
Rafael Galvez—Ed. (kul)
Dimitris Mitropoulos (grnet)
George Tsoukalas (grnet)
Panos Louridas (grnet)

Integrated System
Deliverable D4.3

January 31, 2018
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

Ref. Ares(2018)594525 - 31/01/2018

http://www.panoramix-project.eu

Revision History

Revision Date Author(s) Description

0.1 2017-11-29 RG (KUL) Proposed table of contents, Documentation ap-
pendices

0.2 2018-1-2 DM (GRNET) First draft of requirements

0.3 2018-1-11 DM (GRNET) Software architecture and Validation

0.4 2018-1-11 GT (GRNET) Elaborate on requirements per use case

0.5 2018-1-12 GT (GRNET) Future development notes

0.6 2018-1-15 RG (KUL) Introduction and Conclusion

0.7 2018-1-31 DM (GRNET) End-to-end testing

1.0 2018-1-31 MW (UEDIN) Final review and submission to the EC

Executive Summary

This deliverable describes the software package that has been used by partners to develop the
latest versions of their systems, being validated by the collaboration between the corresponding
teams and providing the implementation of all the requirements not addressed by D4.2.

The Final System has been designed in order to facilitate its deployment as a scalable and
robust Internet service whose functionality fulfils the goals of a privacy preserving anonymous
communication system ready to be used by clients in an easy and flexible way.

Future development will address any remaining issues that arise from the real world usage of
the Panoramix framework, effectively integrating mix-net functionality into applications with
no need for further documentation rather than the simplified one already provided.

Contents

Executive Summary 5

1 Introduction 9

2 Fulfilled requirements per use case 11
2.1 General requirements for all use-cases . 11

2.1.1 Peer authentication and Public Key Infrastructure 11
2.1.2 Usable and Secure Mix-contributor Configuration and Audit-Log for Ad-

ministrators . 12
2.1.3 Integration Between a Mix-net Implementation and the PANORAMIX

Controller . 13
2.2 Use-case Specific Requirements . 13

2.2.1 E-voting . 13
2.2.2 Messaging . 13

3 Software architecture 15
3.1 Overview . 15
3.2 Basic Services . 15

3.2.1 Registration Service . 15
3.2.2 Configuration Service . 16
3.2.3 Messaging Service . 16

3.3 Architecture . 17
3.3.1 Basic Components . 17
3.3.2 Sending and Receiving Messages . 17
3.3.3 Mix-net Setup . 18
3.3.4 A mix-net Setup Scenario . 19

3.4 Future development . 20

4 Validation of the functionality 21
4.1 Integrated Mix-nets . 21
4.2 Testing End-to-End . 23
4.3 Demonstrators . 24
4.4 Continous Integration Services . 24
4.5 Future Scenario for Messaging Integration . 25

5 Conclusion 27

A Documentation for System Administrators 29
A.1 Coordinator . 29
A.2 Contributor . 30

B Documentation for Software Developers 33
B.1 Overview . 33
B.2 Negotiations and Consensus . 33

B.2.1 Initiate a negotiation . 33
B.2.2 Get negotiation details . 34
B.2.3 Contribute to negotiation . 34
B.2.4 List contributions to a negotiation . 35

B.3 Peers . 35
B.3.1 Create a Peer . 35
B.3.2 Get peer info . 36
B.3.3 List Peers . 36

B.4 Endpoints . 37
B.4.1 Create a peer endpoint . 37
B.4.2 Update an endpoint . 37
B.4.3 Get endpoint info . 38
B.4.4 List endpoints . 38

B.5 Messages . 38
B.5.1 Send a message to inbox/processbox . 38
B.5.2 List messages . 39

D4.3 - INTEGRATED SYSTEM

1. Introduction

This deliverable describes the Integrated System, which implements the remaining requirements
which were not addressed in the Minimum Viable Product. It constitutes a complete system
that has been shown to work with the three proposed use cases: the API is stable, the Software
architecture has proven to be useful for them to make use of the system functionality, and
the documentation annexed explains everything needed for the System Administrators and the
Software Developers to utilize the library.

By working together with the use case developers, the Integrated System has evolved towards an
easy to use and fully featured product that third parties with different aims can use seamlessly.
Furthermore, the latest developments in WP5 and WP7 already target this version of the library,
and the communication between both teams has enabled rapid and effective iterations of the
API and the helper tools.

