to ai.2 using quicksort. Sorted sequence is a′.
return sequence b = (a′d+1, . . . , a

′
n)

Finally, each island sorts its requests according to their wire id’s and discards the leftmost
d requests. Then the valid messages are forwarded to their recipients.

The combination of two islands, as explained above, can be generalized to the combination
of S islands with each one handling n

S of the requests. Quality of service may decline with
increased island numbers but it can be controlled and is predicted to remain at a very high
level.For example 10 SMC islands can serve 10.000 clients each, for a total of 100.000 clients.
The work done by each island is only a little more than what a standalone system serving 20.000
clients would perform. More details on the projected performance of our protocol can be found
in section 6.6.4. Everything that concerns the way communication is performed between an
SMC island and its client pool follows what has been said about a standalone SMC system in
previous sections.

6.6.3 Quality of Service Analysis

Using the parallelized algorithm of section 6.6.2, there is a probability that a client will not be
served, that is a valid message exchange may not take place. In this case, the client can just
retransmit her message. An analysis of the probability of such an event taking place in the two
island case, follows:

Let n be an even number, representing the number of users, and C an arbitrary set of
disjoint subsets from

(
[n]
2

)
, representing the pairs of users currently in conversation. Consider

the following probabilistic procedure of assigning rendezvous points to the users in each round:
for each i ∈ [n], pick a random value vi ← {0, 1}λ and if it happens that i ∈ P = {i, j} ∈ C
such that tj is defined already, set ti = tj ; Else, set ti = vi. Consider now the vector 〈t1, . . . , tn〉
and sort it, resulting to the vector 〈t′1, . . . , t′n〉. Define the event BADδ to be the event that
MSB(t′i) = 1 for some i ≤ (1 − δ)n/2 where δ ∈ (0, 1) is a parameter, or that MSB(t′i) = 0 for
some i ≥ (1 + δ)n/2.

– 125 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

If C = ∅, it holds that the most significant bit is uniformly distributed over {0, 1} in each
draw ti and it follows that the mean of number of times it will be selected to be 1 is n/2. We
recall the two-sided Chernoff bound Pr[|X−µ| ≤ δµ] ≤ 2 exp(−δ2µ/3) where X is the Binomial
distribution with mean µ and δ ∈ (0, 1). Consider Xi to be equal to MSB(ti) = 1 and we
let X =

∑n
i=1Xi. Observe that indeed X is following the Binomial distribution with mean

µ = n/2 and that the event BADδ can only happen if the number of ti’s with MSB(ti) = 1
deviate by a factor (1 − δ) below or (1 + δ) above the mean. It follows immediately that
Pr[BADδ] ≤ 2 exp(−δ2n/6).

In the general case, for arbitrary C, observe that the most significant bit for each draw ti
is uniformly selected unless it happens that {i, j} ∈ C. It follows we have n′ = n − |C| draws,
where 0 ≤ |C| ≤ n/2 since the elements of C are subsets of size 2 that are disjoint. The i-th draw
selects element tf(i) where f is a mapping from [n′] to a subset of equal size in [n] that drops the
largest element from each conversation pair. We denote by P the set of all elements of [n′] so
that f(i) participates in a conversation in C. We now define the random variable Yi as the most

significant bit of the i-th draw among the n′ ones we perform and we let Y =
∑n′

i=1 ci ·Yi where
ci = 2 if i ∈ P and ci = 1 otherwise. Observe that if the event BADδ happens it should be that
Y 6∈ [(1 − δ)n/2, (1 + δ)n/2]. Note that by linearity of expectation it holds that E[Y] = n/2
hence the mean, compared to the previous case, has not changed. It is easy to extend the
Chernoff tail bound to a tail bound and obtain a tail bound for Y that will be exponentially
decreasing with n′ (alternatively one may use the Hoeffding bound). Specifically we can prove
the following.

Proposition 1 For any n ∈ N, any δ ∈ (0, 1) and any set C of disjoint subsets of cardinality 2
from [n], it holds that Pr[BADδ] ≤ 2 exp(−δ2n/12).

So for a total of ten thousand users and two servers and with δ = 0.08, the probability that
someone will not be served is less than one percent.

However, this is an upper bound and in practise the quality of service is much better.
To better assess it we ran experiments on the Sage platform [14] for n = 100, 000 users and
S = 10, 20 servers, with each experiment run 200 times. These parameters were chosen as they
express a possible usage scenario. An assumption made when running the experiments was
that half of the clients were communicating with someone and half were idle. This parameter,
however didn’t seem to influence the results in a substantial way. In figure ??, we can see the
relation of the qos (quality of service) and the server overhead (how many more requests a server
had to process compared to the original number) variables.

As we can see from figure ??, The quality of service for a 10 island system with each island
processing 10000 requests is very high (96%) even when no extra requests are taken. Whith
an overhead of 10% (11000 requests per server), the possibility of even a single failure is very
close to zero. The 20 island scenario naturally lags behind in quality of service when no extra
requests are taken, begining at 88%. Nearly perfect service is achieved with an overhead of
40%, that is 7000 requests per server compared to the original 5000. Generally, we see that the
quality of service even when partitioning the requests among 20 islands is very high and this
form of parallelization can be very rewarding.

6.6.4 Performance of the Conversation protocol

We have implemented the Conversation protocol by running our Sharemind, “SecreC” programs
on a local 1 Gbps LAN cluster with 12-core 3 GHz Hyper-Threading CPU and 48 GB of RAM.
Concerning message length, experiments asserted our expectation that message length ranging
from 64 to 640 bits does not significantly influence the performance of our protocol, due to the
nature of the sorting algorithms used. Furthermore, cryptographic operations by the servers,

– 126 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 6.5: Quality of Service simulation results

Figure 6.6: Conversation simulation results

such as decrypting and encrypting the shares have not be taken into account in the testing, but
their cost is similar to single TLS connections. This overhead can be neutralized by having the
servers process the requests in a pipelined fashion, that is decrypting the requests for round
r+ 1 while processing the requests of round r and in any case it is a very small overhead given
that we use symmetric cryptography for encrypting the shares. The results are presented in
figure ??. As we can see, our single system protocol can serve 10.000 users with a latency a
little over a minute.

As for the parallel case, our parallel algorithm requires 1 sort and 1 merge on the ti’s and 2
sorts and 1 merge on the wid’s. The total cost at each island is then about double of the original
cost of running the protocol on only one 3-server system. Consequently, the running time of
our system for S SMC islands running in parallel and for n total clients will be the equivalent
of running a single SMC system with n′ = 2n

S clients. Simulations match these expectations
and a running time of a little under two minutes can be achieved for 60.000 users by running 10
SMC islands in parallel. In our simulations we have not used code optimizations but we have
not included the communication overhead of sending and receiving the requests. However, that
is expected to be small because the total number of requests transmitted between the server

– 127 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

systems is only double the amount of total requests (plus a small number of the extra requests
taken). On a final note, we can see that our parallelized system can support 100.000 users with
latency around 200 seconds.

6.6.5 Parallelizing the Dialing protocol

The technique used to parallelize the Dialing protocol is very similar to the one used for the
conversation protocol, described in section 6.6.2. There are two key differences that make
the Dialing protocol somewhat harder to parallelize, compared to the Conversation protocol.
Firstly, Dial and Dialcheck requests are paired according to the public keys of the clients and
not according to shared random values. This does not guarantee the near-uniform distribution
of values leveraged in the parallelization of the Conversation protocol. Secondly, in the Dialing
protocol there is a possibility that one client will be the recipient of many Dial requests. We
should consider this when assessing the system’s privacy. To overcome these issues and to
effectively make the parallelization of the Dialing protocol identical in nature to that of the
Conversation protocol, we delve into the inherent capabilities of SMC systems in two steps.
First, the SMC islands participating in the protocol agree on a shared random value. Then
each SMC island applies a Psedorandom Function (PRF), which is basically a MAC, in an
oblivious way,to each of the public keys consisting the second part of a Dial or Dialcheck tuple.
That is the part according to which requests are paired and exchanged. The key used for this
procedure is naturally the shared random key generated in the first part of the protocol. The
PRF, which behaves like a random oracle, can be implemented using a keyed hash function or
by encrypting the values e.g. with AES. The two-step procedure described above guarantees the
uniformity of the distributions of the former public keys, while preserving the equality relation
where it existed. That is, the Dialing protocol can still be carried out exactly the same way.
We will now present a technique to parallelize the Dialing protocol using 2 SMC islands. The
technique described can easily expand to any number of such islands. We assume that requests
are originally divided among two islands and the wire id’s of the requests attributed to the first
one are strictly smaller than those of the second. To parallelize the protocol, after applying the
PRF, we sort the tuples of the form (i1, j1, wid1) according to their second (now randomized)
coordinate. As a next step, we partition each island’s set of values in half and have one island
handle the two lower halves and the other the two upper halves. The idea behind this is that
a uniform distribution of the j values means that the lower halves of both servers will contain
values in the same range, with the same naturally applying to the upper halves as well. As
a result, identical values that originally resided in different servers are likely to end up to the
same server after this step. To further enhance this likelihood, each server also takes an extra
chunk of requests of size δ times the chunk it would get from each server (see figure). After this
partition step, the tuples need to be merged according to their j values. Then, the protocol
works as in the non parallel case, that is Dialcheck requests are matched to their neighbouring
Dials and the necessary values are passed to the Dialckeck requests as in algorithm 1 (check
“C” and substitute in figure ??). At that point the basic functionality has been achieved and
we need a way to get the requests back to their original positions at their server of origin. To
achieve this, we sort the tuples according to their wire id’s (third coordinate). As mentioned
above, requests are originally partitioned according to those wid’s and thus at this point, after
the sort, it is guaranteed that the lower half of the requests at each server originated from
the first server and the upper half from the second. As a next step, requests are returned to
their server of origin according to the logic just described, and then merged according to their
wid’s. This would conclude the procedure if δ = 0, but the extra requests taken from each
server result in double requests at this stage. These double requests correspond to the same
client (same wid) but their first coordinate may or may not be identical. Specifically, when
talking about Dialcheck requests, which are the ones of interest, one of the two may contain
the public key of a Dialer and the other may be empty. That would be a result of a scenario

– 128 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 6.7: Parallel operation of two SMC islands performing the Dialing Protocol.

– 129 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

in which one of those requests ends up at a server that has a matching Dial request and the
other at a server that doesn’t. In this case, the request that is empty (first coordinate equals
to 0) should be deleted. In any other case in which the two requests are both empty or both
contain different values, any of the two can be deleted e.g. always the first one encountered.
This process (eliminate duplicates in figure ??) can be carried out by a simple check similar to
the one used for the parallelized Conversation protocol (algorithm 3). After this final step, the
sequence of the output requests is identical to the one of the corresponding input requests and
thus they are ready to be returned to their recipients.

6.7 Building an anonymous communication service

6.7.1 System architecture

The complete architecture of the system is shown in figure 6.3 and will include apart from the
secure computation servers, an entry and an output server used to handle client requests. The
entry and output servers may be located on the same or on different physical machines.

The execution of the Dialing protocol is outlined below:

Figure 6.8: XYZ general architecture

Dialing round r

1. Each client generates a tuple a = (i, j), which can either be a Dial or Dialcheck request,
constructed as shown in functionality FDIAL.

2. Each client produces a secret sharing of a and encrypts each share with the public key
of the intended SMC server. For example j → a1, a2, a3 and
sk = Enc(pkserverk , ak), k ← {1, 2, 3}, assuming three SMC servers.

3. Each client forwards the request of the form (s1, s2, s3) signed with her secret key along
with her public key to the entry server.

4. Entry server checks signature and if valid assigns a wire id to the respective user.

5. Entry server forwards request shares of the form (sk|wireidik|pkik) to SMC server k.
Note that wireidik are shares of the wire id and pkik are shares of client’s ui public key,
both generated by the entry server.

– 130 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

6. SMC servers decrypt request shares and execute multiparty dialing algorithm (algorithm
1).

7. SMC servers encrypt result shares with the recipient’s key and send them to the output
server.

8. Output server collects the shares and forwards them to the respective clients.

9. Client decrypts her shares and reconstructs her output of the protocol.

In the Dialing protocol, each client generates requests as described above, signs them and
forwards them to the entry server along with her own public key for reasons of signature veri-
fication. It is important to note that communication between the clients and the entry server
is encrypted with the keys of the SMC servers. This is why the entry server alone cannot
compromise client privacy. The entry server performs two other tasks apart of the signature
verification and assigning to each user a wire id that is then shared in 3 parts and forwarded
along with the request to the SMC servers. This wire id is given in plaintext and is added
to the decrypted user request shares as the third member of the tuple that forms algorithm’s
1 input. Finally, the entry server also forwards a sharing of the public keys that correspond
to each request submitter, as requested by the Dialing algorithm. Both the wire id’s and the
public keys are shared and forwarded in plaintext to the SMC servers. Sorting in general has
the ability to produce any permutation on a given input vector and thus an oblivious sorting
procedure will produce a sequence that will look completely random, despite the fact that at
the start some of the information of the input was publicly known.

For the output to be generated, the SMC servers first decrypt the incoming shares. Then,
they calculate the result of the dialing algorithm in a privacy-preserving manner and re-encrypt
the result shares with the respective clients’ encryption keys. Finally, they send these encrypted
shares to the output server, which in turn forwards them to the clients, according to the client-
wire id relationship established at the entry server. For the Conversation protocol, we have:

Conversation round r

1. Each client i generates a tuple a = (ti,mi), as presented in functionality FCONV.

2. Each client produces a secret sharing of a and encrypts each share with the public key
of the intended SMC server. For example j → a1, a2, a3 and
sk = Enc(pkserverk , ak), k ← {1, 2, 3, }, assuming three SMC servers.

3. Each client forwards the request of the form (s1, s2, s3) to the entry server.

4. Entry server assigns a wire id to the respective user.

5. Entry server forwards request shares of the form (sk|wireidik) to SMC server k. Note
that wireidik are shares of the wire id generated by the entry server.

6. SMC servers decrypt request shares and execute multiparty conversation algorithm
(algorithm 2).

7. SMC servers encrypt result shares with the recipient’s public key and sends them to
output server.

8. Output server collects the shares and forwards them to the respective clients.

9. Client decrypts her shares and reconstructs her output of the protocol.

– 131 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

The Conversation protocol works much like the Dialing one. One difference is that now the
entry server doesn’t have to make any checks concerning the users’ requests and identities. This
is a direct result of the use of a pseudorandom rendezvous point that is known only to the 2
users that have establishes a connection through the Dialing protocol. The entry server still
shares and forwards the shares of the wire id’s assigned to each user. The rest of the protocol is
identical to the Dialing one described earlier, apart of course of the fact that the SMC servers
execute the Conversation algorithm as described in algorithm 2.

6.7.2 Key management

In all previous sections, it was assumed that a client knew the public key of another client whom
she wanted to dial and that all SMC server-client communication was performed using public
key algorithms. To provide better solutions to these issues we introduce the concept of client
registration.

Each client ui can apply for registration at the entry server using her public key and option-
ally a username. The entry server will forward the registration request to each SMC server along
with the client’s public key. Each SMC server will construct a master key for user ui using a
keyed pseudorandom function with the user’s public key as input, that is suiserveri = PRFk(pkui).
This key will then be encrypted with the client’s public key and sent back to her through the
entry server. From this point onward, the client can encrypt her requests with a key gen-
erated by applying a pseudorandom function with the master key and the round number,
si = PRFsuiserveri

(r) and use symmetric key encryption to communicate with the server. To

additionally achieve forward secrecy, a client can forward at the first stage of registration, along
with her public key and username, a fresh public key for communication with each server, en-
crypted with the server’s public key. This key will in turn be kept by the server and used to
produce the master key. When the client wishes, say every 24 hours, she can send a renew
request with a new public key and thus achieve some form of forward secrecy on the client side.

