
Benjamin Weggenmann—Ed. (sap)
Daniel Bernau (sap)

Interim Report
Deliverable D6.1

December 15, 2017
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

Ref. Ares(2017)6175180 - 15/12/2017

http://www.panoramix-project.eu

Revision History

Revision Date Author(s) Description

0.1 2017-06-20 BW (SAP) Initial draft

0.2 2017-07-07 BW (SAP) Updated use case, requirements

0.3 2017-07-09 DB (SAP) Updated use case

0.4 2017-07-14 DB (SAP) Initial design

0.5 2017-07-20 DB (SAP) Requirements coverage and conclusion

0.6 2017-08-03 BW (SAP) Internal review

0.7 2017-08-19 VM (UCL) Peer review

0.8 2017-08-21 BW (SAP) Revision after peer review

0.9 2017-08-28 MW (UEDIN) Final review

1.0 2017-08-31 MW (UEDIN) Final version submitted to the EC

1.1 2017-11-23 BW (SAP) Server and visualization class diagrams

1.2 2017-11-29 DB (SAP) Use case and client class diagrams

1.3 2017-12-06 BW (SAP) Prepare for external review

1.4 2017-12-14 MZ (UT) External review

1.5 2017-12-14 BW (SAP) Revision after review

1.6 2017-12-15 MW (UEDIN) Final review

1.7 2017-12-15 MW (UEDIN) Submission to the EC

Executive Summary

This interim report documents the work performed in the first and second year in work package
6. The goal of WP6 is to produce a prototype that demonstrates the use and benefits of privacy-
enhancing techniques, particularly mix networks and differential privacy, in a representative
big data scenario. The report gives a detailed description of the illustrated use case, and
encompasses the requirements analysis (task 6.1) as well as the initial design (task 6.2) of the
prototype.

The specific use case demonstrated in WP6 will focus on taxi trip data which is sent from sim-
ulated taxis over the mix network to a central aggregation server. The data will be anonymized
by the taxis, i.e. directly at the data source, before its transmission. This specific scenario
provides a highly illustrative example of a generic data collection scenario where sensitive data
should be collected in a privacy-preserving manner, requiring privacy-protection for both the
transmission metadata and the actual data values themselves. In the demonstrator, we protect
the metadata such as source network address and timestamps using the Panoramix mix net-
work. On the other hand, we protect the taxi trip data (pickup and drop-off locations) using
geo-indistinguishability, a variant of differential privacy. Finally, the demonstrator provides a
web interface and web service to visualize the thusly aggregated data to a data analyst.

For the requirements analysis, we extract requirements based on the use case outlined above.
We derive functional requirements from the involved actors and their actions, and specify further
non-functional requirements, particularly regarding performance and privacy. Based on the
formulated requirements, we devise the initial design of our demonstrator. We divided the
demonstrator into three main components: the client that simulates the individual taxis that
send their location data over the mix-net, the server that collects the location data and stores it
in a database, and a visualization component that provides the aggregated data to the analyst.
To further concretize the design of these components, we provide class diagrams and descriptions
of the corresponding classes and their methods.

Contents

Executive Summary 5

1 Introduction 9
1.1 Scope and Purpose of Document . 9
1.2 Relation to other Tasks and Deliverables . 10

2 Use Case Description 11
2.1 Overall Goals . 11
2.2 Identification of Frequent Taxi Pickup/Drop-Off Locations 12

3 Requirements Analysis 15
3.1 Requirements from Actors and Actions . 15
3.2 Other Requirements . 16

4 Initial System Design and Implementation 19
4.1 System Architecture . 19
4.2 Components . 20

4.2.1 Client Adapter . 20
4.2.2 Server Adapter . 21
4.2.3 Visualization . 22

4.3 Designated Classes and Methods . 22
4.3.1 Client Adapter . 23
4.3.2 Server Adapter . 25
4.3.3 Visualization . 26

4.4 Use Case Interaction . 27
4.5 Coverage of Requirements . 27

5 Conclusion 31

D6.1 - INTERIM REPORT

– 8 of 31 –

D6.1 - INTERIM REPORT

1. Introduction

The central objective of PANORAMIX is to design and develop a multipurpose infrastructure
for privacy-preserving communications based on mix networks (mix-nets) and its integration
into high-value applications that can be exploited by European businesses. Mix-nets protect
not only the content of communications from third parties, but also obscure communication
meta-data such as the exact identity of the senders or receivers of messages, through the use of
cryptographic relays. Consequently, mix-nets are absolutely necessary for implementing strong
privacy-preserving systems and protocols.

The goal of work package 6 is to demonstrate the use of mix-nets in one of these high-value
applications: We want to demonstrate the use of mix-nets and differential privacy for privacy-
aware data processing in the cloud. In this scenario, protecting the identity of data owners that
submit data to the cloud is key to elicit truthful data (e.g. in surveys) and mitigate concerns
against participation. As we will outline in higher detail, the selected use-case is involving data
on taxi cruises. Thus, our objective is to support private gathering of data from the taxi sensors
to the privacy-preserving compilation of real-time traffic maps or other smart city big data with
about 1M-5M updates daily.