The aim of the document is to detail how the implementation of the system fulfils all require-
ments needed by each use case (Chapter 2), how the software architecture implements them in
a flexible and easy to use manner (Chapter 3), and what has been the validation process of the
system (Chapter 4).

– 9 of 41 –

D4.3 - INTEGRATED SYSTEM

– 10 of 41 –

2. Fulfilled requirements per use case

In this section we describe the requirements that must be met in the context of panoramix.
We start with the general requirements that apply to all use-cases and then focus on specific
requirements per use-case.

2.1 General requirements for all use-cases

There are several requirements that are common for all the use cases of the project. Here, we
discuss these requirements in detail and highlight their role in relation to panoramix.

2.1.1 Peer authentication and Public Key Infrastructure

All security applications and specifically mix-net infrastructures must distribute trust among
different actors that are assumed to be independent.

The fundamental mechanism with which each of those actors can authenticate themselves and
participate into protocols is by having a public-private key pair. This key pair can be used by
the actor to sign information such as protocol requests and responses, and by anybody else to
encrypt information meant to be communicated to the actor.

The inherent public key infrastructure problem is how different actors know the public keys
amongst themselves. A typical implementation is to establish a central authority that will sign
certificates that maps public keys to application-specific roles and identities such as email or
names. However, the central authority becomes a central security and privacy point of failure,
and this has been proved in practice several times. A central authority is still supported by
panoramix, but we would like to add flexibility so that applications themselves may establish
the actor-to-key correspondence in a way that they know and guarantee is secure to their use-
case.

panoramix peer authentication offers peer-to-peer discovery of public keys, and through the
negotiation mechanism described later the mix network can establish consensus of the global
peer list. The mechanism to do that is through application-specific contacts. The basic trusted
information that human actors or trusted systems have before the establishment of a Public Key
Infrastructure (pki) provide the means to communicate privately and securely with each other.
Be it an email address, or a firewall-ed vpn connection, mediation through a third party, or
even a hand-to-hand exchange between administrators, trust is established by exchanging public
keys through an initially available communication channel. panoramix needs to facilitate this
exchange and key discovery through its architecture and apis.

D4.3 - INTEGRATED SYSTEM

2.1.2 Usable and Secure Mix-contributor Configuration and Audit-Log for
Administrators

Many security-critical applications and protocols, including mix-nets, distribute trust among
network actors that are considered independent and are secured in different administrative
domains. Nevertheless, these distributed actors need to collaborate in order to correctly execute
a protocol and the coordination between them and its security implications are often overlooked.

It is often assumed that certain consensus over technical details pre-exists. For example, what
software version is run, which cryptographic algorithms are used, what tuning parameters are
used to initialize software, what are the different actors, what kind of keys they possess, and
which are the actor’s network endpoints. This consensus is often naturally occurring among
stakeholders that are strongly interested in a specific application and its mix-net. However,
their strong stakeholder interest makes those actors well-known, prone to attacks, corruption
and / or coercion. Ideally, panoramix should offer an easy, yet trusted way for disinterested
parties to be able to participate.

There are several points to consider for this:

• Awareness of the consensus Human or automated actors must be able to review and
explicitly agree on the consensus. Having the consensus formed implicitly by central
authorities undermines their independence. Even software distribution authorities can
undermine independence.

• Usability It should not require an expert to navigate the configuration and the initial
consensus. It is expected that users will not understand all parameters, but they have
to be able to distinguish among different parameters and choices and be able to relay
information to expert consultants if they choose to do so.

• Auditability When considering that disinterested parties acquire responsibilities by being
an actor in a cryptographic protocol such as a mix-net, auditability becomes important.

Since the disinterested actor has, by definition, no natural knowledge of the process and ap-
plication environment, they will resist responsibilities in case they are manipulated by better
informed but malicious stakeholders.

This has been observed as a strong trend in the e-voting use-case experience. To counter-act
this trend, panoramix needs to offer:

1. A way to technically record the protocol requirements for each actor in the protocol so
that their responsibilities are strictly defined.

2. An audit log of all configuration parameters and actions by the actor and their software
installations. The audit log can be used by the actors themselves to review their own
security and to prove to investigating authorities that they did no wrong.