To address the problem of the PKI, we can have each client download the whole database of
public keys and usernames kept by the entry server or use a private information retrieval (PIR)
protocol [9] to reduce communication complexity.

– 132 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An 0 (n log n) sorting network. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 1–9. ACM, 1983.

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, spring joint computer conference, pages 307–314. ACM, 1968.

[3] D. Beaver. Commodity-based cryptography. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 446–455. ACM, 1997.

[4] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party
computation. In Proceedings of the 15th ACM conference on Computer and communications
security, pages 257–266. ACM, 2008.

[5] D. Bogdanov, S. Laur, and R. Talviste. A practical analysis of oblivious sorting algorithms
for secure multi-party computation. In Secure IT Systems, pages 59–74. Springer, 2014.

[6] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Computer Security-ESORICS 2008, pages 192–206. Springer,
2008.

[7] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. Journal of cryptology, 1(1):65–75, 1988.

[8] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[9] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal
of the ACM (JACM), 45(6):965–981, 1998.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Designing Privacy Enhancing Technologies,
pages 46–66. Springer, 2001.

[11] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging system
handling millions of users. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
321–338. IEEE, 2015.

[12] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty com-
putation: Theory and implementation. In Public Key Cryptography–PKC 2009, pages
160–179. Springer, 2009.

[13] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type iii anonymous
remailer protocol. In Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages
2–15. IEEE, 2003.

– 133 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[14] T. S. Developers. SageMath, the Sage Mathematics Software System (Version x.y.z),
YYYY. http://www.sagemath.org.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
Technical report, DTIC Document, 2004.

[16] C. Dwork. Differential privacy. In Automata, languages and programming, pages 1–12.
Springer, 2006.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM,
1987.

[18] K. Hamada, D. Ikarashi, K. Chida, and K. Takahashi. Oblivious radix sort: An efficient
sorting algorithm for practical secure multi-party computation. IACR Cryptology ePrint
Archive, 2014:121, 2014.

[19] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. Practically efficient
multi-party sorting protocols from comparison sort algorithms. In Information Security
and Cryptology–ICISC 2012, pages 202–216. Springer, 2012.

[20] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users get routed: Traf-
fic correlation on tor by realistic adversaries. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 337–348. ACM, 2013.

[21] P. Laud and J. Willemson. Universally composable privacy preserving finite automata ex-
ecution with low online and offline complexity. IACR Cryptology ePrint Archive, 2013:678,
2013.

[22] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. Oblivm: A programming framework
for secure computation. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
359–376. IEEE, 2015.

[23] M. Robson, M. Polte, S. Goel, and E. Sirer. Herbivore: A scalable and efficient protocol
for anonymous communication. Technical report, Cornell University, 2003.

[24] L. Sassaman, B. Cohen, and N. Mathewson. The pynchon gate: A secure method of
pseudonymous mail retrieval. In Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, pages 1–9. ACM, 2005.

[25] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[26] D. L. Shell. A high-speed sorting procedure. Communications of the ACM, 2(7):30–32,
1959.

[27] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections and onion
routing. In Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on, pages
44–54. IEEE, 1997.

[28] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 137–152. ACM, 2015.

[29] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers: Making
strong anonymity scale. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 179–182, 2012.

– 134 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[30] A. C. Yao. Protocols for secure computations. In Foundations of Computer Science, 1982.
SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[31] Y. Zhang, A. Steele, and M. Blanton. Picco: a general-purpose compiler for private dis-
tributed computation. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 813–826. ACM, 2013.

– 135 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 136 of 187 –

Part III

Definitions of privacy

D3.1 - DESIGN, MODELLING AND ANALYSIS

7. AnonymizationWith guaranteed pri-
vacy

Big data, i.e. the online collection of people’s behviours, is becoming a major driver of the digital
economy. Data and its analysis form the resources of tomorrow’s economy. Several businesses
that have collected such massive amounts of data are actively looking for ways of monetizing
it. However, while there are great economic opportunities there are also societal risks. Big data
collection and analysis may allow sensitive inferences about people’s life. For example, genomic
or health data which are major drivers of big data may allow inferences about disposition to
certain illnesses or personality traits. Future employers could leverage that information to deny
access to certain career paths. Even shopping data may reveal such sensitive health-care related
information as the case of Target’s advertising shows [6]. The PANORAMIX WP6 use-case,
relating to gathering in privacy-preserving ways this type of statistics and aggregates aims to
reduce such privacy risks.

Hence, it is a societal challenge to balance these objectives of spurring economic growth
and preserving personal privacy. Solutions include a variety of approaches from self-controlling,
privacy-respecting behavior, legal regulation to technical protection means. No single solution
can work by itself and any technical approach needs to integrate into the legal framework. In
particular, the upcoming EU data protection regulation includes the categories of personal,
pseudonymized and anonymized data. Personal (and pseudomyized) data may only be used for
the purpose it has been collected for and if such data is used for other purposes – which may
relate to monetization – the data needs to be anonymized. Anonymization means the removal
of all personal identifiers, such that no de-identification is possible without the original data
set. This proves to be a challenging technical task and seems to be very error-prone. The goal
of the SAP Product Security Research project AWARE “Anonymization With guARantEed
privacy” is to provide a framework for the data protection officer to apply anonymization with
measurable and reliable guarantees. As such, it features a privacy parameter for each method
that can be appropriately set balancing privacy versus utility. Hence, the AWARE project aims
to enable the monetization of personal big data sources, i.e. preserving sufficient utility, while
also preserving the privacy of the data.

7.1 Why Anonymization so far does not work

A fundamental challenge in anonymization is that the simple removal of an identifier does not
protect against de-identification. The data itself may provide sufficient possibility for inference
with external data sources that de-identification is possible. Consider this small example: The
list of all companies with their name, field of operation, revenue, and country. This list would
contain an entry SAP, IT, 17.56 billion EUR1, Germany. Even, if we were to remove the name
SAP simply from its size the other information would allow a de-identification. We list a number
of specific challenges in preventing this type of de-identification.

12014 figures

– 139 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• Linking to external sources. A famous case of de-identification of medical records was put
forward by Latanya Sweeney [12]. She linked an anonymized table of medical records –
including age, gender and zipcode – with the voter registration list and de-identified the
governor of Massachusetts. The conclusion is that anonymized data may never be seen by
itself, but only in conjunction with other data sources. This attack led to the development
of k-anonymity.

• The curse of high dimensionality. Some data is inherently hard to anonymize. High-
dimensional data is such a case, since anonymization must then also cover a high number
of dimensions [1]. An example of such an attack that also used external data sources was
the Netflix de-identification [10]. The anonymized set of Netflix recommendations was de-
identified using the public IMDB recommendations. Another example of such an attack is
the recent de-anonymization of credit card data [3]. Given a few sample purchases credit
card holders could be identified.

• Patterns. Data may have inherent patterns that remain over time. Hence a small de-
anonymized sample may suffice to de-anonymize entire data sets. An example attack of
this kind is the de-anonymization of smart meter data [7].

The consequence of these challenges is that almost no data can be left unmodified for
proper anonymization. In most cases the idea of sensitive, unmodified data is challenged by the
findings listed above. Therefore a different model of anonymization was necessary. This model
is differential privacy [4] which provides a metric of data perturbation, such that any inference
becomes hard. In the next section we will introduce the foundations of this metric and the
mechanisms that can achieve it.

7.2 Guaranteed Privacy

We now introduce the notion of differential privacy and illustrate how it can be integrated
into the data analysis process. As we will highlight in Section 7.1.1, differential privacy is a
mathematical provable guarantee on data leakage for an individual who is participating in a
database. This is achieved by the application of mechanisms for the controlled generation of
random noise to mask the original of a query result or to directly sanitize the original data. A
detailed discussion of this differentiation is given in Section 7.1.2. The underlying statistical
foundations are illustrated in Section 7.1.3.
The chapter will show that differential privacy is achieving a compromise between privacy and
utility to prevent an adversary with auxiliary information about the database participants of
isolating an individual. The content is based on [5].

7.2.1 Metric

To ensure a common understanding for the definitions that are introduced in this section, we
will first briefly outline some common notations for differential privacy and give an overview
example.

• In the following a database is interpreted as a vector of n entries from a value domain D.

• The domain D is representing the set of all possible attribute values by which database
records are represented.

• An entry within the vector is representing a specific individual’s (tuple) attribute value,
for example a salary or an coordinate.

– 140 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• A query is represented as a function f : Dn 7→ Rd, partitioning the database vector into a
subset of d bins (i.e a histogram).

An example that we will formulate in this notation is a counting query for a specific attribute
value. In this example D = {0, 1} for each tuple in respect to possessing the attribute for count-
ing. The count query result over the tuples in database A is thus expressed as f :

∑n
i=1Ai.

Before we will formally define differential privacy, we will extend our example to a differentially
private count for illustration. The notion of differential privacy expresses the likelihood that a
query on two databases A and B, which only differ in the presence of one participant, answers
this counting query with a similar result on both databases. So even while the formulation of
achieving the outcome for a query independent of someone’s presence or absence may sound
counterintuitive at the first time, it literally expresses the desire to protect an individual from
isolation based on a query outcome. Thus, the formulated maximum distance of one partici-
pant between A and B expresses the desire for protection against isolation of a single individual
record from a result of a database record.
The protection is achieved by wrapping the original counting query into a so called noise gen-
erating mechanism M , which adds an amount of controlled noise to the result of the original
count. In differential privacy, the level of noise can be dynamically defined to enable higher
utility or privacy as we will show later within this chapter.
In general, the offered utility/privacy guarantee is expressed as eε for an individual within
the database, where ε represents the privacy loss that a participant faces due to being in the
database. This is formally expressed as

Pr[M(A) ∈ S] ≤ exp(ε)× Pr[M(B) ∈ S].

While for small values of ε the bound is close to 1± ε, it has to be underlined that the bound
widens exponentially and already small increases in ε significantly lower the privacy guarantee.
Thus, by increasing (decreasing) ε and thereby decreasing (increasing) limiting the utility that
can be gathered from a function f(A) on the database A. The specific enforcement of differential
privacy has to be performed by a perturbation mechanism which introduces noise to cover an
original result. The amount of noise depends on two parameters:

1. The level of desired utility/privacy expressed through ε.

2. The amount to which the participation of an individual changes the result of a database
query. This notion is referred to as sensitivity and expressed for a query function as ∆f .

Thus, for the scaling of noise it essential to estimate the sensitivity of a query operation f(A).
For illustration, we will refer to our example of a count query again. For a count operation, the
maximum change that the presence of an individual can cause to the query result is determined
by her number of tuples that fulfill the count evaluation. If we assume that a participant
possesses at maximum one tuple in the database the sensitivity would be ∆f = 1. In contrast,
for the evaluation of Sums and Averages the sensitivity of a function has to be specifically
bounded. If we take for example the derivation of an average over several salaries, the sensitivity
would be represented by the maximum obtainable salary. Commonly, several differentially
private mechanisms can be executed sequentially. If, for example, questions on specific databases
are repeated, or uncorrelated databases are involved in multiple questions, the privacy leakage
of ε will add up. Thus, overall accuracy should deteriorate with the amount of questions asked
under consideration of database correlation. This is expressed by the sequential composition.
If two ε-differentially private mechanisms with independent noise distributions, e.g. M1 and
M2, on databases A ≈ B are composed in a new mechanism M3, then M3(M1(B),M2(B)) will
provide privacy according to 2ε. Thus, it is critical to introduce and monitor a privacy budget,
limiting an analyst to eventually learn a true value by consuming more ε. The privacy budget

– 141 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

definition and allocation is thus clearly a non-trivial activity. Generalized to a series of r queries
and to ε-differential privacy, sequential composition is expressed as

∑
i(εi)-differential privacy.

∏

i

Pr[M r
i (A) = ri] ≤

∏

i

Pr[M r
i (B) = ri]×

∏

i

exp(εi).

To conclude, the introduced metrics are summarized by the following formal notation for a
differentially private mechanism M on database A as

M(A) = f(A) +Noise(ε,∆f).

7.2.2 Privacy enforcement

We will now elaborate on how differential privacy can be integrated and enforced in the data
analytics process. Naturally, differential privacy can be on individual data as well as statistical
aggregates. Thus, we will in the following evaluate these dimensions.

First, depending on the the fact whether an expected set of differentially private queries on
data is known in advance, mechanisms can be run in the non-interactive model or interactive
model. Within the non-interactive model, a differentially private version of a database A is
generated by a database owner and released to data analyst. One example for a non-interactive
model is a sanitized database which consists only of a set of differentially private statistics on the
original data and selected perturbed attribute values. Another example might be the restriction
of interaction between the analyst and the original database by a set of static differentially
private queries, thus limiting interaction as depicted in Figure 7.1b. While the non-interactive
model has the drawback that the scope of possible analyses is limited, it also provides the
benefit that the monitoring effort on the privacy budget is lower (especially in the case of a
sanitized database). This is due to the fact that original data is no longer available in the fixed
differentially private version of database. In contrast, the interactive model allows an analyst,
by using mechanisms as building blocks, to formulate differentially private queries against a
database and ask new questions about the original data. Thus, the data can be analyzed
under different sensitivities and ε values in bidirectional communication model as depicted by
Figure 7.1a. This model clearly provides the benefit of higher expression. However, it comes at
the cost of having to monitor a privacy budget (i.e. the amount of consumed ε/asked questions)
for the original data. While interactive mechanisms are generally utilizable in a non-interactive
way, some mechanisms cannot be fully utilized in a the interactive model (e.g. the Exponential
mechanism in Section 7.1.3 is non-interactive due to the predefined Range r).

(a) The interactive model (b) The non-interactive model

Second, perturbation according to differential privacy can be enforced on outputs (e.g. sta-
tistical aggregates) or by randomizing inputs and thus ensuring a differentially private calcula-
tion. This model is also referred to as local (input) and central (output) randomization. A main
approach for enforcement in local differential privacy is the randomized response mechanism,
which will be introduced in Section 7.1.3. This architecture enables individuals to keep their
data element, which can be interpreted as a database containing only a single tuple, differen-
tially private from an untrusted third party (i.e. a database administrator). An example for
input perturbation would be the release of a database of salaries, in which each salary is per-
turbed by a differentially private mechanism before the release. The released and differentially
private version of an original database is referred to as the sanitized version, as depicted by
Figure 7.2a. In contrast, an example for output perturbation is represented by the scenario in

– 142 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

(a) Input perturbation (b) Output perturbation.

which an average is calculated on original salary data and then perturbed by a differentially
private mechanism before being released to the analyst. This case is illustrated by Figure 7.2b.

In general, the biggest difference between the mentioned approaches is situated within their
need for defining a privacy budget beforehand and the capability of releasing individual datasets
or statistical aggregates.

7.2.3 Distortion mechanisms

In the following we will introduce the most common mechanisms for adding differentially pri-
vate noise in data analysis. The use of a respective mechanism is mostly motivated by the
insensitivity and stability of input data in regards to noise and by the enforcement model. We
will feature the Laplace mechanism for numeric perturbation in Section 7.1.3, the Exponential
mechanism for the perturbation of numeric and categorical values in Section 7.1.3, and the
randomized response mechanism for local perturbation in Section 7.1.3

Laplace mechanism

The Laplace mechanism of [5] is suited for the enforcement of differential privacy on numerical
valued queries which provide the analyst with a real valued answer. An example for such an
operation would be a count query (or any other statistical aggregate). As the name already
indicates, the Laplace mechanism samples noise from an underlying Laplace distribution. The
Laplace distribution is a symmetric exponential distribution centered around mean µ with
scaling factor λ. It is adapted to a differentially private version by adding sufficient noise
to cover the presence of an individual database record using λ = ∆f/ε. As can be directly
inferred from the specified value of λ, the level of required noise is growing (1) as the sensitivity
increases and (2) as the privacy guarantee ε decreases. With the Laplace mechanism, several
different input values can possibly be mapped to the same output value, where the probability
distributions are centered on the individual input values. Therefore, reconstruction of the
original value based on the mechanism result is hard. This is also referred to as the sliding
property of the Laplace distribution as illustrated in Figure 7.3.