1.1 Scope and Purpose of Document

This deliverable covers the advancements during the first and second year of work package 6
(WP6). It describes the results of the requirements analysis and outlines the initial design uti-
lized to start the implementation of our use case demonstrator. More specifically, it encompasses
the following tasks from WP6:

Task 6.1 (Requirements analysis): The scenario is going to be based on a large cloud
provider’s infrastructure. The cloud provider hosts data and application for a large vari-
ety of customers with mission-critical business applications. The customers are obviously
highly reluctant to reveal data. Hence, we apply mix-nets and differential privacy in order
to enforce data protection. The aggregate data can be used as an additional business case
for the cloud provider who can provide benchmarking and related business services to his
customers. We will analyse the requirements with use case-specific industry experts.

Task 6.2 (System design and implementation): We will select the appropriate mecha-
nism from WP3 for differential privacy and apply them either to the database client
or database management system. We will use a highly scalable in-memory system in
order to address the requirements of today’s cloud infrastructure.

According to these tasks, we have performed the following activities:

1. We have selected the specific use case to be demonstrated by our WP6 prototype: The
goal is to privately collect and analyze vehicle location data in the cloud. The data owners
(i.e. customers) are represented by several vehicles, who send their position data over the
Panoramix mix-net to a cloud database for aggregation. After enough data is collected, a
data analyst can perform a privacy-preserving visual analysis of the thus acquired data.

– 9 of 31 –

D6.1 - INTERIM REPORT

While the mix-net provides anonymity for the data owners in terms of network routing,
we will apply differential privacy locally at the data source (i.e. customer) to protect the
data even against a malicious (honest-but-curious) database operator or data curator.

2. From the selected use case, we have inferred and formulated further concrete requirements
for the demonstrator. Based on the use case and requirements, we have devised the initial
design and architecture for the demonstrator.

3. We have started the implementation of the prototype of the WP6 demonstrator, based
on the taxi data use case as detailed in this deliverable. It currently provides offline func-
tionality (i.e. with static data), supports visualization for the data analyst, and includes
a differential privacy mechanism for location data perturbation at the data source.

1.2 Relation to other Tasks and Deliverables

In the third year of PANORAMIX, we will complete our demonstrator and integrate it with the
Panoramix mix-net (task 6.3), which is the main outcome of WP4. Furthermore, we will evaluate
the performance, usability, anonymity, data confidentiality, and accuracy of the final prototype
(task 6.4). This will help future commercially ready systems to tune their parameters. We will
summarize the results of the validation and testing, including lessons learned, in deliverable 6.2,
which will provide guidance to future adopters of the system.

– 10 of 31 –

D6.1 - INTERIM REPORT

2. Use Case Description

As part of the PANORAMIX project, SAP is primarily working on the definition, implementa-
tion and validation of a use case which relates to a company transitioning its data and business
operations into the cloud. An important driver for the cloud business is big data, where large
amounts of information are aggregated and analyzed in order to extract value and provide new
insights from the processed data.

The demand for data, however, is often faced with the data owners’ reluctance to give out
their data due to privacy reasons. Depending on the legislation, privacy regulations (such as the
GDPR) might further prevent sensitive data from being shared or analyzed. A PANORAMIX
goal is to provide European companies with tools to improve their business while protecting
their own and their customers’ privacy. To this end, we want to apply technical anonymization
measures in order to convince data owners to share their data and to fulfil the necessary legal
requirements. Anonymization could allow our customers to leverage client data that would
previously have been unavailable for further analysis due to privacy concerns. This could give
our customers better insights into their business or other activities.

2.1 Overall Goals

In work package 6, we want to demonstrate the use and advantages of the Panoramix mix
network in a collaborative (SaaS) application. Such applications typically collect data (e.g.
survey answers, sensor data from IoT devices) from a set of predefined (simulated) clients and
aggregate those in a database. Due to the sensitivity of the data (e.g. health, religion, business
secrets, etc.) it needs to be strongly protected. Still, we want to perform the typical big data
type of aggregate analysis on them with reasonable accuracy. The overall objective of WP6 is
to equip the database with the necessary mechanisms and connect it to the mix network.

We have identified several stakeholders at SAP whose use cases match this big data scenario
where data from multiple sources is aggregated in a database in order to be analyzed. Among
others, these include

• anomaly detection for enterprise systems (such as SAP Enterprise Threat Detection),

• evaluation of vehicle telematics data such as position for finding frequent routes, and

• evaluation of customer feedback in surveys or on social media.

In these applications, it is often required to incentivize data owners (i.e. customers) to share
sensitive data with data analysts (i.e. service providers) for the sake of enabling new business
models. For example, customers of a cloud service provider might be asked to provide feedback
on the cloud service provider and may be reluctant to provide negative feedback, since they are
dependent on the long-term business relationship.