This is especially important if panoramix wants to encourage mix-net technology to be adopted
in an environment where responsibility for user privacy is being legislated as a core component of
the information technology industry For instance, the European Union General Data Protection
Regulation (gdpr) [1] replaces central certification authorities with self-assessment processes.
This shifts the weight of risk analysis and security responsibility to the individual organization.
panoramix tools are designed for increased transparency and control of technical parameters
and as such will be a valuable asset for meeting the regulation requirements.

– 12 of 41 –

D4.3 - INTEGRATED SYSTEM

2.1.3 Integration Between a Mix-net Implementation and the PANORAMIX
Controller

As discussed earlier, a unified software controller for authentication / pki, configuration, and
audit log management is an important contribution that panoramix can deliver to its users.

This common view, however, requires that different mix-nets can be plugged in and be con-
trolled through a modular interface. Hence, the panoramix controller software must provide
an interface so that different mix-nets can be integrated. At the very least, integration means a
module that encodes configuration parameters, actor roles, and can produce configuration files.
At best, integration could mean that the mix-net is controllable at runtime. The minimum
functionality is included in the Integrated System, and some control features are expected for
the final demonstrators.

2.2 Use-case Specific Requirements

In this section we describe the different requirements that are related to the use-cases of the
project, expanding on the requirements presented in D4.1 and D4.2 to include the specific
requirements met in this iteration.

2.2.1 E-voting

In the e-voting use-case we have identified the following requirements

• Trustees must be able to control the election procedure, including mixing. This
requires a usable and intuitive user interface that will present all decisions and actions in
a similar way so that the trustees can have sufficient overview themselves and not rely
on delegation to more technically trained operators. Usability will also make finer control
and overview possible. An important part of control is the audit log of all actions so that
trustees can both be held accountable for the procedure and prove to auditors that they
observed due diligence.

• Usability and security for non-expert mix-net contributors. Similarly to trustees,
mix-net contributors should be independent yet have critical responsibilities for the pro-
cess. Non-experts are hesitant to take on such a technical and important role on their own
capacity. The easy solution to use contributors close to the environment of the election
defeats independence. A system that is both usable and inspires safety can address this
issue.

2.2.2 Messaging

Messaging in the context of panoramix is related to the following requirements:

• Mix server identity registry. Each actor in the mix protocol is identified by a crypto-
graphic public key. The establishment of a registry is a basic requirement.

• Global consensus of the mix-net topology. The role of each actor in the identity
registry defines the topology of the mix-net, which is organized in layers. It is important
that everyone agrees on what nodes are in what layer.

– 13 of 41 –

D4.3 - INTEGRATED SYSTEM

• Requirement for periodic re-configuration, such as adding or removing peers. In a
dynamic environment, conditions change and actors come and go. There has to be a way
to securely reconfigure parameters and roles at runtime.

– 14 of 41 –

D4.3 - INTEGRATED SYSTEM

3. Software architecture

3.1 Overview

The panoramix framework assumes that each individual mix-net is organized around three
(micro-)services, namely: the registration service, the configuration service, and the messaging
service.

In particular, the panoramix framework has been designed as a software toolkit that provides
servers for deploying the aforementioned services, wizards to configure them, and client software
to interact with them.

In the following sections we describe the functionality of each service, and present the architec-
ture of the panoramix toolkit.

3.2 Basic Services

In this section we describe the three basic services of the panoramix toolkit. Figure 3.1
illustrates the different actors, clients or contributors, that connect to panoramix, and
panoramix’s different services. Recall that a client wants to use a panoramix mix-net, while
a contributor offers its services as a mixing node. All services are provided by the core compo-
nent of the panoramix toolkit which is the controller software. Note that each actor runs the
panoramix client software and software related to the mix-net being used. We further describe
this software instances in Section 3.3.

3.2.1 Registration Service

The registration service fulfils the general requirement for peer authentication and public key
infrastructure that offers identity management (see Subsection 2.1.1).

All actors in the mix-net must create their identity in the form of a public-private key pair
and register it along with a mix-net-specific role designation. The registration service is then
responsible to decide on and distribute a consistent view of the peers and roles in the network.
The generation of identities and the assignment of roles are mix-net-specific actions, and may
involve different configuration steps that utilize the corresponding service (presented in the next
section). A common pattern is to elect or assign specific identities to be authorities that can
then assign or revoke roles.