Figure 7.3: Illustration of the sliding property for the Laplace function.

Concluding, we will follow the definition of the Laplace mechanism with a query function f
on database A with privacy guarantee ε as

M(A, f(·), ε) = f(A) + Lap

(
∆f

ε

)
.

The approach can be readily integrated into queries, as due to the well formulated Laplace
distribution there is no need to formulate custom cumulative density functions for sampling.

– 143 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

For completeness, it is particularly interesting to evaluate the choice of the Laplace distribution
over the well-known normal distribution (i.e. Gaussian distribution). While both are suited for
the perturbation for numerical queries, they differ in the distribution of their probability mass.
Hereby, it has to be noted that the Normal distribution has, when fixing the variance, less prob-
ability mass assigned around the mean µ and smaller tails than the Laplace distribution. This
is illustrated in Figure 7.4 where the Normal distribution is illustrated in red and the Laplace
distribution in blue. The handling of deviations around the mean (squared) is motivating the
use of l2-sensitivity in the Gaussian mechanism.

Figure 7.4: Comparison of the Laplace- and Normal distribution with µ = 0, and β = 2 resp.
σ =

√
8.

Exponential mechanism

The Exponential mechanism of [9] is suited for differentially private perturbation of arbitrary
non-numeric and numeric functions. In contrast to the previously mentioned Laplace mecha-
nism, the Exponential mechanism is thus designed for structural information domains which
are (1) not robust and (2) sensitive to additive noise (i.e. where already a little amount of noise
makes a high difference in the output result).

This adaptability is achieved by the definition of a query depending quality function q which
calculates a numerical utility score for every possible query outcome. We will refer to the set
of possible query outcomes as R. It can best be imagined as the enumeration of all feasible
and logical correct answers that a query can receive. The quality function is then calculated
for every value in R. When R is very large, the algorithm runtime becomes a challenge as the
probability for every quality function has to be determined. A quality function for r ∈ R on
database A is denoted q(A, r). The sensitivity ∆q for the Exponential mechanism is defined
as the largest difference in the output of the quality function for two databases that differ in a
single participant and for all r.

The Exponential mechanism is designed to assign exponentially more weight to high utility
scores and pick r with probability

Pr ∝ exp
(
εq(A, r)

2∆q

)
.

Depending on the granularity of R, a penalty for discretization might occur. This means that
there might be an element r’ /∈ R that would achieve a higher quality score than all r ∈ R. This
is called a discretization penalty, and highly depending on the formulation of R. An example
for a perturbation possible by the Exponential mechanism would be a query that figures out the
most common eye color of participants within the database. In this example R would encompass
a set of possible eye colors, e.g. Blue, Green, Yellow, Grey, and an utility value is calculated by
the quality function for each eye color. Sampling is then achieved by normalizing the obtained
utility values for each r ∈ R on the interval [0, 1], generating a random number in the interval
[0, 1], and then selecting the value r of the interval in which the random number is located. It
is interesting to note that the error guarantee thus mainly depends on R (i.e. the discretization
of the possible result range) and less on the amount of records in the database. We could, for

– 144 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

example, produce an error compared to the true result by not incorporating it into the set R of
possible answers.

Randomized response

A mechanism for the individual perturbation of discrete values is represented by the randomized
response approach. The approach presented in [13] was originally designed to introduce plausible
deniability for survey participants that answer on delicate questions, concerning illegal behavior
for example. The concept is that a replier hides his true answer to a question by throwing a
random coin, and acts according to the result of the random coin. Usually, at least two coin flips
are executed before reporting. Privacy is ensured by the deniability of any reported answer,
and increases with by the amount of coin tosses. However, by knowing the noise generation
procedure it is still possible to draw conclusions from the obtained answers without being able
to isolate a single individual. Thus, randomized response is resembling a Bernoulli experiment
with two possible outcomes. Telling yes when the truth is yes, and telling yes when the truth
is no. Of course, the experiment can also be formulated vice versa for the contrary case. For
illustration that randomized response is a differentially private mechanism, we will pick up
the example of [5]. In this example, survey participants are asked a question whether they
participated in an illegal activity and have to answer according to the following protocol.

1. Flip a coin.

2. If tails, then respond truthfully.

3. If heads, then flip a second coin and respond ”Yes” if heads and ”No” if tails.

The amount of true yes responses can be approximated by reforming the the probability
estimation:

Pr[Yes] = Pr[Yes|Tails] + Pr[Yes|Heads] =
1

2
× Pr[Yes|Truth = Yes] +

1

4
,

P̂ r[Yes|Truth = Yes] = 2

(
Yes

Replies
− 1

4

)
.

A meaningful implication of the randomized response mechanism is that ε directly depends on
the response design. The above example will provide a fixed ε of ln(3) due to:

ε = ln

(
3/4

1/4

)
= ln

(
Pr[Response = Yes|Truth = Yes]

Pr[Response = Yes|Truth = No]

)
.

Randomized response has thus the potential to still approximate the true distribution, resp.
answer, over multiple individually perturbed replies. This can be utilized for database scenarios
in which distributed systems report their original data under the use of randomized response
to a central data analysis platform.

7.3 Utility vs. Privacy

Obviously, adding noise to individual data elements decreases the accuracy of their information
and hence also decreases their utility at an increase of their privacy. Both extrema are not prac-
tical for data outsourcing, that is completely randomized data does not allow any kind of data
analysis, while plain data does not provide any level of privacy. However, the anonymization
mechanisms are designed to support simple data analysis like arithmetic mean or more com-
plex analysis like machine learning algorithms even after (some level) data sanitization. In this
section we evaluate empirically what privacy parameters for differential privacy can be used in

– 145 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

practice, while still allowing useful data analysis. Additionally, we examined different analytic
functions with relation to their utility combined with differential privacy. Summarized, there
are three parameters that influence the way the data can be sanitized, namely:

1. What level of privacy must be guaranteed.

2. What level of utility and what kind of analytic function is needed.

3. What kind of data and what amount of data is analysed.

In the current version, we focused on evaluating non-interactive mechanisms (more information
on this topic is given in Section 7.1.2).

7.3.1 Experiments

The first experiments examine the effects of differential privacy on numerical data, in more
detail the Laplace mechanism (see Section 7.1.3) has been applied on salary information. Here,
we tested different analytic functions on sanitized information, for example arithmetic mean,
median, and maximum determination.

The second experiment demonstrates the usage of differential privacy for location-based
systems, where the sensitive data has two dimensions.

Laplace mechanism

In our first experiment we prototyped the standard Laplace mechanism as described in Sec-
tion 7.1.3. More particular, we normalized ∆ = 1 resulting in noise with probability density
function (PDF)

Lap

(
x|1
ε
, 0

)
=
ε

2
exp(−|x|ε).

For a first visualization we plotted the PDF for different values of ε, namely ε1 = 0.1, ε2 =
0.05, ε3 = 0.005, in Figure 7.5a. As we can see, the diversity of the sampled noise value increases
with decreasing ε. That is, one single value is probably distorted with greater noise value, while

400 300 200 100 0 100 200 300 400
Sampled noise

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

PDF Laplacian
ε=0.1

ε=0.01

ε=0.005

(a) Laplace distribution for different values of ε.

400 300 200 100 0 100 200 300 400
Sampled noise

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

CDF Laplacian
ε=0.1

ε=0.01

ε=0.005

(b) Laplace distribution for different values of ε.

the expected values stays 0. As a result, increasing the amount of data entries, i.e. the number
of noisy values that are summed up, the level of noise in the aggregation does not increase but
decreases.

For a better understanding of the Laplace mechanism and how different choices of ε influence
the noise distribution, we also plotted the cumulative distribution function (CDF)

Fε(x) =

∫ x

−∞
Lap

(
u|1
ε
, 0

)
du =

1

2
+

1

2
sign(x)− (1− exp (−|x|ε)) .

– 146 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

The resulting Figure 7.5b can be interpreted as follows: for (relatively big) ε1 = 0.1 (nearly) all
noise values fall approximately between −50 and 50. On the other hand, for ε3 = 0.005 about
10% of all sampled noise values are smaller than −400 and because of symmetry properties the
same holds for noise values greater than 400. This is, roughly 20% of all sampled noise values
change the numerical data by a value greater than 400.

Arithmetic Mean

(a) Average salary with different values of ε grouped by state.

(b) Average salary with different values of ε grouped
by cardinal region. (c) Average salary with different values of ε.

Figure 7.6: Arithmetic mean for varying granularity and different privacy parameters.

After this preliminary analysis of the Laplace mechanism we apply it to a first use case: Given
a database consisting of salary data of approximately 1500 employees located in 14 different US
states, the database should be sanitized utilizing the Laplace mechanism. However, we wish
to learn the average salary of employees grouped by either single US-states, cardinal directions
or United States global, i.e. by modifying the granularity we vary the amount of data that is
aggregated.

In order to provide a visualization of the effects of differential privacy, we sanitized all salary
values with different values of εi ∈ {0.01, 0.001, 0.0001, 0.00001}. Original data is represented
by blue bars, and different increasing privacy levels are shown as green, yellow, orange, and red

– 147 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

bars in Figures 7.6a, 7.6b, and 7.6c.
As one can see, greater amount of data per group increases utility for a fixed ε, e.g. the dif-

ference between original data (blue bar) and the smallest value of ε (greatest privacy) decreases
with increasing group size, e.g. fine granularity (grouped by US-states) vs. coarse granularity
(grouped by coarse direction). Furthermore, the effect of individual data (that should stay
private) on the aggregated value – e.g. the average – decreases with the amount of aggregated
data, hence privacy of individual data increases with the amount of data. Taken together, these
two facts show that for data aggregation, both privacy and utility increase with increasing data
size.

Rank-based Statistics

In contrast to the previous section, in this section we examine effects of the Laplace mecha-
nism on rank-based statistics where individual data is more weighted on the analytic result,
e.g. maximum respectively minimum operation or median. Regarding the maximum value, a
greater amount of noisy data increases the probability that an extreme noise value is sampled.
The maximum of a subgroup (e.g. New York, Ohio, Iowa. . .) is at most as noisy as the maxi-
mum of bigger group consisting of all the subgroups (e.g. the whole United States). This effect
can be observed in Figure 7.7a in comparison with Figure 7.7b.

(a) Maximum salary with different values of ε
grouped by cardinal region.

(b) Maximum salary with different values of ε in
one global group.

Due to symmetry of the Laplace distribution, the same argument holds for the minimum op-
eration; without countermeasures, the noisy salary value could even become negative (actually,
this happens in our experiments as depicted in Figure 7.6a and 7.6b).

(a) Median salary with different values of ε grouped
by cardinal region.

(b) Median salary with different values of ε in one
global group.

One direct consequence of an increasing privacy level is an increasing variance of the noise
values (compare with Section 7.2.1 and Figures 7.5a, 7.5b). Since this noise is added to the

– 148 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

sensitive data, the sanitized data has also a greater variance than original data – this effect
can be observed in Figures 7.8a and 7.8b. While this increasing variance increases the domain
size and hence has high impact on the first and the third quartiles, the median (i.e. the second
quartile) changes not nearly as extreme as the other quartiles. In more detail, for fine granularity
(grouped by states), the most extreme error rate occurs in the group “Iowa”, where the 1st

quartile changes from 39k to −66k, the median changes from 46k to 10k and the 3rd quartile
changes from 52k to 167k. In contrast, for coarse granularity (only one group containing all
data), the 1st quartile changes from 37k to −26k, the median changes from 46k to 49k and the
3rd quartile changes from 54k to 129k.

Independent Geo-Location

In this experiment, we examined a location-based privacy mechanism. Consider, for example,
a mobile network operator who can track the location of each customer. This data could be
interesting for different data analysts, however, while outsourcing is prohibited due to data pro-
tection regulation, anonymized data can be outsourced. In this section we evaluate sanitization
methods presented in [2] regarding security and practicability.

There are multiple ways to describe a position on the plane2, for instance using the cartesian
coordinate system in two dimensions or polar coordinate system. In the following, we assume
our coordinates are given geographic coordinates consisting of latitude and longitude. This is,
we assume a location is described as a point in R2. From a high-level perspective the location-
based privacy mechanism works like the sanitization mechanisms described before: given a plain
sensitive location x ∈ R2, instead of reporting x, a point z ∈ R2 is generated randomly according
to a noise function.

In [2] a level of privacy is defined within a given radius, resulting in a possible informal
definition of geo-indistinguishability as follows:

A mechanism satisfies ε-geo-indistinguishability iff for any radius r > 0, the user enjoys
εr-privacy within r.

More particular, the level of privacy l is proportional of the radius r and ε, i.e. l = εr, so
the smaller l the higher the privacy. Given this definition it is obvious, that ε depends on the
unit of r. For example, assume that distances are measured in kilometers and ε = 1. Changing
the unit of distanced to meters results in a transformation of ε = 0.001 to guarantee the same
privacy level.

A modification of the general definition of differential privacy (compare Section 7.1.1) con-
cludes to the following noise mechanism. Without going into formal details and without giving
proofs, the modifications in [2] work as follows: The PDF of the used the noise mechanism for
a given parameter ε = l

r , the actual location x ∈ R2 and any other point z ∈ R2, is set to:

Dε(x)(z) =
ε2

2π
e(−εd(x,z))

where d(·, ·) is the distance function between two points. Defining a mechanism for location-
based privacy that samples according to this PDF satisfies ε-geo-indistuishability.

By standard transformation from cartesian coordinates (x, y) ∈ R2 to a system of polar
coordinates (r, θ) ∈ R× [0, 2π] the PDF can be transformed to:

Dε(r, θ) =
ε2

2π
re−εr.

This function has one big advantage for practical application, namely, the two random variables
r and θ that represent the radius respectively the angle are independent and can be drawn

2This is only an approximation of the earth surface, but is accurate as long as the area of interest does not
become too large.

– 149 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

independently. This is, θ can be sampled as a uniformly distributed number in the interval of
[0, 2π] (or [0◦, 360◦]) while r is sampled from a distribution according the following probability
density function

Dε,R(r) = ε2re−εr.

Integrating this formula results in a cumulative distribution function

Cε(r) = 1− (1 + εr)e−εr

depicted in Figure 7.9a for three different ε values.

0 20 40 60 80 100 120
Sampled Radius

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
ul

at
iv

e
Pr

ob
ab

ili
ty

C

ε=0.5

ε=0.1

ε=0.05

(a) Cε(r) for different values of ε.

0.0 0.2 0.4 0.6 0.8 1.0
Uniformly Distributed Value

0

20

40

60

80

100

120

M
ap

pe
d

Ra
di

us

C−1

ε=0.5

ε=0.1

ε=0.05

(b) C−1 for different values of ε.

This function can be interpreted in the following way: For ε = 0.1 (green line in Figure 7.9a),
the noisy location is at most 20m away from the original location with probability roughly 65%.

Inverting the cumulative distribution function results in

C−1ε (p) = −1

ε
(W−1(

p− 1

e
) + 1).

where W−1 is the Lambert W function (the −1 branch) and can be used for sampling r efficiently
as noted in [2]. For different privacy parameters εi ∈ {0.5, 0.1, 0.05} this function is plotted in
Figure 7.9b.