Another example is benchmarking between multiple data owners, which would potentially
provide beneficial performance insights, but could also be abused by competitors. Anonymity
removes the link between contributed data and the corresponding data owner. Hence it encour-
ages reporting, free from fear of retaliation. Still, in certain situations like an outstanding small

– 11 of 31 –

D6.1 - INTERIM REPORT

or large company the data values themselves may reveal the data owner. Hence, we also want
data confidentiality in order to protect them as well. Last but not least, we need performance
to ensure scaling to the large volumes in a big data cloud scenario.

We have already previously identified the above overall goals anonymity, data confidentiality
and performance for our generic big data scenario. In the following section, we present a specific
scenario that is illustrated in our WP6 demonstrator. We will then analyse its requirements in
chapter 3 and describe the initial design of the prototype in chapter 4.

2.2 Identification of Frequent Taxi Pickup/Drop-Off Locations

In PANORAMIX, we will focus on the evaluation of position data from vehicles. The decision
to focus on this use case was made as the underlying business logic is already mature and thus
ensures a stable basis for research. Furthermore, stake holder interviews convinced us that
this scenario best integrates scale, privacy and business aspects. The scenario is based on data
collected from a fleet of taxis in real time. The data contains taxi trip information (e.g. pick-up
locations and drop-off locations). The location data is then collected in a database for further
analysis. While the data has the potential to realize efficiency gains through real time fleet
management and planning, as well as insights through periodic data mining, it is obvious that
passengers face a high re-identification risk. Consequently, we want to protect both the identity
of the taxis by hiding the source of the collected location (privacy on the network level), and
the identity of the passengers by anonymizing the exact locations (privacy on the data level).
Finally, a data analyst can analyze the collected and anonymized data, for example, to find
the most frequent pickup/drop-off locations (hot spots). The insights on the identified hotspots
could be used by the taxi company to improve their service by providing more taxis in those
highly frequented areas in (almost) real time without the previous inherent risk of violating
customers’ privacy and re-identification.

While the illustrated use case is built around taxi location data, it should serve as a generic
example for a very general scenario that can provide value for many business cases: SAP
previously offered a tool called “SAP Digital Consumer Insight”, which basically provided data
about pedestrian traffic around businesses (or any other location). It allows businesses to benefit
from knowing about consumer demographics and behavior at a given location or point of interest.
The insights provided allow users to run better marketing campaigns, improve advertising and
services, scout locations and more. Moreover, from a technical point of view, the illustrated
use case easily generalizes to many IoT scenarios where sensitive data from multiple clients is
collected and aggregated in a central database.

Actors We have identified three actors in the illustrated use case:

• Data Owner (“Client”): The taxis that participate in the scenario. Each taxi submits its
current location on each passenger pickup or drop-off.

• Data Analyst (“Analyst”): The analyst whose task it is to identify the most frequent
pickup or drop-off locations. He/she is, for instance, acting on behalf of the taxi company
that wants to improve their service, or advertising agency that wants to determine where
to best place their ads.

• Data Curator (“Server”): The data curator receives and stores the locations from the
taxis in a central database. We currently only assume a subordinate role for the data
curator in our scenario.

Flow of Events The flow of events is as follows:

– 12 of 31 –

D6.1 - INTERIM REPORT

1. Collection: For each passenger pickup or drop-off, the taxi sends its current location to
the server.

2. Aggregation: When the server receives a location from a taxi, it stores the data in a
central database.

3. Analysis: Once sufficient location data has been collected, the analyst can trigger the
analysis to identify the most frequent pickup/drop-off locations.

– 13 of 31 –

D6.1 - INTERIM REPORT

– 14 of 31 –

D6.1 - INTERIM REPORT

3. Requirements Analysis

In this chapter, we will analyze the requirements for our demonstrator based on the use case
described in section 2.2. Before we start with the actual analysis, we give a description of the
requirements analysis approach we have pursued.

Requirements Analysis Approach

1. We first analyze the underlying use case outlined in section 2.2. Our main focus is on
deriving functional requirements from the actors and the actions they need to perform. If
there are additional constraints or prerequisites, we will record them accordingly.

2. We analyze and specify any other overall requirements that might be important for the
demonstrator.

3.1 Requirements from Actors and Actions

The use case includes several actors with different goals and desired activities. We will describe
them here and subsequently specify the resulting requirements, which are listed in table 3.1.

Client Each client (i.e. simulated taxi) needs to submit their location to the system for collec-
tion and further analysis. Therefore, the system must provide such functionality. Further-
more, the clients wish to protect their own and their passengers’ privacy, so we demand
corresponding measures to prevent their re-identification. Note that the latter is in line
with the overall objectives of WP6.

Server The aggregation server (curator) will take the incoming messages with the taxi locations
and store them in the database for further processing.