Figure 3.2 illustrates how the different actors are connected to the registration service of
panoramix. A general use-case of the service could be the following: first a client or a contrib-
utor must create a key pair and then send it to the service. Then the service registers a role for
the actor and can also authenticate them.

– 15 of 41 –

D4.3 - INTEGRATED SYSTEM

Contoller

Contributor Computer

User Computer

Mix Server

Local Agent

Contributor Computer

Contributor Computer

Configuration MessagingRegistration

Application

Panoramix
Client

User
Computer

Mix Client
Implementation

Panoramix
Client

Mix Server
Implementation

Wizard

User
Computer

Figure 3.1: The panoramix Services Architecture.

3.2.2 Configuration Service

The configuration service answers the general requirement for secure configuration and au-
ditability by system administrators (see Section 2.1.3).

Different actors in a mix-net must independently agree on the initial setup or the current effective
parameters. The agreement and configuration availability is critical for the function and security
of the mix-net. An audit record of the agreements is also important for the auditability and
accountability of the operation of the mix-net.

The configuration service accepts different proposals for an agreement under an arbitrary title.
Then, actors negotiate through rounds where they collect the proposals of others and submit
their own. Finally, the service publishes the agreements in a secure and immutable manner.

Note that mix-net implementations may perform multiple negotiations under protocol-specific
labels either for initial configuration or for altering application parameters, or peer roles.

3.2.3 Messaging Service

After a mix-net has been set up and is functional, the messaging service accepts messages
for delivery through the mix-net using a well known interface that should be followed by all
implementations. The service also offers a message inbox where incoming messages are queued
for consumption. Messages are typically sent and received by end-users. However, the messaging
service may also be leveraged for internal communication among the mix-net actors.

– 16 of 41 –

D4.3 - INTEGRATED SYSTEM

PANORAMIX
Registration Service

Contributor Computer
Contributor Computer

Client
Computer

Client
Computer

Client
Computer

A client creates a key pair
and then sends it to the
service (contributors can
do the same)

The service registers a role
for clients and contributors

The service can
authenticate a
contributor (or a client)

Figure 3.2: The registration service is responsible for the pki, the authentication of the different
actors and role assignment.

3.3 Architecture

We provide an overview of the architecture of the panoramix software toolkit. In particular,
we describe the software that implements the services that we described earlier. Note that the
different mix-net implementations may only use parts of the toolkit according to their specified
needs.

The architecture that we discuss here is an iteration of the initial architecture that we have
already described in Deliverable 4.2. In the context of the panoramix platform, there are three
main entities namely: the controller system, the contributor system, and the client computer.
The controller implements the registration, configuration, and messaging services.

The messaging service employs two kinds of endpoints (see Figure 3.3) that can be utilized by a
registered client computer that will send and receive encrypted messages, and an endpoint that
provides specific information regarding the kind of the mix-net and the various parameters that
have to be used to either encrypt or decrypt messages. The endpoints used by the contributor
computers may vary based on the protocol that is being used (e.g., re-encryption mix-net).
Documentation regarding the endpoints and their use can be found in Appendix B.

3.3.1 Basic Components

Every registered contributor computer contains a wizard component. This component can be
used by the administrator to set up the mix server which in turn, will act as an authenti-
cated mix-net peer. The mix server contains two basic components, the crypto module and
the panoramix client. The latter initializes the former after interacting with the controller
through the corresponding endpoints. Each user computer contains a local agent with the same
components.

3.3.2 Sending and Receiving Messages

Applications send or receive messages through a mix-net via a software component called the
panoramix Local Agent that we have extensively described in Deliverable 4.2. In brief, the

– 17 of 41 –

D4.3 - INTEGRATED SYSTEM

Contributor Computer

Client Computer

Mix Server

Local Agent

Controller

Contributor Computer

Contributor Computer

[…]

Input OutputInfo

Application

Panoramix
Client

Client
Computer

Crypto
Module

Panoramix
Client

Crypto
Module

Wizard

Public Endpoints

Protocol Endpoints … … …

Client
Computer

send receive

Figure 3.3: The panoramix Software Architecture.

panoramix local agent runs as a standalone software service that encrypts and decrypts mes-
sages, and manages any cryptographic keys needed.