In conclusion, we sample the random noise values r and θ as follows:

r : A value p is sampled uniformly in the interval [0, 1] and C−1ε (p) is output.

θ : A value θ is sampled uniformly in the interval [0, 2π] and returned.

Given an original location (x, y) ∈ R2 and sampled noise, the original location is moved by
direction θ and distance r resulting in a sanitized version of the location.

For empirical studies we have implemented a first prototype in Python 3, using NumPy3 for
efficient sampling according to the previously mentioned mechanism (particularly the Lambert
W function is included in NumPy), and GeoPy4 for location transformation and moving the
location according the sampled noise. Finally, we visualize the effects of differential privacy
for location-based systems utilizing OpenStreetMap5. We used OpenStreetMap due to its fast
prototyping possibilities, but certainly other software could be used for visualization as well.

We emphasize that in our experiment, we sanitized exactly one location but not a series of
locations. The original position (depicted as red marker in Figures7.10a, 7.10b) is assumed to

3https://pypi.python.org/pypi/numpy
4https://pypi.python.org/pypi/geopy
5https://www.openstreetmap.org

– 150 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

(a) Cε(r) for different values of ε.

(b) C−1 for different values of ε.

be at “49.293551, 8.641904” (the SAP SE Headquarter) and we tested different ε1 = 0.1 and
ε2 = 0.01 with fixed l = 5 value, so r1 = 50 and r2 = 500. For both sets of parameters we
sanitized the original location 50 times and plotted all sanitized position at one map.

While ε1 does leak the specific building our (fictional) person is located but not the exact
room number, ε2 does hide this information and only leaks the approximate location (e.g. the
person is located on the SAP campus).

7.4 Research Questions

In recent years many research results on differential privacy have been produced. Yet, many
important questions remain unsolved. Particularly, as an applied research group we are inter-
ested in applications of differential privacy to different use cases. As such, we are in search of
relevant technical problems that have so far not been sufficiently solved. One example we were

– 151 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

able to identify is text.

7.4.1 Text

Anonymization of text is a difficult task. Text contains rich information that often is not
directly accessible to machines. For example, sentiment analysis can identify the attitude of
the author towards its subject or stylometric analyses may identify authors. Nevertheless, text
may also reveal sensitive information about its subject. Identifying all personally identifiable
information is one task, but may not be sufficient, since above analyses show that significant
information may be read between the lines. Hence, we are faced with a similar challenge that
lead to development of differential privacy: there is no information that can be left unmodified.
Consequently, methods based on differential privacy seem to be a viable approach. On the
one hand, applying differential privacy to text is not straigth-forward. It is not clear how
perturb a word: before or after stemming? It should be a similar word, since random character
sequences probably do not make any sense, but what is similar? Furthermore, data is very high-
dimensional (many words) and certainly has patterns (as already outlined above). On the other
hand, being able to reliable anonymize (any) text is highly valuable and relevant. Anonymizing
medical records is not the only application, but also blog posts or employee performance ratings.

7.5 Summary

We have observed that anonymization can be a valuable tool in a big data economy, but proper
anonymization is hard due to a number of inherent challenges. Differential privacy is one
mechanism that can provide a suitable mechanism and guarantee to balance privacy and utility.
We have shown in a number of experimental studies that such mechanisms can provide sufficient
privacy and utility at the same time, e.g. in computing averages or revealing geo-locations. In
summary, we see differential privacy as a potential target for future product integration as well
as an area for future applied research.

– 152 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] Charu Aggarwal. On k-anonymity and the curse of dimensionality. In Proceedings of the
31st Very Large DataBase (VLDB) Conference, 2005.

[2] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Geo-indistinguishability: Differential privacy for location-based systems.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 901–914. ACM, 2013.

[3] Yves-Alexandre de Montjoye, Laura Radaelli, Vivek Kumar Singh, and Alex “Sandy”
Pentland. Unique in the shopping mall: On the reidentifiability of credit card metadata.
Science, 347, 2015.

[4] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International Conference
on Automata, Languages and Programming - Volume Part II (ICALP), 2006.

[5] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, August 2013.

[6] Kashmir Hill. How Target Figured Out A Teen Girl Was Pregnant Before
Her Father Did, 2012. http://www.forbes.com/sites/kashmirhill/2012/02/16/

how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/.

[7] Marek Jawurek, Martin Johns, and Konrad Rieck. Smart metering de-pseudonymization.
In Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC),
2011.

[8] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data (SIGMOD), 2009.

[9] Frank McSherry and Kunal Talwar. Mechanism Design via Differential Privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007.

[10] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (S&P),
2008.

[11] Aaron Roth. New Algorithms for Preserving Differential Privacy. PhD thesis, 2010.

[12] Latanya Sweeney. Weaving technology and policy together to maintain confidentiality.
Journal of Law, Medicine and Ethics, 25, 1997.

[13] Stanley L. Warner. Randomized response: a survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–66, 1965.

– 153 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

7.6 Appendix - Formulary

7.6.1 Notation

Input Domain Notation:

• Value Domain: D.

• Database: N|D|.

• Histogram i ∈ D for the vector of database A: Ai.

• Query: f : Dn → Rd.

Database distance: Database distance according to l1-norm (Manhattan distance)

‖A‖1 =

|A|∑

i=1

|Ai|

7.6.2 Composition theorems

The following is based on [5] and [8].
Sequential composition:

∏

i

Pr[M r
i (A) = ri] ≤

∏

i

Pr[M r
i (B) = ri]×

∏

i

exp(εi).

The above formulation can be optimized by lowering the bound in case that the constellation of
input data sets for a mechanism is disjoint (e.g. uncorrelated). When mechanisms are combined
and each mechanism is processing an arbitrary part of the disjoint input (i.e. output fields are
uncorrelated), as expressed by Mi (X ∩ Di) where Di are disjoint subsets of the input domain
D, ε is no longer derived by the sum of all individual operations but by maxi(εi).
Parallel composition:

∏

i

Pr[M r
i (A) = ri] ≤

∏

i

Pr[M r
i (B) = ri]× exp

(
max
i=1,...,r

(εi)

)
.

Please view the above formulations as guarantees for the privacy leakage. The analyst who is
for example invoking either of the two constellations is going to have exactly the same ε amount
deducted from his privacy budget.

7.6.3 Laplace mechanism

Probability density function: The probability density function for a random variable x is
defined by

Lap(x|λ, µ) =
1

2λ
exp

(
−|x− µ|

λ

)
,

thus for µ = 0 and ε-differential privacy

Lap

(
x|(∆f

ε
), 0

)
=

ε

2∆f
exp

(
−ε|x|

∆f

)
.

Sampling: A uniform distributed random variable U in the interval [1/2, 1/2] is utilized to
sample from the inverse CDF.

X = µ− bsign(U)× ln(1− 2|U |)
Sensitivity:

∆1(f) = max
A,B∈N|D|
‖A−B‖1=1

‖f(A)− f(B)‖1

– 154 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

7.6.4 Exponential mechanism

Probability density function: By introduction of a normalizing constant in the denominator
the probability density function is formulated and scaled to an interval [0,1]. The algorithm uses
half ε to protect the event when the presence of a database record causes one utility function
to increase and another to decrease. Thus leading to the following notation.

E(ε, A, q(·), ε) =

exp

(
εq(A, r)

2∆q

)

∑
exp

(
εq(A, r)

2∆q

)

Sampling: Sampling can then be achieved by generating a uniformly distributed random vari-

able in the interval [0,1], resp. [0,
∑

exp

(
εq(A, r)

2∆q

)
] for the unnormalized interval, and selecting

the cost function of the interval in which the random number is located.

Sensitivity:
∆q = max

‖A−B‖1=1
|q(A, r)− q(B, r)|.

Accuracy: While the Exponential mechanism does not guarantee to pick the maximum quality
function on database A (OPTq (A)), it will return a high scoring quality function result (q(r*)
in comparison to OPTq (A) within a bound fixed by the following:

Pr

[
q(r∗) ≤ OPTq(A)− 2∆

ε
(ln(|R|) + t)

]
≤ exp(−t).

Accuracy can be well illustrated by the example of the author of [11] where the accuracy
for picking the most common eye color of an audience via the exponential mechanism. If we
define R =Blue, Red, Green, Brown, Purple than the result will provide an eye color that is

shared by OPTq(A)−2

ε
(ln(5) + 3) people. The error guarantee is thus mainly depending on R

(i.e. the discretization of the possible result range). Which implies that in the above example,
the accuracy guarantee is independent of number of people and thus the comparative error is
small if database is large.

7.6.5 Randomized response

Privacy: À posteriori ε inference based on study design. For example for two coin flips:

ε = ln

(
Pr[Response = Desired outcome|Truth = Desired outcome]

Pr[Response = Desired outcome|Truth 6= desired outcome]

)
.

– 155 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

– 156 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

8. Definitions of privacy: Empirical
Evaluation of Privacy via Website Fin-
gerprinting

Anonymous networks, such as those to be built in PANORAMIX WP4, face several threats
from traffic analysis, and a method to evaluate their security is needed. One key threat against
low-latency anonymity systems are fingerprinting attacks, which enables an attacker to infer
the source of a web page or other accessed resource or communication. In the litrature those
are termed ‘website fingerprinting attacks’ due to their applicability in determining the website
borwsed anonymously in through exisitng systems such as Tor. In this chapter, we present a new
website fingerprinting attack based on fingerprints extracted from random decision forests and
its evaluation. The proposed attack performs better than current state-of-the-art attacks even
against website fingerprinting defenses. Investigation of possible attacks against anonymous
protocols informs the development of the PANORAMIX infrastracture to protect against this
type of attacks, particularly to support low-latency mixing in PANORAMIX WP7. In this
chapter we show that none of the existing defences are entirely safe, requiring PANORAMIX
to develop novel approaches.

8.1 Introduction

Traditional encryption obscures only the content of communications and does not hide metadata
such as the time, size and direction of traffic. Anonymous communication systems obscure both
content and metadata, preventing a passive attacker from being able to infer the source or
destination of communication.

Anonymous communications tools, such as Tor [10], route traffic through relays to hide
its ultimate destination. Tor is designed to be a low-latency system to support interactive
activities such as instant messaging and web browsing, and does not significantly alter the
shape of network traffic. This allows an attacker to exploit information leaked via the order,
timing and volume of resources requested from a website. As a result, many works have shown
that website fingerprinting attacks are possible even when a client is doing encrypted browsing
or using an anonymity tool such as Tor [27, 17, 14, 19, 24, 7, 35, 15, 34, 32].

Website fingerprinting is commonly formulated as a classification problem. An attacker
wishes to know whether a client browses one of n web pages. The attacker first collects many
examples of traffic traces from each of the n web pages by performing web-requests through the
protection mechanism under attack; features are extracted and a machine learning algorithm
is trained to classify the website using those features. When a client browses a web page, the
attacker passively collects the traffic, passes it in to their classifier and checks if the client visited
one of the n web pages. In the literature this is referred to as the closed-world scenario – a client
is restricted to browse a limited number of web pages, monitored by the attacker. However,
the closed-world model has been criticised for being unrealistic [15, 25] since a client is unlikely

– 157 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

to only browse a limited set of web pages. The open-world scenario attempts to model a more
realistic set-up where the attacker monitors a small number of web pages, but allows a client to
additionally browse to a large world size of unmonitored web pages.

Despite some preliminary work by Panchenko et al. [24], there is a notable absence of feature
analysis in the website fingerprinting literature. Instead features are picked based on heuristic
arguments. Once features and a classifier have been chosen the pipeline is simple: an attacker
trains on a corpus of previously collected traffic instances, and waits to collect test traces from
which they infer what web page a client is browsing. Techniques such as Naive-Bayes [14],
k -Nearest Neighbour [34], decision tree [15], SVM [24] and N-grams [11] have all been used to
perform website fingerprinting attacks.

Our attack uses random decision forests [5], an ensemble method using multiple decision
trees. We use random forests because they have been shown to perform well in classification
tasks [13], [28], [16] and allow for analysis of feature importance [12]. Furthermore, they allow
us to extract fingerprints to perform identification in an open-world.

The key contributions of this work are as follows:

• In section 8.3.3 we present a new attack, k -fingerprinting, based on extracting a fingerprint
for a web page via random forests. We show k -fingerprinting is more accurate and faster
than other state-of-the-art website fingerprinting attacks [34], [7].

• In section 8.5 we perform analysis of the features used in this and prior work to determine
which yield the most information about an encrypted or anonymized web page. We
show that simple features such as counting the number of packets in a sequence leaks
more information about the identity of a web page than complex features such as packet
ordering or packet inter-arrival time features.

• We consider a larger open-world setting than has been considered in prior works. Pre-
viously the largest open-world study considered 5,000 unmonitored web pages [34]. In
section 8.7 we experiment with an open-world size of 100,000 collected via Tor while in
8.8 and 8.8.3 we experiment with open-world sizes of 7,000 and 17,000 collected via a stan-
dard web browser, reflecting a more realistic website fingerprinting attack over multiple
browsing sessions. Section 8.7 contains an open-world size that is an order of magnitude
larger than the current largest open-world website fingerprinting work [34] 1.

• In section 8.7 we show that an attacker need only train on a small fraction of the total
data to achieve a low false positive rate, greatly reducing the start-up cost an attacker
would need to perform the attack.

• In section 8.9 we observe that the error rate is uneven and so it may be advantageous
to throw away some training information that could confuse a classifier. An attacker can
learn the error rate of their attack from the training set, and use this information to select
which web pages they wish to monitor in order to minimize their error rates.

• In section 8.10 we evaluate k -fingerprinting against many popular website fingerprinting
defenses and show it outperforms the state-of-the-art attack k -NN [34].

• In section 8.11 we show training k -fingerprinting is an order of magnitude faster than the
state-of-the-art attack k -NN [34].

1[15] considers an open world size of ∼35K but only tried to separate monitored pages from unmonitored
pages instead of further classifying the monitored pages to the correct website. The authors assume the adversary
monitors four pages: google.com, facebook.com, wikipedia.org and twitter.com. They trained a classifier using
36 traces for each of the Alexa Top 100 web pages, including the web pages of the monitored pages. The four
traces for each of the monitored sites plus one trace for each of the unmonitored sites up to ∼35K are used for
testing.

– 158 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• We confirm that browsing over Tor does not provide any additional protection against
fingerprinting attacks over browsing using a standard web browser. Furthermore we show
that k -fingerprinting is highly accurate on Tor hidden services as well as standard web
pages, and that Tor hidden services can be distinguished from standard web pages.

8.2 Related Work

Website fingerprinting has been studied extensively. Early work by Wagner and Schneier [30],
Cheng and Avnur [9] exposed the possibility that encrypted HTTP GET requests may leak
information about the URL, conducting preliminary experiments on a small number of websites.
They asked clients in a lab setting to browse a website for 5-10 minutes, pausing two seconds
between page loading. With caching disabled they were able to correctly identify 88 pages out of
92 using simple packet features. Early website fingerprinting defenses were usually designed to
safeguard against highly specific attacks. In 2009, Wright et al. [36] designed ‘traffic morphing’
that allowed a client to shape their traffic to look as if it was generated from a different website.
They were able to show that this defense does well at defeating early website fingerprinting
attacks that heavily relied on exploiting unique packet length features [27, 17].

In a similar fashion, Tor pads all packets to a fixed-size cells of 512 bytes. Tor also imple-
mented randomized ordering of HTTP pipelines [26] in response to the attack by Panchenko
et al. [24] who used packet ordering features to train an SVM classifier. This attack on Tor
achieved an accuracy of 55%, compared to a previous attack that did not use such fine grained
features achieving 3% accuracy on the same data set using a Naive-Bayes classifier [14]. Other
defenses such as the decoy defense [24] loads a camouflage website in parallel to a legitimate
website, adding a layer of background noise. They were able to show using this defense attack
accuracy of the SVM again dropped down to 3% despite using intelligent features such as packet
orderings.