Analyst The analyst wants to query the aggregated location data from the database and
visualize it to find the most frequented areas (“hotspots”), that is, where most passengers
were picked up or dropped off.

Req. ID Title Description Motivation

CLI-R1 Submit
Location

Clients MUST be able to submit their location
coordinates to the system.

Functionality

CLI-R2 Network
Privacy

The system MUST provide measures to prevent
the re-identification of the taxis based on their
network address.

Anonymity

CLI-R3 Data
Privacy

The system MUST NOT reveal exact routes in
order to protect passengers’ privacy and prevent
their re-identification, as well as their origin and
destination.

Confidentiality

– 15 of 31 –

D6.1 - INTERIM REPORT

SRV-R1 Aggregate
Data

Upon receipt of new location data from the mix-
net, the system MUST store the data on a cen-
tral aggregation server.

Functionality

ANA-R1 Visualize
Hotspots

The system MUST provide a graphical user in-
terface for the analyst to visualize the aggre-
gated data.

Functionality

ANA-R2 Real-
Time
Analysis

The average latency between a client sending a
location and the analyst being able to include
the location in the analysis SHOULD be at most
15 minutes.

Performance

Table 3.1: Requirements derived from actors and their activ-
ities.

3.2 Other Requirements

Apart from the requirements that we could directly derive from the actors and their activities,
we identified several other requirements that are important for a data collection system such as
required in our use case. We group them in different categories as follows.

Anonymity and Data Confidentiality In addition to the privacy needs of the individual
actors, we want to specify some overall privacy and security requirements. They are listed in
table 3.2.

Req. ID Title Description

PRI-R1 Network
Privacy

The server (data curator) MUST NOT learn the network
source of the collected data. To this end, the client data
WILL be routed through a mix-net to the aggregation
server.

PRI-R2 Collusion
Resistance

The mix-net SHOULD tolerate at least two colluding peers
(mix-net servers).

PRI-R3 End-to-End
Encryption

The data sent by the clients MUST BE encrypted end-to-
end and between clients and the aggregation server.

PRI-R4 Data
Privacy

The system SHOULD provide data confidentiality to en-
sure anonymity at the data-level, in order to prevent re-
identification attacks on the taxis as well as the passengers.
To this end, the system WILL use suitable differential pri-
vacy mechanisms.

PRI-R5 Untrusted
Server

The system SHOULD provide anonymity and data confiden-
tiality even in the case of an untrusted server (data curator).

Table 3.2: Additional privacy requirements.

Performance For any system involved in processing data at scale (i.e. “big data“), perfor-
mance is a critical measure. This applies in particular in IoT scenarios such as our use case,
where data is collected from a huge number of devices. Due to the large amount of arising
data, it needs to be processed efficiently, which is why we formulate the following additional

– 16 of 31 –

D6.1 - INTERIM REPORT

performance requirements in table 3.3.

Req. ID Title Description

PERF-R1 Mix-Net
Through-
put

The system SHOULD support a message throughput of at
least one million messages per day.

PERF-R2 Mix-Net
Latency

The average latency between the client sending a location
and the aggregation server receiving the location SHOULD
be at most 10 minutes.

PERF-R3 Database
Efficiency

Queries on the collected location data SHOULD be per-
formed efficiently, that is, within less than one minute.

PERF-R4 Performance
Evaluation

In anticipation of task 6.4, we need to evaluate the perfor-
mance of the system. Therefore, the system MUST support
the measurement of throughput and latency of messages.

Table 3.3: Additional performance requirements.

– 17 of 31 –

D6.1 - INTERIM REPORT

– 18 of 31 –

D6.1 - INTERIM REPORT

4. Initial System Design and Imple-
mentation

The prototype focuses on simulating the combination of local differential privacy and mix-
nets for productive scenario. The simulation has the goal to resemble an end-to-end scenario,
where both the original data as well as the sender remain hidden. It is built using an internal
Java class implementing the geo-indistinguishability mechanism for a coordinate input and the
Panoramix mix network software. The simulation should also be end-to-end encrypted to ensure
data cannot be leaked (e.g. through a man-in-the-middle attack).

While the data analyst (i.e. SAP) wants to collect data for statistical analysis of user behav-
ior, the user (i.e. data owner) does not want to reveal any information that could potentially be
traced back. Both these needs must be respected according to requirements CLI-R2, CLI-R3
and ANA-R1 (cf. section 3.1).

The use-case has specific requirements that the anonymization infrastructure needs to ful-
fill to suit productive use. Because the scenario is about many independent IoT-devices (the
telematics units in the taxis) whose data should be collected, efficiency is an important factor.
The infrastructure should at least be able to simulate the New York city taxi data in real time,
equaling approximately one million messages per day (PERF-R1 in section 3.2).1 However, to
be finally considered efficient the end-to-end throughput needs to be quick as well (PERF-R2).
Also, a high level of both data and origin privacy (i.e. privacy of the data source) should be
granted. These metrics will not yet be evaluated in this deliverable. The simulation should offer
an easy way to test the existing components for geo-indistinguishability and mixing end-to-end,
meaning that it needs to cover everything from the client sending data to the analysis of the
received data on the server. Both the client and the server component are written in Java.

4.1 System Architecture

The WP6 prototype is depicted in figure 4.1 and covers a simple end-to-end scenario with
multiple clients.

Figure 4.1: Simulation set-up and dataflow

Here, only two clients are used to allocate more resources to the mix network. Each client
reads data from a data source, adds noise to and sends the anonymized data to the mix network.
The mix network then processes the message by decrypting it layer by layer. Afterwards, the

1https://ny.curbed.com/2017/1/17/14296892/yellow-taxi-nyc-uber-lyft-via-numbers reports about
650 thousand trips per day, which amounts to 1.3 million messages per day.

– 19 of 31 –

https://ny.curbed.com/2017/1/17/14296892/yellow-taxi-nyc-uber-lyft-via-numbers

D6.1 - INTERIM REPORT

server collects the message from the mix network and stores it in a local database. The collected
data can then be queried to be used for analytic purposes.

Panoramix Mix-net To ensure sufficient origin privacy, three peers own an endpoint in the
basic configuration (see requirement PRI-R2 in section 3.2). This provides protection against
collusion attacks with two peers. Both clients and the server run on the host machine, while
the Panoramix mix network controller and the peers run in separate virtual machines.

Since data is sent constantly to the mix network in the given scenario, an open endpoint
is needed at all time. To ensure this, every virtual machine runs multiple peers, with each
participating in a different endpoint.

Panoramix offers simple REST APIs, so both the simulated client and the server only need
to call those interfaces via HTTP. Thus, there are no specific restrictions for the client adapter
and the server adapter. However, as the mix network only encrypts the route from the client
to the endpoint outbox which can be retrieved by everyone, an additional encryption layer is
needed. For this simulation, the asymmetric RSA encryption scheme was chosen. As Panoramix
is currently unidirectional, encryption systems which require a connection between client and
server (e.g. TLS) cannot be used.

Data Objects and Representation The collected data consists of the taxi pickup and drop-
off locations. In general, we represent location information as pairs of longitude and latitude.
Therefore, the database contains a table with longitude and latitude columns where the server
stores the locations it receives from the mix network.

For the actual transmission of the location data from the clients over the mix-net to the
server, the clients encode the longitude and latitude tuples as comma-separated strings. Each
location string is then encrypted with the public key of the server as to provide end-to-end
confidentiality, and the ciphertexts are then transmitted over the mix-net to the server for
storage in the database.

In addition to the location data itself, the clients optionally include a timestamp of the
current time in each message when it is sent. This will allow us to perform performance
measurements such as mix-net latency in the final evaluation of the demonstrator (Task 6.4).

4.2 Components

In this section, we describe our prototype components in more detail. Figure 4.2 gives an
overview of the components and how they interact. Apart from the Panoramix mix-net and its
provided local agent (yellow), our prototype consists of three main components:

1. a client adapter that anonymizes and encrypts the location data, then forwards it to the
local agent,

2. a server adapter that collects and decrypts the data from the mix-net and stores it in a
database, and

3. a visualization component with a web interface and service that is responsible for visual-
izing the aggregated data for analysis.

4.2.1 Client Adapter

The client adapter has the task to read data from a specific source, anonymize it, and pass it
to the local agent as depicted by figure 4.3.

As the prototype uses the New York City taxi data set as test data, the records must be
read from a data source. With the public data being offered as .csv files, the easiest way

– 20 of 31 –

D6.1 - INTERIM REPORT

Taxi (Client) Panoramix Mix-net Server

Client Adapter

• Anonymization

• RSA Encryption

Local Agent

• Prepare Message

• Send to Mix-net

Server Adapter

• Data Collection

• RSA Decryption

Visualization

• Heatmaps

• Analysis

Peers

• Mixing and Routing

Inbox Outbox

Database

Figure 4.2: Overview of components in our prototype.

Figure 4.3: Client architecture

to get the data is reading the file row by row. Also, this format is quite lean and does not
require any additional software. A database connection can be integrated in later if this is
needed for further simulations. The columns representing the latitude and longitude from the
read data are anonymized while all other attributes are pruned. Anonymization is realized by
instantiating a coordinate object from the coordinates and passing this object to an instanti-
ated geo-indistinguishability class. This class executes the mechanism according to the privacy
strength and radius set in the configuration. Afterwards, the data can either be written into
another csv file, which can be useful to quickly visualize the mechanism or to check whether the
parameters are set correctly, or sent to a Panoramix mix network by using the HTTP API of
the local agent. If sent to the mix network, the message content is encrypted before using the
public RSA server key. In the prototype, only the mix network output is used. As the procedure
to start the agent depends on the Python environment, it currently has to be started manually
before the client sends messages. To allow measurements of the latency of the mix network, a
column containing the current time can optionally be added before sending the message to the
local agent. This can be used by the server to measure the delay of each message.