Luo et al. [20] designed the HTTPOS fingerprinting defense at the application layer.
HTTPOS acts as a proxy accepting HTTP requests and obfuscating them before allowing
them to be sent. It modifies network features on the TCP and HTTP layer such as packet size,
packet time and payload size, along with using HTTP pipelining to obfuscate the number of
outgoing packets. They showed that HTTPOS was successful in defending against a number of
classifiers [4, 8, 17] and [27].

More recently Dyer et al. [11] created a defense, BuFLO, that combines many previous
countermeasures, such as fixed packet sizes and constant rate traffic. Dyer et al. showed this
defense improved upon other defenses at the expense of a high bandwidth overhead. Cai et al.
[6] made modifications to the BuFLO defense based on rate adaptation again at the expense of
a high bandwidth overhead. Following this Nithyanand et al. [22] proposed Glove, that groups
website traffic into clusters that cannot be distinguished from any other website in the set.
This provides information theoretic privacy guarantees and reduces the bandwidth overhead by
intelligently grouping web traffic in to similar sets.

Cai et al. [7] modified the kernel in Panchenko et al.’s SVM to improve an attack on Tor, and
was further improved in an open-world setting by Wang and Goldberg in 2013 [35], achieving
a True Positive rate of over 0.95 and a False Positive rate of 0.002 when monitoring one web
page. Wang et al. [34] conducted attacks on Tor using large open-world sets. Using a k -nearest
neighbour classifier they achieved a True Positive rate of 0.85 and False Positive rate of 0.006
when monitoring 100 web pages out of 5100 web pages. More recently Wang and Goldberg [33]
suggested a defense using a browser in half-duplex mode – meaning a client cannot send multiple
requests to servers in parallel. In addition to this simple modification they add random padding
and show they can even foil an attacker with perfect classification accuracy with a comparatively
(to other defenses) small bandwidth overhead. Finally Wang and Goldberg [32] took website
fingerprinting attacks out of the lab. By maintaining an up-to-date training set and splitting a

– 159 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

full packet sequence in to components comprising of different web page load traces they show
that practical website fingerprinting attacks are possible. By considering a time gap of 1.5
seconds between web page loads, their splitting algorithm can successfully parse a single packet
sequence in to multiple packet sequences with no loss in website fingerprinting accuracy.

Website fingerprinting defenses attempt to make all packet sequences look as similar as
possible to foil classifiers, at the expense of bandwidth and latency. Website fingerprinting
defenses can be separated into two categories, simulatable and non-simulatable [34]. Simulatable
defenses operate on an input packet sequence and output another packet sequence, based upon
packet features such as direction, size and time. Their advantage is that they do not have to
be applied from applications that have access to sensitive client data, such as an extension in
the browser. They do not require any more information than would be available to an attacker.
Examples of simulatable defenses include BuFLO [11], CS-BuFLO [6], background noise [24],
Tor packet padding, traffic morphing [36]. Non-simulatable defenses applied at the application
layer include HTTPOS [20] and Tor’s randomization of packet orderings. Both types of defense
come at the expense of bandwidth or time overhead and may not be tolerable to the average
client wishing to browse online with little latency. For example BuFLO pads all packets to a
fixed size, leading to a bandwidth overhead of 190%.

8.3 Attack Design

We consider an attacker that can passively collect a client’s encrypted or anonymized web
traffic, and aims to infer which web resource is being requested. Dealing with an open-world,
makes approaches based purely on classifying previously seen websites inapplicable. Therefore
k -fingerprinting aims to define a distance-based classifier, similar to the k -NN [34] approach. It
manages unbalanced sized classes and assigns meaningful distances between packet sequences,
where close-by ‘fingerprints’ denote requests likely to be for the same resources.

8.3.1 Threat model

We make the following usage assumptions following Juarez et al. [15]: The client browses to one
web page at a time, and does not perform multi-tab browsing. The attacker is able to perfectly
infer the start and end of the page load (for our data sets we chose a cut off point of 20 seconds
after which an attacker would stop recording traffic). The client browses the web but does not
perform any other actions that create network traffic such as downloading via BitTorrent or
using VoIP.

The only information that the attacker may extract from the observed web-browsing activity
is the timing and volume of incoming and outgoing traffic, as transformed by the protection
mechanism chosen. For example, an attacker observing Tor will be observing padded cells, while
an attacker observing web-browsing under traffic morphing [36] may be observing payloads that
are padded so that they conform to a specified target set of web pages.

The attacker is able to use the protection mechanism under study to retrieve a number
of pages under observation, as well as a number of other random pages, to use as training
data. Furthermore, the network conditions under which these training traces are requested
are indistinguishable from, or can be made arbitrarily similar to, the network conditions under
which target clients will be performing requests.

8.3.2 Extracting k-fingerprints from random forests

Random forests are a classification technique consisting of an ensemble of decision trees, taking
a consensus vote of how to classify a new object. They have been shown to perform well in
classification, regression [16], [5] and anomaly detection [18]. Each tree in the forest is trained
using labeled objects represented as feature vectors of a fixed size. Training includes some

– 160 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

randomness to prevent over-fitting: the training set for each tree is sampled from the available
training set with replacement. Due to the bootstrap sampling process there is no need for k -fold
cross validation to measure k -fingerprinting performance, it is estimated via the unused training
samples on each tree [5]. This is referred to as the out-of-bag score.

In this work we use random forests to extract a fingerprint for each traffic instance, instead
of using directly the classification output of the forest. We define a distance metric between two
traces based on the output of the forest: given a feature vector each tree in the forest associates
a leaf identifier with it, forming a vector of leaf identifiers for the item, which we refer to as the
fingerprint.

Once fingerprint vectors are extracted for two traces, we use the Hamming2 distance to
calculate the distance between these fingerprints3.

We classify a test instance as the label of the closest k training instances via the Hamming
distance of fingerprints – assuming all labels agree. We evaluate the effect of varying k, the
number of fingerprints used for comparison, in sections 8.6 and 8.8.

This leafs vector output from a trained random forest classifier represents a robust fin-
gerprint: we expect similar traffic sequences are more likely to fall on the same leaves than
dissimilar traffic sequences. This is the case since the forest has been trained on a classification
task, thus selecting decision branches that keep traces from the same websites in the same leafs,
and those from different ones apart.

We can vary the number of training instances k a fingerprint should match, to allow an
attacker to trade the True Positives for False Positives. This is not possible using directly the
classification of the random forest. By using a k closest fingerprint technique for classification,
the attacker can choose how they wish to decide upon final classification4. For the closed-world
scenario we do not need the additional fingerprint layer for classification, we can simply use the
classification output of the random forest since all classes are balanced and our attack does not
have to differentiate between False Positives and False Negatives. For the closed-world scenario
we measure the mean accuracy of the random forest on the given test data and labels.

8.3.3 The k-fingerprinting attack

The k -fingerprinting attack proceeds as follows: The attacker chooses which web pages they
wish to monitor and captures network traffic generated via loading the monitored web pages
and some unmonitored web pages. These target traces for monitored websites, along with many
traces for unmonitored websites, are used to train a random forest for classification. Given a
packet sequence representing each training instance of a monitored web page, it is converted to
a fixed length fingerprint as described in Section 8.3.2 and stored.

The attacker now passively collects instances of web page loads from a client’s browsing
session. A fingerprint is extracted from the newly collected packet sequence, as described in
section 8.3.2. The attacker then computes the Hamming distance of this new fingerprint against
the corpus of fingerprints collected during training. In the open-world scenario we follow the
Wang et al. [34] method for final classification. For each test instance with a given leaf vector
fingerprint, we select the k training instances with minimum Hamming distances to this leaf
vector. A test instance is classified as a monitored page if and only if all k fingerprints agree on
classification, otherwise the test instance is classified as an unmonitored page.

We define performance measures for the attack as follows:

2We experimented with using the Hamming, Euclidean, Mahalanobis and Manhattan distance functions and
found Hamming to provide the best results.

3For example, given the Hamming distance function d : V × V → R, where V is the space of leaf symbols,
we expect given two packet sequences generated from loading google.com, with fingerprints vectors f1, f2 and a
packet sequence generated from loading facebook.com with fingerprint f3, that d(f1, f2) < d(f1, f3) and d(f1, f2) <
d(f2, f3).

4We chose to classify a traffic instance as a monitored page if all k fingerprints agree on the label, but an
attacker could choose some other metric such as majority label out of the k fingerprints.

– 161 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• True Positive Rate. The probability that a monitored page is classified as the correct
monitored page.

• True Negative Rate. The probability that an unmonitored page is correctly classified
as an unmonitored page.

• False Positive Rate. The probability that an unmonitored page is incorrectly classified
as a monitored page.

• False Negative Rate. The probability that a monitored page is incorrectly classified as
a different monitored page or an unmonitored page.

8.4 Data gathering

We chose to collect two data sets, one collected via Tor, DSTor, and one collected via a standard
web broswer, DSNorm. DSNorm consists of 30 instances from each of 55 monitored web pages,
along with 17,000 unmonitored web pages chosen from Alexas top 20,000 web sites [1]. We
collected DSNorm using a number of Amazon EC2 instances5, Selenium6 and the headless
browser PhantomJS7. We used tcpdump8 to collect network traces for 20 seconds with 2
seconds between each web page load. Monitored pages were collected in batches of 30 and
unmonitored web pages were collected successively. Page loading was performed with no caches
and time gaps between multiple loads of the same web page, as recommended by Wang and
Goldberg [35]. We chose to monitor web pages from Alexa’s top 100 web sites [1] to provide
a comparison with the real world censored web pages used in the Wang et al. [34] data set.
DSTor was collected in a similar manner to DSNorm but was collected via the Tor browser.
DSTor consists of two subsets of monitored web pages: (i) 100 instances from each of the 55 top
Alexa monitored web pages and (ii) 80 instances from each of 30 popular Tor hidden services9.
The unmonitored set is comprised of the top 100,000 Alexa web pages, excluding the top 55.

For comparison to previous work, we also use the Wang et al. data set [34], which collected
90 instances from each of 100 monitored sites, along with 5000 unmonitored web pages. The
Wang et al. monitored web pages are various real-world censored websites from UK, Saudi
Arabia and China providing a realistic set of web pages an attacker10 may wish to monitor.
The unmonitored web pages are chosen at random from Alexa’s top 10,000 websites – with no
intersection between monitored and unmonitored web pages.

This allows us to validate k -fingerprinting on two different data sets while allowing for direct
comparison against the state-of-the-art k -Nearest Neighbour attack [34]. We can also infer how
well the attack works on censored web pages which may not have small landing pages or be set
up for caching like websites in the top Alexa list. Testing k -fingerprinting on both real-world
censored websites and top alexa websites indicates how the attack performs across a wide range
of websites.

We vary the number of stored fingerprints k between 1 and 10 and vary the number of
unmonitored pages we train on: for the attack on 7000 unmonitored web pages we train between
1 and 6500 unmonitored pages, for the attack on 17,000 unmonitored web pages we train between
1000 and 15,000 unmonitored pages, for the attack on 100,000 unmonitored web pages we train
between 2000 and 16,000 unmonitored pages and for the Wang et al. [34] data set we train

5https://aws.amazon.com/ec2/
6http://www.seleniumhq.org/
7http://phantomjs.org/
8http://www.tcpdump.org/
9A Tor hidden service is a website that is hosted on a Tor relay and so both server and client remain anonymous

to one another and any external observers. We chose hidden services to fingerprint based on popularity as listed
by the .onion search engine http://www.ahmia.fi/

10For example an ISP or nation state.

– 162 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0 20 40 60 80 100 120 140 160
Number of features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Maximum accuracy
Minimum accuracy

Figure 8.1: Accuracy of k -fingerprinting in a closed-world setting as the number of features is
varied.

between 1 and 4500 unmonitored pages. The variations in unmonitored training instances
simulates different scenarios under which an attacker can train on different world sizes. We
show that an attacker need only train on a small fraction of the unmonitored web pages to
achieve a low false positive rate.

For the sake of comparison, according to a study by research firm Nielsen [3] the number of
unique websites visited per month by an average client in 2010 was 89. Another study [23, 15]
collected web site statistics from 80 volunteers in a virtual office environment. Traffic was
collected from each volunteer for a total of 40 hours. The mean unique number of websites
visited per volunteer was 484, this is substantially smaller than the world sizes we consider in
our experiments. However, we note that the data was collected in a lab setting that may not
realistically reflect a clients browsing habits.

8.5 Feature selection

Our first contribution is a systematic analysis of feature selection. All experiments in this
section were performed with the Wang et al. data set [34] so as to allow direct comparison with
their attack results.

We train a random forest classifier in the closed-world setting using a feature vector com-
prised of features in the literature, and labels corresponding to the monitored sites. We use the
gini coefficient as the purity criterion for splitting branches and estimate feature importance
using the standard methodology described by Breiman [2], [5], [12]. Each time a decision tree
branches on a feature the weighted sum of the gini impurity index for the two descendent nodes
is higher than the purity of the parent node. We add up the gini decrease for each individual
feature over the entire forest to get a consistent measure of feature importance.

We explain each feature used and following this perform feature analysis. Some of the
features in the feature set have different lengths due to the different lengths of packet sequences,
in this case we pad these features with 0’s, and extract a feature vector of length 150 from every
packet sequence.

Figure 8.1 illustrates the effect of using a subset of features for random forrest classification.
A number of experiments were performed by training a random forest classifier to establish
feature importance; and then training a new random forest with only a subset of the most
informative features. More specifically, we train a random forest using subsets of the most
informative features in batches of five. As we increase the number of features used we observe a
monotonic increase in accuracy; however there are diminishing returns as we can achieve nearly

– 163 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

the same accuracy using the 30 most important features, as when using more. Though we could
have achieved near same accuracy with an order of magnitude fewer features, we chose to use
150 features because the difference in training time when using less features was negligible.

Figure 8.2 identifies the top-20 ranked features and illustrates their variability across 100
repeated experiments. As seen in figure 8.1 there is a reduction in gradient when combining the
top 15 features compared to using the top 10 features. Figure 8.2 shows that the top 13 features
are comparatively much more important than the rest of the top 20 features, hence there is only
a slight increase in accuracy when using the top 15 features compared to using the top 10. After
the drop between the rank 13 and rank 14 features, feature importance falls steadily until feature
rank 40, after which the reduction in feature importance is less prominent11. Note that there
is some interchangeability in rank between features, we assign ranks based on the average rank
of a feature over the 100 experiments.

Feature set list

Feature importance was computed for each feature over 100 experiments, we order them by the
mean feature importance score. From each packet sequence we extract the following features:

• Number of packets statistics. We extract the total number of packets, along with
the number of incoming and outgoing packets for the total transmission. These features
are used in [34, 24, 11]. The number of incoming packets during transmission is the most
important feature, and together with the number of outgoing packets during transmission
are always two of the five most important features. The total number of packets in
transmission has rank 10.

• Incoming & outgoing packets as fraction of total packets. The number of incoming
and outgoing packets as a fraction of the total number of packets. A variation of this
feature is used in [24]. These are always two of the five most important features.

• Packet ordering statistics. For each successive incoming and outgoing packet we in-
clude a feature that indicates the total number of packets seen before it in the sequence.
Variations of these features are used in [34, 24] and [7]. The standard deviation of the
ougoing packet ordering list is the most important of these features with rank 4, the aver-
age of the ougoing packet ordering list has rank 7. The standard deviation of the incoming
packet ordering list has rank 12 and the average of the incoming packet ordering list has
rank 13.