There is also a class that starts multiple clients as threads to simulate multiple taxis with
each running independently.

4.2.2 Server Adapter

The server adapter as depicted in figure 4.4 collects the anonymized data and enables analysis
on this data.

As the Panoramix controller currently does not feature any push-functionality, the server
must poll regularly to collect messages. In the prototype, the server requests a list of all
processed endpoints. If there are new endpoints in the reported list, the server will get those
endpoints messages. The messages are then decrypted using the private RSA server key and the
location data is inserted into a database table specified in a properties file. In order to evaluate
performance, the server can evaluate the latency and throughput by referring to the timestamps
that are optionally included by the client in each message, and by counting the total number

– 21 of 31 –

D6.1 - INTERIM REPORT

Figure 4.4: Server architecture

of incoming messages per second. As the data is sent as comma separated values, the database
table meta data is used to cast the values to the correct type before insertion, meaning that
the order the data is sent by the client has necessarily to be the same order the database table
columns have. Since we want to be able to analyze the data efficiently (cf. ANA-R2, PERF-R3),
we use an in-memory database that can handle large volumes of data efficiently and provides
fast query execution.

4.2.3 Visualization

To visualize the data and simulate the analysis stage, we provide a web interface (frontend)
and a corresponding web service (backend, cf. figure 4.5) to access the aggregated data. The
web interface provides a map centered around the city of New York, where the taxi trip data
has been collected. By dragging or editing the bounds of a rectangle displayed on the map, the
analyst can select the area being analyzed (cf. figure 4.6).

Figure 4.5: Visualization backend

For this area, the web service then generates heatmaps by getting the coordinates from the
database and clustering them in a two-dimensional array where each field equals 1 pixel in the
output image. When the aggregation is finished, the interface requests the selected cell size of
the clusters. This option is included because especially with a relatively low density of points,
bigger clusters are needed to improve visibility as shown in figure 4.7.

Depending on the selected cell size, the aggregation is re-calculated on bigger clusters before
the final heatmap image is created, rendered and responded to the client. The color of a certain
cell is based on the relative position of its value between two deciles. Figure 4.8 illustrates
exemplary results.

4.3 Designated Classes and Methods

This section presents the classes that make up each component of the demonstrator. For each
class, we list and describe its methods to explain its functionality.

Note that the current design reflects design decisions that have been made to work with the
Panoramix minimum viable product (MVP) version that was available in Y2. Since we intend

– 22 of 31 –

D6.1 - INTERIM REPORT

Figure 4.6: Selecting area-of-interest on the map.

Figure 4.7: Visibility of data points for different cluster sizes

to use a recent version of the Panoramix mix-net in the final version of our demonstrator, we
will adapt our design to match new releases of the mix-net framework as needed.

4.3.1 Client Adapter

The client adapter consists of classes that provide encryption and connectivity to the mix-net.
Furthermore, the client provides functionality for simulating the taxis with historical taxi trip
data.

Encryptor In order to provide end-to-end confidentiality between the taxis and the server,
the clients encrypt their locations before sending them through the mix-net. On the client-side,
the message is encrypted by the Encryptor class. For encryption of outgoing messages the
server’s public key is used.

getInstance Encryptor is designed as a singleton class and consequently returns the
reference to the global class instance through this method.

encrypt Encrypts an outgoing message with the server’s public key.

MixnetAdapter To actually send messages to a recipient over to the mixnet clients need
to instantiate a connection to the mixnet. The MixnetAdapter accepts latitude and longitude
data from a client, encrypts the data and hands over to the mixnet.

– 23 of 31 –

D6.1 - INTERIM REPORT

Figure 4.8: Exemplary results.

<<Java Class>>

Encryptor

Encryptor()
getInstance():Encryptor
encrypt(String):String

<<Java Class>>

MixnetAdapter

MixnetAdapter(String,String)
write(String[]):void
close():void

<<Java Class>>

DiffPrivClient

DiffPrivClient(int)
addGeoNoise(GeoNoiseGenerator,String[],int,int):void
run():void
main(String[]):void

<<Java Class>>

CabLister

CabLister()
main(String[]):void-instance

0..1

Figure 4.9: Classes providing the client component.

write Longitude and latitude data is transformed into a message and the message is en-
crypted by Encryptor. The encrypted message is posted to the mixnet.

close In case an adapter becomes obsolete due to a change in recipients the local mixnet
agent is killed.

DiffPrivClient As we do have historical data from actual taxis we need to simulate the
data flow, anonymization and hand-over to the mixnet. For this the DiffPrivClient class is
simulating a taxi by reading data from a prepared csv file and applying anonymization based
on differential privacy to the data. Anonymized data it is handed over to the MixnetAdapter.

addGeoNoise Anonymizes original longitude and latitude with a differentially private
noise generator.