• Concentration of outgoing packets. We split the packet sequence into non-overlapping
chunks of 20 packets. We then count the number of outgoing packets in each of these
chunks. We extract along with the entire chunk sequence, the standard deviation, mean,
median and max of the sequence of chunks. This provides a snapshot of where outgoing
packets are concentrated. A variant of this feature is used in [34]. The features that make
up the concentration list are between the 15th and 30th most important features, but also
make up the bulk of the 75 least important features. The concentration list mean has
rank 11, the standard deviation has rank 16, the maximum has rank 30 and the median
has rank 65.

• Concentration of incoming & outgoing packets in first & last 30 packets. We
count the number of incoming and outgoing packets in the first and last 30 packets. A
variation of this feature is used in [34]. The number of incoming and outgoing packets
in the first thirty packets has rank 19 and 20, respectively. The number of incoming and
outgoing packets in the last thirty packets has rank 50 and 55, respectively.

11The total feature importance table is shown in Appendix 8.14.1.

– 164 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• Number of packets per second. We count the number of packets per second, along
with the mean, standard deviation, min, max, median. The standard deviation feature
has rank 38, maximum has rank 42, mean has rank 44, median has rank 50 and minimum
has rank 117.

• Alternative concentration features. This subset of features is based on the concen-
tration of outgoing packets feature list. We split the outgoing packets feature list in to 20
evenly sized subsets and sum each subset. This creates a new list of features. Similarly
to the concentration feature list, the alternative concentration feature list are regularly in
the top 20 most important features and bottom 50 features. Note though concentration
features are never seen in the top 15 most important features whereas alternative con-
centration features are - at rank 14 and 15 - so information is gained by summing the
concentration subsets.

• Packet inter-arrival time statistics. For the total, incoming and outgoing packet
streams we extract the lists of inter-arrival times between packets. For each list we extract
the max, mean, standard deviation, and third quartile. A variation of this feature is used
in [4]. These features have rank between 40 and 70.

• Transmission time statistics. For the total, incoming and outgoing packet sequences
we extract the first, second, third quartile and total transmission time. This feature is
used in [34]. These features have rank between 30 and 50. The total transmission time
for incoming and outgoing packet streams are the most important out of this subset of
features.

• Alternative number of packets per second features. For the number of packets per
second feature list we create 20 even sized subsets and sum each subset. The sum of all
subsets is the 9th most important feature. The features produced by each subset are in
the bottom 50 features - with rank 101 and below. The important features in this subset
are the first few features with rank between 66 and 78, that are calculated from the first
few seconds of a packet sequence.

Our analysis concludes that the total number of incoming packets is the most informative
feature. This is expected as different web pages have different resource sizes, that are poorly
hidden by encryption or anonymization. The number of incoming and outgoing packets as a
fraction of the total number of packets are also informative for the same reason. After the
inclusion of the 40 most important features, using additional features gives only incremental
increases in accuracy.

The least important features are from the padded concentration of outgoing packets list, since
the original concentration of outgoing packets lists were of non-uniform size and so have been
padded with zeros to give uniform length. Clearly, if most packet sequences have been padded
with the same value this will provide a poor criterion for splitting, hence being a feature of low
importance. Packet concentration statistics, while making up the bulk of “useless features” also
regularly make up a few of the top 30 most important features, they are the first few items that
are unlikely to be zero. In other words, the first few values in the packet concentration list do
split the data well.

Packet ordering features have rank 4, 7, 12 and 13, indicating these features are a good
criterion for splitting. Packet ordering features exploit the information leaked via the way in
which browsers request resources and the end server orders the resources to be sent. This
supports conclusions in [34], [7] about the importance of packet ordering features.

We also found that the number of incoming and outgoing packets in the first thirty packets,
with rank 19 and 20, were a more important feature than the number of incoming and outgoing
packets in the last thirty packets, with rank 50 and 55. In the alternative number packets per

– 165 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Table 8.1: k-fingerprinting results for k=3 while varying the number of unmonitored training
pages.

Training pages True Positive rate False Positive rate

0 0.90± 0.02 0.750± 0.010
1500 0.88± 0.02 0.013± 0.007
2500 0.88± 0.01 0.007± 0.001
3500 0.88± 0.01 0.005± 0.001
4500 0.87± 0.02 0.009± 0.001

second feature list the earlier features were a better criterion for splitting than the later features
in the list. This supports claims by Wang et al. [34] that the beginning of a packet sequence
leaks more information than the end of a packet sequence. In contrast to Bissias et al. [4] we
found packet inter-arrival time statistics, with rank between 40 and 70, only slightly increase
the attack accuracy, despite being a key feature in their work.

8.6 k-fingerprinting the Wang et al. data set

We first evaluate k -fingerprinting on the Wang et al. data set [34]. This data set was collected
over Tor, and thus implements padding of packets to fixed-size cells (512-bytes) and random-
ization of request orders [26]. Thus the only information available to k -fingerprinting is full cell
timing and volume features. As described in section 8.4 there are 100 monitored web pages and
5000 unmonitored web pages in the Wang et al. data set. We train on 60 out of the 90 instances
for each monitored page; we vary the number of unmonitored pages on which we train. For the
attack evaluation we use fingerprints of length 200 and 150 features. Final classification is as
described in section 8.3.3, if all k fingerprints agree on classification a test instance is classified
as a monitored web page, otherwise it is classified as an unmonitored web page.

The k -NN classifier [34] is similar to k -fingerprinting. The classifier is trained upon a set
of labelled packet sequences Dtrain = {P1, ..., Pn}, then given a new packet sequence Q1 the
classifier computes the distance with all training points d(Q1, Pi) for i ∈ {1, .., n}. Q1 is then
classified as the label of the k closest training instances. Wang et al. use a weighted distance
function that learns weights that discriminate against features that do not provide much infor-
mation. We show that k -fingerprinting performs better than the state-of-the-art k -NN classifier
[34]. k -fingerprinting also requires fewer features than the k -NN attack – although most of the
features used in k -NN are redundant when attacking Tor. The k -NN attack uses their weighting
scheme to generate features that allows packet size features to be ignored.

8.6.1 Attack on Tor

The scenario for the attack is as follows: an attacker, within the threat model described in
section 8.3.1, monitors 100 web pages; they wish to know whether a client is visiting one of
those pages, and establish which one. The client can browse to any of these web pages or to
5000 unmonitored web pages, which the attacker one classifies in bulk as an unmonitored page.

Using the k -fingerprinting method for classifying a web page we measure a True Positive rate
of 0.88 ± 0.01 and a False Positive rate of 0.005 ± 0.001 when training on 3500 unmonitored web
pages and k, the number of training instances used for classification, set at k=3. k -fingerprinting
achieves better accuracy than the state-of-the-art k -NN attack that has a True Positive rate
of 0.85 ± 0.04 and a False Positive rate of 0.006 ± 0.004. Given a monitored web page k -
fingerprinting will misclassify this page 12% of the time, while k -NN will misclassify with 15%
probability.

Best results are achieved when training on 3500 unmonitored web pages. Table 8.1 reports
True and False Positive rates when using different numbers of unmonitored web pages for

– 166 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

training with k = 3. As we train more unmonitored web pages we decrease our False Positive
rate with almost no reduction in True Positive rate. After training 3500 unmonitored pages
there is no decrease in False Positives and so no benefit in training more unmonitored web
pages. This scheme allows an attacker to decrease False Positives at a cost of decreasing True
Positives. This allows an attacker to tune the classifier to either low False Positives or high
True Positives depending on the desired application of the attack.

Figure 8.3 illustrates how classification accuracy changes as, k, the number of fingerprints
used for classification changes. For a low k the attack achieves a high True Positive rate with
high False Positives, as we increase the value of k we reduce the number of misclassifications
since it is less likely that all k fingerprints will belong to the same label, but we also reduce the
number of True Positives. We find that altering the number of fingerprints used for classifica-
tion, k, affects the True Positive and False Positive rate more than the number of unmonitored
training pages. This suggests that while it is advantageous to have a large world size of unmon-
itored pages, increasing the number of unmonitored training pages does not increase accuracy
of the classifier dramatically. This supports Wang et al.’s [34] claims to the same effect.

Closed-World. In the closed-world scenario in which the client can only browse within the 100
monitored web pages we achieve 0.91 ± 0.01 accuracy. This is comparable to the k -NN accuracy
of 0.91 ± 0.03. If we were to use the random forest for final classification in the open-world
scenario we would falsely inflate our attack accuracy, since the unmonitored class is much larger
than any of the monitored classes. For the closed-world scenario we do not need the additional
fingerprint layer for classification, and simply use the classification output of the random forest.

Fingerprint length. Changing the length of the fingerprint vector will affect k -fingerprinting
accuracy. For a small fingerprint length there may not be enough diversity to provide an accurate
measure of distance over all packet sequences. Figure 8.4 shows the resulting True Positive rate
and False Positive rate as we change the length of fingerprints in the Wang et al. [34] data set.
The attack and set up is the same as in section 8.6.1, we train on 60 out the 90 instances for
each monitored web page. We set k=1 and train on 4000 unmonitored web pages. Using only
a fingerprint of length one results in a True Positive rate of 0.51 and high False Positive rate of
0.904. Clearly using a fingerprint of length one results in a high False Positive rate since there
is a small universe of leaf symbols from which to create the fingerprint. A fingerprint of length
20 results in a True Positive rate of 0.87 and low False Positive rate of 0.013. After this there
are diminishing returns for increasing the length of the fingerprint vector.

8.7 Attack evaluation on DSTor

We now evaluate k -fingerprinting on DSTor. First we evaluate the attack given a monitored
set of the top 55 Alexa web pages, with 100 instances for each web page. Then we evaluate
the attack given a monitored set of 30 Tor hidden services, with 80 instances for each hidden
service. The unmonitored set remains the same for both evaluations, the top 100,000 Alexa
web pages with one instance for each web page.

8.7.1 Alexa web pages monitored set

Table 8.2 shows the accuracy of k -fingerprinting as the number of unmonitored training pages is
varied. For the monitored web pages, 70 instances per web page were trained upon and testing
was done on the remaining 30 instances of each web page. As expected, the false positive rate
decreases as the number of unmonitored training samples grows. Similarly to section 8.6.1 there
is only marginal loss in terms of true positives while we see a large reduction in the false positive
rate as the number of training samples grows. Meaning an attacker will not have to compromise

– 167 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

on true positives to decrease the false positive rate; when scaling the number of unmonitored
training samples from 2% to 16% of the entire set the true positive rate decreases from 93% to
91% while the false positive rate decreases from 3.2% to 0.3%.

Table 8.2: Attack results on top Alexa sites for k=2 while varying the number of unmonitored
training pages.

Training pages True Positive rate False Positive rate

2000 0.93± 0.03 0.032± 0.010
4000 0.93± 0.01 0.018± 0.007
8000 0.92± 0.01 0.008± 0.002

16000 0.91± 0.02 0.003± 0.001

Clearly the attack will improve as the number of training samples grows, but in reality an
attacker may have limited resources and training on a significant fraction of 100,000 web pages
may be unfeasible. Figure 8.5 shows the true positive and false positive rate of k -fingerprinting as
the number of unmonitored web pages used for testing grows while the number of unmonitored
web pages used for training is kept at 2000, for different values of k. We may think of this
as the evaluation of success of k -fingerprinting as a client browses to more and more web
pages over multiple browsing sessions. Again 70 out of 100 instances were used for training
for each monitored web page. Clearly for a small k, both true positives and false positives
will be comparitively high. Given that, with k=5 only 2.5% of unmonitored web pages are
falsely identified as monitored web pages, out of 100,000 unmonitored web pages. Both the true
positive rates and false positive rates remain steady regardless on the number of unmonitored
web pages; an attacker can arbitrarily reduce the false positive rate by increasing the number
of neighbours used for comparison, albeit at the expense of the true positive rate.

8.7.2 Hidden services monitored set

Table 8.3 shows the accuracy of k -fingerprinting as the number of unmonitored training pages
is varied. For the monitored set, 60 instances per hidden service were trained upon and testing
was done on the remaining 20 instances of each hidden service. Again we see a marginal loss in
terms of true positives while we see a large reduction in the false positive rate as the number of
training samples grows. When scaling the number of unmonitored training samples from 2% to
16% of the entire set the true positive rate decreases from 82% to 81% while the false positive
rate decreases by an order of magnitude from 0.2% to 0.02%. Meaning when training on 16%
of the unmonitored set only 16 unmonitored web pages out of 84,000 were misclassified as a
Tor hidden service. In comparison to the Alexa web pages monitored set the true positives is
around 10% lower, while the false positive rate is also vastly reduced. This is clear evidence
that Tor hidden services are easy to distinguish from standard web pages loaded over Tor.

Table 8.3: Attack results on Tor hidden services for k=2 while varying the number of unmoni-
tored training pages.

Training pages True Positive rate False Positive rate

2000 0.82± 0.03 0.0020± 0.0015
4000 0.82± 0.04 0.0007± 0.0006
8000 0.82± 0.02 0.0002± 0.0001

16000 0.81± 0.02 0.0002± 0.0002

Similarly to figure 8.5, figure 8.6 shows the true positive and false positive rate of k -
fingerprinting as the number of unmonitored web pages used for testing grows while the number
of unmonitored web pages used for training is kept at 2000, for different values of k. Monitored
training was done on 60 out of the 80 instances, with the remaining 20 left for testing. Both
the true positive rate and false positive rate is lower than in figure 8.5. For example, given

– 168 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

100,000 unmonitored pages, using k=5, the false positive rate is 0.2% which equates to only
200 unmonitored pages being falsely classified as monitored pages.

It is clear that an attacker need only train on a small fraction of data to launch a powerful
fingerprinting attack. It is also clear that Tor hidden services are easily distinguished from
standard web pages, rendering them vulnerable to website fingerprinting attacks. We attribute
the lower false positive rate of Tor hidden services when compared to a monitored training set
of standard web page traffic to this distinguishability. A standard web page is more likely to
be confused with another standard web page than a Tor hidden service.

8.8 Attack evaluation on DSNorm

Besides testing on DSTor and the Wang et al. [34] data set we tested the efficacy of k -
fingerprinting on DSNorm. This allows us to establish how accurate k -fingerprinting is over
a standard web browsing session.

8.8.1 Attack on encrypted browsing sessions

An encrypted browsing session does not pad packets to a fixed size and the attacker may extract
the following features in addition to time features:

• Size transmitted. For each packet sequence we extract the total size of packets trans-
mitted, in addition, we extract the total size of incoming packets and the total size of
outgoing packets.

• Size transmitted statistics. For each packet sequence we extract the average, variance,
standard deviation and maximum packet size of the total sequence, the incoming sequence
and the outgoing sequence.

We evaluate the efficacy of k -fingerprinting when a client is browsing the internet without
Tor but with encryption. The attacker will have access to packet size information as well as
packet timings from which they can infer information about the web page the client is browsing.
Apart from this modification in available features, the attack scenario is similar: An attacker
monitors a client browsing online and attempts to infer which web pages they are visiting. The
only difference is that browsing with the Transport Layer Security (TLS) protocol, or Secure
Sockets Layer (SSL) protocol, versions 2.0 and 3.0, exposes the destination IP address and port.
The attack is now trying to infer which web page the client is visiting from the known website12.

For this attack the attacker monitors 55 web pages, they wish to know if the client has
visited one of these pages. The client can browse to any of these web pages or to 7000 other
web pages, which the attacker does not care to classify other than as unmonitored pages. We
train on 20 out of the 30 instances for each monitored page and vary the number of unmonitored
pages we train.