CabLister Do simulate scenarios with varying configurations of clients and data per client
the CabLister class allows to split and distribute data to n DiffPrivClient instances. Con-
sequently this class represents a critical component for performance evaluation.

– 24 of 31 –

D6.1 - INTERIM REPORT

4.3.2 Server Adapter

The server adapter consists of classes that collect and decrypt the incoming taxi data from the
mix-net, and store the locations in a connected database.

<<Java Class>>

EndpointMessageData

EndpointMessageData()

getBox():box

getMessageHash():String

getSender():String

getText():String

getEndpoint_id():String

getSerial():int

getRecipient():String

getId():int

<<Java Class>>

Decryptor

Decryptor()

getInstance():Decryptor

decrypt(String):String

<<Java Class>>

EndpointMessage

EndpointMessage()

getData():EndpointMessageData

<<Java Class>>

MessageCollector

MessageCollector(DataSource)

constructPreparedQueryString(String):void

getCollectableEndpoints():List<String>

getEndpointMessages(String):List<EndpointMessage>

saveRelevantMessages(List<EndpointMessage>):int

run():void

-data 0..1

-instance

0..1

Figure 4.10: Classes in the server adapter component.

MessageCollector The MessageCollector polls the mix-net for incoming messages. If new
messages are received, they will be decrypted and the location data will be stored in the
database.

constructPreparedQueryString Helper method to construct database insertion queries.

getCollectableEndpoints Poll mix-net for yet unprocessed endpoints where new mes-
sages can be collected.

getEndpointMessages Query and fetch new messages from a collectable endpoint.

saveRelevantMessages Decrypt newly collected messages and insert the location in-
formation into the database. Optionally also compute latency from timestamps when
performance measurements should be carried out.

run Create and start a thread that performs the message collection in the background.

Decryptor In order to provide end-to-end confidentiality between the taxis and the server,
the clients encrypt their locations before sending them through the mix-net. On the server-side,
the messages need to be decrypted; this is implemented in the Decryptor class which uses the
server’s private key to decrypt incoming messages.

getInstance Since Decryptor has been designed as a singleton class, this method returns
the one global instance of the class.

decrypt Decrypt a given message with the server’s private key.

– 25 of 31 –

D6.1 - INTERIM REPORT

EndpointMessage Wrapper class for mix-net messages.

getData Returns the EndpointMessageData object which contains the actual message.

EndpointMessageData Data class representing a mix-net message. Allows easy retrieval of
the message contents and its meta-data.

getBox Return the type of box (INBOX, OUTBOX, or PROCESSBOX) where this mes-
sage is from.

getMessageHash Return the hash of the message.

getSender Return the endpoint of the sender.

getText Return the message contents.

getEndpoint Return the endpoint this message was sent to.

getSerial Return the serial number of the message.

getRecipient Return the recipient name.

getId Return the message ID.

4.3.3 Visualization

The visualization component consists of a web service that provides visualizations of the ag-
gregated locations in the form of heatmaps. These heatmaps are displayed to the analyst in a
complementing web interface that connects to the web service to request the heatmap images.

<<Java Class>>

GeoImageRenderer

GeoImageRenderer()

renderImage(int[][],int):BufferedImage

<<Java Class>>

GeoAggregator

GeoAggregator()

createInitialAggregation(double,double,double,double,int,DataSource):int[][]

reaggregate(int[][],int):int[][]

<<Java Class>>

HeatMapWebService

HeatMapWebService()

init():void

createHeatmap(String,String,String,String):void

getHeatmapImage(int):Response

preDestroy():void

<<Java Class>>

Heatmap

Heatmap(double,double,double,double,DataSource)

adjustBounds():void

createImages():void

getImage(int):BufferedImage

-currentHeatmap

0..1

Figure 4.11: Classes providing the user interface.

HeatmapWebService The HeatmapWebService is the backend for the visualization compo-
nent. The service connects to the database to access the collected location data and produces
heatmaps for the region as requested by the analyst through the web interface.

init Setup connection to the database where the locations can be retrieved.

– 26 of 31 –

D6.1 - INTERIM REPORT

createHeatmap Create a (numerical) heatmap of the collected locations within the spec-
ified longitude and latitude boundaries.

getHeatmapImage Return an image with the specified cell size that visualizes the created
heatmap for display in the browser.

Heatmap The Heatmap class provides a numerical representation for the aggregated location
data in a certain area that is specified by longitude and latitude bounds. Furthermore, the class
provides methods to produce actual heatmap images for this covered area.

Heatmap Uses GeoAggregator to construct a new (numerical) heatmap with location
data from the specified datasource for the specified longitude and latitude boundaries.

adjustBounds Adjust longitude and latitude bounds to match image resolution and
heatmap cell size.

createImages Uses GeoImageRenderer to render the heatmap to images with different
cell sizes.

getImage Return the pre-rendered image of the specified resolution.