Table 8.4: Attack results for k=2 while varying the number of unmonitored training pages.
Training pages True Positive rate False Positive rate

0 0.95± 0.01 0.850± 0.010
1000 0.92± 0.01 0.020± 0.001
2000 0.90± 0.01 0.010± 0.004
3000 0.89± 0.02 0.010± 0.001
4000 0.87± 0.02 0.004± 0.001
5000 0.86± 0.01 0.004± 0.001
6000 0.86± 0.01 0.005± 0.002

12Note that the data sets are composed of traffic instances from some websites without SSL and TLS, as well
as websites using the protocols.

– 169 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Despite more packet sequence information to exploit, the larger cardinality of world size
gives rise to more opportunities for incorrect classifications. The attack achieves a True Pos-
itive rate of 0.87 ± 0.02 and a False Positive rate of 0.004 ± 0.001. We achieved best results
when training on 4000 unmonitored web pages. Table 8.4 report on results for training on
different number of unmonitored web pages, with k = 2. Figure 8.7 shows our results when
modifying the number of fingerprints used (k) and training on 2000 unmonitored pages. We
find that altering the number of unmonitored training pages decreases the False Positive rate
while only slightly decreasing the True Positive rate. This mirrors our experimental findings
from the Wang et al. data set.

Closed-World. In the closed-world scenario in which the client can only browse within the
55 monitored web pages we achieve 0.96 ± 0.02 accuracy. In this setting we do not need the
additional fingerprint layer for classification, we can simply use the classification output of the
random forest.

Number of monitored training pages in closed-world. Figure 8.8 shows the out-of-bag
score13 as we change the number of monitored pages we train. We found that training on any
more than a third of the data gives roughly the same accuracy.

8.8.2 Attack without packet size features

DSNorm was not collected via Tor and so also contains packet size information. We remove
this to allow for comparison with DSTor and the Wang et al. data set which was collected over
Tor. This also gives us a baseline for how much more powerful k -fingerprinting is when we have
additional packet size features available.

Table 8.5: Attack results for k=2 while varying the number of unmonitored training pages.
Training pages True Positive rate False Positive rate

0 0.90± 0.01 0.790± 0.020
1000 0.85± 0.01 0.019± 0.001
2000 0.83± 0.01 0.009± 0.001
3000 0.83± 0.02 0.009± 0.001
4000 0.81± 0.02 0.006± 0.001
5000 0.81± 0.01 0.005± 0.002
6000 0.80± 0.02 0.005± 0.001

We achieved a True Positive rate of 0.81 ± 0.01 and False Positive rate of 0.005 ± 0.002 when
training on 5000 unmonitored web pages. Table 8.5 shows our results at other sizes of training
samples, with k = 2. Removing packet size features reduces the True Positive rate by over 0.05
percentile points and increases the False Positive rate by 0.001 percentile points. Clearly packet
size features improve our classifier in terms of correct identifications but do not decrease the
number of unmonitored test instances that were incorrectly classified as a monitored page.

Closed-World. In the closed-world scenario in which the client can only browse within the 55
monitored web pages k -fingerprinting is 0.91 ± 0.02 accurate. Showing that in the closed-world
scenario attack accuracy improves by 5% when we include packet size features.

8.8.3 Attack on larger world size

We run k -fingerprinting with the same number of monitored sites but increase the numbered of
unmonitored sites to 17,000. We evaluate when we have both time and size features available.

13Defined in section 8.3.2.

– 170 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Figure 8.9 shows the results of k -fingerprinting while varying the number of fingerprints (k)
used for classification, from between 1 and 10, for various experiments trained with different
numbers of unmonitored pages. We see that the attack results are comparable to the attack on
7000 unmonitored pages, meaning there is no degradation in attack accuracy when we increase
the world size by 10,000 web pages. Training on approximately 30% of the 7000 unmonitored
web pages k -fingerprinting gives a True Positive rate of over 0.90 and a False Positive rate of 0.01
for k=1. Training on approximately 30% of the 17,000 unmonitored web pages k -fingerprinting
gives a True Positive rate of 0.90 and a False Positive rate of 0.006 for k=1.

The fraction of unmonitored pages that were incorrectly classified as a monitored page
decreased as we increased our world size. In other words, out of 12,000 unmonitored pages
only 72 were classified as a monitored page, with this figure dropping to 24 if we use k=10 for
classification. This provides a strong indication that k -fingerprinting can scale to a real-world
attack in which a client is free to browse the entire internet, with no decrease in attack accuracy.

8.9 Fine grained false positives

Closed World

We observe that the classification error is not uniform across all web pages14. Some pages are
misclassified many times, and confused with many others, while others are never misclassified.
An attacker can leverage this information to estimate the misclassification rate of each web page
instead of using the global average misclassification rate.

An attacker can use their training set of web pages to estimate the misclassification rate
of each web page, by splitting the training set in to a smaller training set and validation set.
Since both sets are from the original training set the attacker has access to the true labels. The
attacker then computes the misclassification rate of each web page, which they can use as an
estimation for the misclassification rate when training on the entire training set and testing on
new traffic instances.

Figures 8.10 and 8.11 show the global misclassification rate for a varying number of moni-
tored pages. Monitored pages are first ordered in terms of the misclassification rate they have,
ordered from smallest to largest. From figure 8.10, using the Wang et al. data set, we see that
if the attacker considers only the top 50% on web pages in terms of per page misclassification
rate, the true global misclassification rate and global misclassification rate estimated by the
attacker drop by over 70%. Similarly from figure 8.11, using DSNorm, if the attacker consid-
ers only the top 50% on web pages in terms of per page misclassification rate, the true global
misclassification rate and global misclassification rate estimated by the attacker drop by over
80%. This allows an attacker to train on monitored pages and then cull the pages that have too
high an error rate, allowing for more confidence in the classification of the rest of the monitored
pages.

The gap between the attacker’s estimate and the misclassification rate of the test set is
largely due to the size of the data set. Figure 8.10 has a smaller error of estimate than figure
8.11 because the Wang et al. data set has 60 instances per monitored page, in comparison
DSNorm has 20 instances per monitored page. In practice, an attacker cannot expect perfect
alignment; they are generated from two different sets of data, the training and training + test
set. Nevertheless the attacker can expect this difference to decrease with the collection of more
training instances.

14See additional evidence in Appendix 8.14.2.

– 171 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Open World on Alexa monitored set of DSTor

In addition to computing the misclassification rates in a closed-world scenario, an attacker can
compute the true positive rate and false positive rates for monitored and unmonitored pages. A
naive approach to this problem would be to first find which fingerprints contribute to the many
misclassifications and remove them. Our analysis shows that the naive approach of removing
“bad” fingerprints that contribute to many misclassifications is floored15.

We again observed that the classification error is not uniform across all web pages. Similar
to the closed-world scenario, an attacker can use their training set of web pages to estimate
the true positive and false positives rates of each web page, by splitting the training set in
to a smaller training set and validation set. Since both sets are from the original training set
the attacker has access to the true labels. The attacker then computes the true positive and
false positive rates of each web page, which they can use as an estimation for the rates when
training on the entire training set and testing on new traffic instances. More specifically we
split, for the monitored training set of 70 instance for each of the Alexa top 55 web pages,
into smaller training sets of 40 instances and validation sets of 30 instances. This is used as a
misclassification estimator for the full training set of 70 instances against the true test set of
30 instances, that is an estimator of how often each monitored web page will be misclassified.
Similarly we split the unmonitored training in half, one set as a smaller training set and the
other as a validation set.

Figures 8.12, 8.13, 8.14, 8.15 show the true positive and false positive rate under this scenario
for a varying number of unmonitored pages. Monitored pages are first ordered in terms of the
misclassification rate they have, ordered from best to worst in terms of their true positive rate.
As the size of the unmonitored training set increases so too does the accuracy both the attackers
estimate of the false positive rate, and the correct false positive rate. Nevertheless even with
a small unmonitored training set of 2000 web pages, which is then split in to a training set of
1000 web pages and a validation set of 1000 web pages, an attacker can accurately estimate the
false positive rate of the attack if some of the monitored web pages were removed. For example,
using only the best 20 monitored web pages (in terms of true positive rate), an attacker would
estimate that using those 20 web pages as a monitored set, the false positive rate would 0.012.
Using the entire data set we see that the real false positive rate of these 20 web pages is 0.010;
the attacker has nearly precisely estimated the utility of removing a large fraction of the original
monitored set. There is a small difference between estimated and the actual false positive rate
in all of figures 8.12, 8.13, 8.14 and 8.15. Furthermore there is little benefit in training more
unmonitored data if the attacker wants to accurately estimate the false positive rate; figure
8.12 has a similar gap between the estimate false positive rate and real false positive rate when
compared to figure 8.15.

From 8.12, 8.13, 8.14, 8.15 it is evident even with small original training set, an attacker can
identify web pages that are likely to be misclassified and then accurately calculate the utility
of removing these web pages from their monitored set.

8.10 Attack on hardened defenses

For direct comparison we tested our random forest classifier in a closed-world scenario on various
defenses against the k -NN attack using the Wang et al. data set [34]. Note that most of these
defenses require large bandwidth overheads that may render them unusable for the average
client. We test against the following defenses:

• BuFLO [11]. This defense sends packets at a constant size during fixed time intervals.
This potentially extends the length of transmission and requires dummy packets to fill in
gaps.

15See additional evidence in Appendix 8.14.3.

– 172 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

• Decoy pages [24]. This defense loads a decoy page when- ever another page is loaded.
This provides background noise that degrades the accuracy of an attack.

• Traffic morphing [36]. Traffic morphing morphs a clients traffic to look like another
set of web pages. A client chooses the source web pages that they would like to defend, as
well as a set of target web pages that they would like to make the source processes look
like.

• Tamaraw [31]. Tamaraw operates similarly to BuFLO but fixes packet sizes depending
on their direction. Outgo- ing traffic is fixed at a higher packet interval, this reduces
overhead as outgoing traffic is less frequent.

Table 8.6 shows the performance of k -fingerprinting against k -NN under various website fin-
gerprinting defenses in a closed-world setting on 100 different web pages - meaning an attacker
monitors these web pages and a client can only browse to these web pages. Under every de-
fense k -fingerprinting is comparable or achieves better results than the k -NN attack. Note that
k -fingerprinting does equally well when traffic morphing is applied compared to no defense. As
Lu et al. [19] note, traffic morphing is only effective when the attacker restricts attention to the
same features targeted by the morphing process. Our results confirm that attacks can succeed
even when traffic morphing is employed.

Table 8.6: Attack comparison under various website fingerprinting defenses.
Defenses This work k-NN [34] Overhead (%)

No defense 0.91± 0.01 0.91± 0.03 0
Morphing [36] 0.90± 0.03 0.82± 0.06 50± 10
Tamaraw [31] 0.10± 0.01 0.09± 0.02 96± 9

Decoy pages [24] 0.37± 0.01 0.30± 0.06 130± 20
BuFLO [11] 0.21± 0.02 0.10± 0.03 190± 20

8.11 Attack Summary

Past and current works on website fingerprinting either use the artificial closed-world model or
an open-world model that is limited in size. The current largest studies using an open-world
scenario by Wang et al. [34], and Panchenko et al. [24], both consider 5000 unmonitored sites.
Our study considers 55 monitored web pages and unmonitored world sizes of 7,000, 17,000 and
100,000 web pages. By reducing the number of monitored web pages and number of examples
we train upon, and increasing the number of unmonitored web pages we greatly increase the
chance of False Positives – since we have more unmonitored sites that could be classified as
a monitored site. This reflects realistic conditions where an attacker would like to monitor a
small number of web pages out of a large universe of web pages they do not care about.

Best attack results on data sets were achieved when we train on approximately two thirds of
the unmonitored web pages. Despite this results from DSTor show that an attacker can achieve a
very small false positive rate while only training on 2% of the unmonitored data. Training on 2%
of 100,000 unmonitored web pages greatly reduces the attack set up costs while only marginally
reducing the accuracy, providing a realistic scenario under which an attack could be launched.
Figure 8.8 illustrates that compared to training on a small number of monitored instances
increasing the size of the monitored training set only incrementally increases accuracy. Results
on all data sets also suggest that altering k, the number of fingerprints used for classification, has
a greater influence on accuracy than the number of training samples. By varying the number
of k training instances considered when classifying a test instance, an attacker may trade the
True Positive rate for the False Positive rate.

Figure 8.1 illustrates that the attack achieves approximately the same accuracy using the
best 30 features, as when using more of them. Using packet size features in addition to timing

– 173 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

features increases the True Positive rate by 5% but does not dramatically decrease the False
Positive rate. Similarly from figure 8.4 we see that k -fingerprinting has nearly the same True
Positive and False Positive rates using fingerprints of length 20 as it does for fingerprints of
length 200.

In terms of type of web page, k -fingerprinting achieves the same accuracy regardless of the
target monitored set. The monitored set in the Wang et al. data set consists of some websites
not found in Alexa 10,000 list [1], and the DSTor/Norm monitored sets were taken from the top
100 Alexa websites. Although we do see a reduction in the false positive rate when the target
monitored set are Tor hidden services due to the distinguishibility between the hidden services
and the unmonitored web pages.

We also highlight the non-uniformity of classification performance: when a monitored web
page is misclassified, it is usually misclassified on multiple tests. We show that an attacker can
use their training set to estimate the error rate of k -fingerprinting per web page, and select
targets with low misclassification rates.

k -fingerprinting is more accurate and uses fewer features than state-of-the-art attacks. Fur-
thermore k -fingerprinting is faster than current state-of-the-art website fingerprinting attacks.
On the Wang et al. data set training time for 6,000 monitored and 2,500 unmonitored training
pages is 30.738 CPU seconds on an 1.4 GHz Intel Core i5z. The k -NN attack [34] has training
time per round of 0.064 CPU seconds for 2500 unmonitored training pages. For 6,000 rounds
training time is 384.0 CPU seconds on an AMD Opteron 2.2 GHz cores. This can be compared
to around 500 CPU hours using the attack described by Cai et al. [7]. Testing time per instance
for k -fingerprinting is around 0.1 CPU seconds, compared to 0.1 CPU seconds to classify one
instance for k -NN and 450 CPU seconds for the attack described by Cai et al. [7].

8.12 Discussion of Practicalities

Website fingerprinting research has been criticised for not being applicable to real-world sce-
narios [15], [25]. We have shown that a website fingerprinting attack can scale to the number of
traffic instance an attacker may sample over long period of time with hardly any false positives.
We have also shown how a realistic attack may wish to throw away some training information
which could confuse the classifier. However, here we present limitations of our and other website
fingerprint attacks:

Multitab browsing. Website fingerprinting attacks have so far only considered a client that
browses the internet using a single tab. The ability to separate traffic into relevant packet
streams when a client browses online has so far not been researched – and our work shines no
light on this topic. As Juarez et al. note that real-world browsing session tend to be performed
with multiple tabs [21], [29].

Short-lived websites. Website content rapidly changes which will negatively affect the ac-
curacy of a website fingerprinting attack [15]. As the content of a website changes so will the
generated packet sequences, if an attacker cannot train on this new data then an attack will
suffer. However we note that an attack will suffer from the ephemeral nature of websites at
different rates depending on the type of website being monitored. For example, an attack mon-
itoring a news or social media site can expect a faster degradation in performance compared to
an attack monitoring a landing page of a top 10 Alexa site [1]. Also note Tor does not cache by
default, so if in the realistic scenario where an attacker wanted to monitor www.facebook.com
a client would be forced to navigate to the facebook landing page, which hosts content that is
long lived.

Network conditions and noise. In reality an attacker will not be able to perfectly replicate
the network conditions of a client’s browsing session. This means the training set the attacker
collected before the attack will not be a perfect representation of the traffic they wish to monitor.