GeoAggregator The GeoAggregator retrieves and aggregates locations from the database
that fall within a certain area specified by longitude and latitude bounds.

createInitialAggregation Creates a new (numerical) heatmap by counting the number
of locations from the datasource that fall into each of the cells between the specified
longitude and latitude boundaries.

reaggregate Recalculate heatmap with a different cell size based on previous heatmap.

GeoImageRenderer The GeoImageRenderer computes heatmap images from the numerical
heatmaps. The images are served by the HeatmapWebService to the web interface.

renderImage Render a heatmap with the specified cell size (in pixels).

4.4 Use Case Interaction

To illustrate the connection of actors and components in the identified scenario we created
a use case diagram. The diagram depicted in figure 4.12 points out how Data Owner, Data
Analyst and Data Curator interact with Client Adapter, Server Adapter, Panoramix mix-net
and Visualization. As of the current requirements planning the components are mostly used
exclusively by one of the actors, with the Panoramix mix-net sitting in between Data Owner
and Data Curator.

4.5 Coverage of Requirements

Table 4.1 illustrates coverage of requirements from chapter 3 by the initial design depicted in
section 4.2.

Req. ID Title Component Realization

CLI-R1 Submit Location Client Adapter HTTP push to Local Agent

CLI-R2 Network Privacy Client Adapter,
Panoramix mix-net

Routing data through mix-net

– 27 of 31 –

D6.1 - INTERIM REPORT

CLI-R3 Data Privacy Client Adapter Perturbing data using differential
privacy

SRV-R1 Aggregate Data Server Adapter Message polling and insertion
into database

ANA-R1 Visualize Hotspots Visualization Generation of heatmaps

ANA-R2 Real-Time Analysis Server Adapter,
Panoramix mix-net

Storing data in an in-memory
database,
Efficient mix-net implementation
(deferred to mix-net developers)

PRI-R1 Network Privacy Panoramix mix-net Routing data through mix-net

PRI-R2 Collusion Resistance Panoramix mix-net Using three or more mix-net
servers

PRI-R3 End-to-End
Encryption

Client Adapter,
Server Adapter

Public-key encryption (RSA) be-
tween client and server

PRI-R4 Data Privacy Client Adapter Perturbing data using differential
privacy

PRI-R5 Untrusted Server Client Adapter,
Panoramix mix-net

Perturbation at the data source
(local differential privacy),
Routing data through mix-net

PERF-R1 Mix-Net Throughput Panoramix mix-net Efficient mix-net implementation
(deferred to mix-net developers)

PERF-R2 Mix-Net Latency Panoramix mix-net Efficient mix-net implementation
(deferred to mix-net developers)

PERF-R3 Database Efficiency Server Adapter Storing data in an in-memory
database

PERF-R4 Performance
Evaluation

Client Adapter,
Server Adapter

Inclusion of timestamps in sent
messages (only for evaluation)

Table 4.1: Mapping of Requirements to Components.

– 28 of 31 –

D6.1 - INTERIM REPORT

29.11.2017 use_cases.svg

file:///Users/d052098/git/PANORAMIX/D6.1%20Interim%20Report/fig/use_cases.svg 1/1

Data Owner

Data Analyst

Client Adapter

Anonymize Data

Hand over to mix-net

Encrypt Data

Server Adapter

Aggregate Data

Decrypt Data

Visualization

Visualize Hotspots

Panoramix mix-net

Send Data

Receive Data

Data Curator

« include »

« include »

« include »

« include »

Figure 4.12: Use Case Diagram

– 29 of 31 –

D6.1 - INTERIM REPORT

– 30 of 31 –

D6.1 - INTERIM REPORT

5. Conclusion

This report presented the identified PANORAMIX use case for end-to-end privacy, as well as
the requirements and initial design for the prototype of our use case demonstrator. The use case
addresses privacy-preserving data analytics based on IoT sensors deployed to taxis and a cloud
analytics provider, illustrating the requirement to protect both the transmission metadata and
the transmitted location data itself.

The scenario combines differentially private anonymization at the data source with mix
network protection for data transmission from the data source to the data processor. Based on
this scenario, an initial design was formulated. We concretized the design by providing class
diagrams and descriptions of the classes that constitute the components of the demonstrator.
We illustrated that this design addresses the identified requirements.

Upcoming activities will put this design into live and empirically evaluate certain require-
ments (e.g. performance) along the identified use case.

– 31 of 31 –

	Executive Summary
	Introduction
	Scope and Purpose of Document
	Relation to other Tasks and Deliverables

	Use Case Description
	Overall Goals
	Identification of Frequent Taxi Pickup/Drop-Off Locations

	Requirements Analysis
	Requirements from Actors and Actions
	Other Requirements

	Initial System Design and Implementation
	System Architecture
	Components
	Client Adapter
	Server Adapter
	Visualization

	Designated Classes and Methods
	Client Adapter
	Server Adapter
	Visualization

	Use Case Interaction
	Coverage of Requirements

	Conclusion