– 174 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

It is also highly unlikely a client will browse the internet with no other background traffic present.
Both of these things will limit the practicality of a real-world website fingerprinting attack.
Feature importance. One limitation of our feature importance analysis is that our implemen-
tation of random forests uses axis-aligned splits and so cannot capture the non-linear relation-
ships that features have with one another. Packet features may have dependency relationships
between one another that cannot be captured by the attack.

8.13 Conclusion

Website fingerprinting attacks are a serious threat to a client’s online privacy. Clients of both
Tor and standard web browsers are at risk from website fingerprinting attacks regardless of
whether they browse to hidden services or standard websites. k -fingerprinting improves on
state-of-the-art attacks in terms of both speed and accuracy. We have shown that current
website fingerprinting defenses either do not defend against k -fingerprinting or incur such a
high bandwidth cost that it renders the defense unfeasible. Using random forests to extract
robust fingerprints of web pages we can perform an attack that increases True Positives and
decreases False Positives when compared to state-of-the-art website fingerprinting attacks. Ad-
ditionally we showed that misclassification rates of web pages is highly non-uniform; patterns
of misclassification can be exploited to perform a more accurate attack.

We also conducted feature analysis of features used in the attack, these features are often
used in other website fingerprinting works. We found that simple features such as counting the
number of incoming and outgoing packets were more important than complex features such as
packet inter-arrival times or packet ordering features.

Our world size is the biggest used in any website fingerprinting study so far. k -fingerprinting
achieves good results even when an attacker trains on a small fraction of the total data. Un-
trustworthy data within that small fraction can then be filtered and removed before the attack
is launched to later yield better results, showing that long term website fingerprinting attacks
on a targeted client is a realistic possibility.
Reproducibility. All code is available through code repositories under a liberal open source
license and and data will be deposited in open data repositories.

– 175 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature rank

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fe
a
tu

re
 i
m

p
o
rt

a
n
ce

 s
co

re

№ Feature Description

1. Number of incoming packets.
2. Number of outgoing packets as a fraction of the

total number of packets.
3. Number of incoming packets as a fraction of the

total number of packets.
4. Standard deviation of the outgoing packet order-

ing list.
5. Number of outgoing packets.
6. Sum of all items in the alternative concentration

feature list.
7. Average of the outgoing packet ordering list.
8. Sum of incoming, outgoing and total number of

packets.
9. Sum of alternative number packets per second.

10. Total number of packets.
11. Average of concentration of outgoing packets in

chunks of 20 packets feature list.
12. Standard deviation of the incoming packet order-

ing list.
13. Average of the incoming packet ordering list.
14. Alternative packet concentration feature list - 1st

item.
15. Alternative packet concentration feature list -

2nd item.
16. Standard deviation of concentration of outgoing

packets in chunks of 20 packets feature list.

17. Packet concentration feature list - 2nd item.

18. Packet concentration feature list - 3rd item.
19. The total number of incoming packets stats in

first 30 packets.
20. The total number of outgoing packets stats in

first 30 packets.

Figure 8.2: The 20 most important features.

– 176 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
False positive

0.82

0.84

0.86

0.88

0.90

0.92

T
ru

e
 p

o
si

ti
v
e

Max accuracy
Min accuracy

Figure 8.3: Attack results for 1500 unmonitored training pages while varying the number of
fingerprints used for comparison, k, over 10 experiments.

0 50 100 150 200
Number of trees

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

True positive rate
False positive rate

Figure 8.4: Accuracy of k -fingerprinting as we vary the number of trees in the forest. We train
on 4000 unmonitored training pages and set k=1.

– 177 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

k=1 k=5 k=10

20000 40000 60000 80000 100000
Number of unmonitored sites

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.5: Attack accuracy on DSTor with Alexa monitored set.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

k=1 k=5 k=10

20000 40000 60000 80000 100000
Number of unmonitored sites

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.6: Attack accuracy on DSTor with Tor hidden services monitored set.

0.002 0.004 0.006 0.008 0.010 0.012 0.014
False positive

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
ru

e
 p

o
si

ti
v
e

Max accuracy
Min accuracy

Figure 8.7: Attack results for 2000 unmonitored training pages while varying the number of
fingerprints used for comparison, k, over 10 experiments.

– 178 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0 5 10 15 20 25 30
Number of monitored training pages

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Maximum oob score
Minimum oob score

Figure 8.8: Attack out-of-bag score while varying the number of monitored training pages.

0.000 0.005 0.010 0.015 0.020 0.025
False positive

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
ru

e
 p

o
si

ti
v
e

1000
3000
5000
7000
9000
11000
13000
15000

Figure 8.9: Attack accuracy for 17,000 unmonitored web pages. Each line represents a different
number of unmonitored web pages that were trained, while varying k, the number of fingerprints
used for classification.

– 179 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0 20 40 60 80 100
Number of monitored pages (ordered)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
G

lo
b
a
l
m

is
cl

a
ss

if
ic

a
ti

o
n
 r

a
te

Misclassification rate with
 training set (10 repeats)
Misclassification rate with
 training + test set (10 repeats)

Figure 8.10: The global misclassification rate when considering different numbers of monitored
pages from the Wang et al. data set. The monitored pages are ordered in terms of smallest
misclassification rate to largest.

0 10 20 30 40 50 60
Number of monitored pages (ordered)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

G
lo

b
a
l
m

is
cl

a
ss

if
ic

a
ti

o
n
 r

a
te

Misclassification rate with
 training set (10 repeats)
Misclassification rate with
 training + test set (10 repeats)

Figure 8.11: The global misclassification rate when considering different numbers of monitored
pages from DSNorm. The monitored pages are ordered in terms of smallest misclassification
rate to largest.

– 180 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.12: Rates for training on 1000 unmonitored pages, testing on 1000, and comparison
when training on the full 2000 unmonitored pages and testing on the remaining 98000 unmon-
itored pages in DSTor, k=3.

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.13: Rates for training on 2000 unmonitored pages, testing on 2000, and comparison
when training on the 4000 unmonitored pages and testing on the remaining 96000 unmonitored
pages in DSTor, k=3.

– 181 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.14: Rates for training on 4000 unmonitored pages, testing on 4000, and comparison
when training on the full 8000 unmonitored pages and testing on the remaining 92000 unmon-
itored pages in DSTor, k=3.

0.80

0.85

0.90

0.95

1.00

T
ru

e
 p

o
si

ti
v
e
 r

a
te

training + test set training set

0 10 20 30 40 50 60
Number of monitored web pages

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

Figure 8.15: Rates for training on 8000 unmonitored pages, testing on 8000, and compari-
son when training on the full 16000 unmonitored pages and testing on the remaining 84000
unmonitored pages in DSTor, k=3.

– 182 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

Bibliography

[1] Alexa The Web Information Company, [Accessed August 2015].

[2] Leo Breiman. Random Forests, [Accessed July 2015].

[3] The Nielsen Company, [Accessed July 2015].

[4] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil Levine. ”Privacy
Vulnerabilities in Encrypted HTTP Streams”. In Proceedings of the 5th International
Conference on Privacy Enhancing Technologies, pages 1–11, 2006.

[5] Leo Breiman. ”Random Forests”. Mach. Learn., 45(1):5–32, 2001.

[6] Xiang Cai, Rishab Nithyanand, and Rob Johnson. ”CS-BuFLO: A Congestion Sensitive
Website Fingerprinting Defense”. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, pages 121–130, 2014.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. ”Touching from a dis-
tance: website fingerprinting attacks and defenses”. In ACM Conference on Computer and
Communications Security, pages 605–616, 2012.

[8] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. ”Side-Channel Leaks in Web
Applications: A Reality Today, a Challenge Tomorrow”. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, pages 191–206, 2010.

[9] Heyning Cheng, , Heyning Cheng, and Ron Avnur. ”Traffic Analysis of SSL Encrypted
Web Browsing”, 1998.

[10] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. ”Tor: The Second-Generation
Onion Router”. In Proceedings of the 13th USENIX Security Symposium, pages 303–320,
2004.

[11] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. ”Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail”. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, pages 332–346, 2012.

[12] Jerome H. Friedman. ”Greedy Function Approximation: A Gradient Boosting Machine”.
Annals of Statistics, 29:1189–1232, 2000.

[13] Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R. Sveinsson. ”Random Forests
for Land Cover Classification”. Pattern Recogn. Lett., 27(4):294–300, March 2006.

[14] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. ”Website Fingerprinting: At-
tacking Popular Privacy Enhancing Technologies with the Multinomial Naive-bayes Clas-
sifier”. In Proceedings of the 2009 ACM Workshop on Cloud Computing Security, pages
31–42, 2009.

– 183 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[15] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Dı́az, and Rachel Greenstadt. ”A Critical
Evaluation of Website Fingerprinting Attacks”. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 263–274, 2014.

[16] A. Liaw and M. Wiener. ”Classification and Regression by randomForest”. R News: The
Newsletter of the R Project, 2(3):18–22, 2002.

[17] Marc Liberatore and Brian Neil Levine. ”Inferring the source of encrypted HTTP con-
nections”. In Proceedings of the 13th ACM Conference on Computer and Communications
Security, pages 255–263, 2006.

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. ”Isolation-Based Anomaly Detection”.
ACM Trans. Knowl. Discov. Data, 6(1):3:1–3:39, March 2012.

[19] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. ”Website Fingerprinting and Identifi-
cation Using Ordered Feature Sequences”. In Proceedings of the 15th European Conference
on Research in Computer Security, pages 199–214, 2010.

[20] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and
Roberto Perdisci. ”HTTPOS: Sealing information leaks with browser-side obfuscation of
encrypted flows”. In In Proc. Network and Distributed Systems Symposium (NDSS), 2011.

[21] Mozilla Labs. Test Pilot: Tab Open/Close Study: Results. https://testpilot.
mozillalabs.com/testcases/tab-open-close/results.html. Accessed July
2015.

[22] Rishab Nithyanand, Xiang Cai, and Rob Johnson. ”Glove: A Bespoke Website Fingerprint-
ing Defense”. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 131–134, 2014.

[23] A. Stolerman M. V. Ryan P. Brennan P. Juola, J. I. Noecker Jr and R. Greenstadt. ”A
Dataset for Active Linguistic Authentication”. In IFIP WG 11.9 International Conference
on Digital Forensics, 2013.

[24] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. ”Website fin-
gerprinting in onion routing based anonymization networks”. In Proceedings of the 10th
annual ACM workshop on Privacy in the electronic society, WPES, pages 103–114, 2011.

[25] Mike Perry. ”A Critique of Website Traffic Fingerprint-
ing Attacks”. https://blog.torproject.org/blog/
critique-website-traffic-fingerprinting-attacks, Accessed June 2015.

[26] Mike Perry. ”Experimental defense website traffic fin-
gerprinting”. https://blog.torproject.org/blog/
experimental-defense-website-traffic-fingerprinting, Accessed June
2015.

[27] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan,
and Lili Qiu. ”statistical identification of encrypted web browsing traffic”. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy, pages 19–, 2002.

[28] Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson, Robert P.
Sheridan, and Bradley P. Feuston. ”Random Forest: A Classification and Regression Tool
for Compound Classification and QSAR Modeling”. Journal of Chemical Information and
Computer Sciences, 43(6):1947–1958, 2003.

– 184 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

[29] C. von der Weth and M. Hauswirth. DOBBS: Towards a Comprehensive Dataset to Study
the Browsing Behavior of Online Users. CoRR, abs/1307.1542, 2015.

[30] David Wagner and Bruce Schneier. ”Analysis of the SSL 3.0 Protocol”. In Proceedings of the
2nd Conference on Proceedings of the Second USENIX Workshop on Electronic Commerce
- Volume 2, pages 4–4, 1996.

[31] T. Wang and I. Goldberg. ”Comparing website fingerprinting attacks and defenses”. Tech-
nical Report, 2013.

[32] T. Wang and I. Goldberg. ”On Realistically Attacking Tor with Website Fingerprinting”.
Technical Report, 2015.

[33] T. Wang and I. Goldberg. ”Walkie-Talkie: An Effective and Efficient Defense against
Website Fingerprinting”. Technical Report, 2015.

[34] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. ”Effective
Attacks and Provable Defenses for Website Fingerprinting”. In Proceedings of the 23rd
USENIX Security Symposium, pages 143–157, 2014.

[35] Tao Wang and Ian Goldberg. ”Improved Website Fingerprinting on Tor”. In Proceedings of
the 12th ACM Workshop on Workshop on Privacy in the Electronic Society, pages 201–212,
2013.

[36] Charles V. Wright, Scott E. Coull, and Fabian Monrose. ”Traffic Morphing: An Efficient
Defense Against Statistical Traffic Analysis”. In In Proceedings of the 16th Network and
Distributed Security Symposium, pages 237–250, 2009.

– 185 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

8.14 Appendix

8.14.1 Total feature importance.

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141
Feature rank

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fe
a
tu

re
 i
m

p
o
rt

a
n
ce

 s
co

re

№ Feature Description

131. Packet concentration feature list - 34th item.
132. Packet concentration feature list - 39th item.
133. Alternative packet concentration feature list -

20th item.
134. Packet concentration feature list - 40th item.
135. Packet concentration feature list - 24th item.
136. Packet concentration feature list - 23th item.
137. Packet concentration feature list - 48th item.
138. Packet concentration feature list - 46th item.
139. Packet concentration feature list - 45th item.
140. Packet concentration feature list - 22th item.
141. Packet concentration feature list - 55th item.
142. Packet concentration feature list - 42th item.
143. Packet concentration feature list - 47th item.
144. Packet concentration feature list - 51th item.
145. Packet concentration feature list - 36th item.
146. Packet concentration feature list - 44th item.
147. Packet concentration feature list - 41th item.
148. Packet concentration feature list - 54th item.
149. Packet concentration feature list - 52th item.
150. Packet concentration feature list - 53th item.

Figure 8.16: The figure shows the feature importance score for all 150 features in order. The
table gives the description for the 20 least important features.

8.14.2 Confusion matrix for closed-world simulated attack on Tor.

Figure 8.17 shows the confusion matrix in our closed-world scenario, that is, it shows the 49
misclassifications (out of 550). We see that some persistent misclassification patterns of web
pages appear, for example web page 54 is classified correctly four times but is misclassified as
web page 0 six times. The misclassification rate in figure 8.17 is 0.09 but this is the average
error rate across all web pages.

– 186 of 187 –

D3.1 - DESIGN, MODELLING AND ANALYSIS

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

Predicted

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

A
ct

ua
l

Figure 8.17: Confusion matrix for closed-world attack on Tor using DSNorm. F1 score = 0.913,
Accuracy: 0.915, 550 items.

8.14.3 Good vs. bad fingerprints

Figure 8.18 shows the 50 fingerprints that cause the most misclassifications, and also shows for
those same fingerprints the number of correct classifications they make. As we can see nearly
all “bad” fingerprints actually contribute to many correct classifications.

0 10 20 30 40 50
Fingerprints

0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f

cl
a
ss

if
ic

a
ti

o
n
s

co
n
tr

ib
u
te

d
 t

o

misclassification
correct classification

Figure 8.18: The fingerprints that lead to the most misclassifications and the “good” classifica-
tions they contribute to. Training on 2000 unmonitored pages and testing on 10000 unmonitored
pages with k=3.

– 187 of 187 –

	Executive Summary
	Preface to Deliverable D3.1
	A brief introduction to mix networking
	Outline of the deliverable
	WP3 objectives and mapping to D3.1 deliverable

	I Existing mix and shuffle protocols
	 A Survey of Anonymous Communication Protocols for Messaging

	II Initial design options for mix-nets
	 Efficient Culpably Sound NIZK Shuffle Argument without Random Oracles
	 Prover-Efficient Commit-And-Prove Zero-Knowledge SNARKs

	III Definitions of privacy
	 AWARE - Anonymization With guaranteed privacy