3.3.3 Mix-net Setup

The mix server is employed by the different contributors to the mix. In brief, the contributors
are controlled by independent parties because the mix-net relies on each of them separately to
safeguard the privacy of the messages even in the presence of dishonest others. The person or
the organization that wants to contribute to a mix-net must configure the mix-net server to work
with the mix-net initiated by the controller. This configuration involves setting cryptographic
and other parameters for the mix-net, including who the other mixers might be, and where
should the messages go after the mix-net.

To aid with the process of setting up a mix-net, we have developed an interactive wizard that
guides the contributor through the parameters allowing them to confirm or counter-propose
different values. This wizard can be tuned case-by-case to process only a subset of the actual
parameters interactively. The wizard itself will automatically agree on the other parameters as
long as they match its defaults.

After initialization, the mix server enters a loop awaiting messages to process according to the
parameters agreed by all. The actual details of the operation differ according to the mix-net
type and specific implementation and is encapsulated within the cryptographic module.

– 18 of 41 –

D4.3 - INTEGRATED SYSTEM

3.3.4 A mix-net Setup Scenario

In this section we provide a simple mix-net setup scenario (similar to the one described in the
Deliverable 4.2) through a sequence of get and post methods that take place between the
different panoramix entities.

To set up a mix-net, the registered coordinator must employ the panoramix controller soft-
ware. First, the coordinator sets up the controller database and corresponding service on a
specified url using the dedicated wizard. Then the coordinator utilizes the contributor wizard
to set up the mix-net along with all the other contributors. The coordinator selects the cryp-
tographic settings, and registers (by providing a specific identifier—in this case the identifier is
667f36f2d13a4bdc9bf518b) their personal cryptographic key to the controller.

"POST /panoramix/peers/ HTTP/1.1" 201 490

"GET /panoramix/peers/667f36f2d13a4bdc9bf518b/ HTTP/1.1" 200 490

The coordinator then selects the attributes of the mix-net and initiates a negotiation to create
the mix-net in agreement with other contributors. The coordinator invites them to join the
process, by sharing the controller url and a cryptographically secure invitation. Using the
same wizard, the various invited contributors can choose to approve the coordinator’s proposal
and finalize the creation of the mix-net. This is done via rounds of negotiations until all involved
contributors agree upon the same proposal.

"POST /panoramix/contributions/ HTTP/1.1" 201 878

"GET /panoramix/negotiations/N7IjtRZic-RqBE-taxeXT0/ HTTP/1.1" 200 1059

"POST /panoramix/peers/ HTTP/1.1" 201 490

"GET /panoramix/peers/6130ca103bf1c4b/ HTTP/1.1" 200 490

The mix-net is now set up. Hence, we can provide to the end-users with the mix-net url, which
in turn, can be used to access the mix-net.

https://<controller_url>/panoramix/peers/6130ca103bf1c4b/

Nevertheless, the mix-net is not ready to accept incoming messages, before all contributors agree
to create and open an inbox. This is also facilitated by the wizard. The coordinator selects the
inbox attributes and then it is up to the other contributors to accept them through a round of
negotiations.

"GET /panoramix/contributions/?negotiation=RkF20im6L2neqol HTTP/1.1" 200 1661

"POST /panoramix/contributions/ HTTP/1.1" 201 879

"GET /panoramix/negotiations/RkF20im6L2neqol/ HTTP/1.1" 200 1376

"POST /panoramix/endpoints/ HTTP/1.1" 201 447

"GET /panoramix/endpoints/ep_1/ HTTP/1.1" 200 447

The mix-net is now ready to accept messages on the created inbox. The contributors can use
the wizard to automate the processing of the inbox. The wizard polls the inbox and checks
whether it is ready to be processed. Then it calls the contributors to agree on its closure.

"POST /panoramix/contributions/ HTTP/1.1" 201 864

"GET /panoramix/negotiations/Bwmvzn7EmiaaHFXyq25Wy/ HTTP/1.1" 200 1361

"PATCH /panoramix/endpoints/ep_1/ HTTP/1.1" 200 654

Then, each contributor retrieves the messages, processes them locally using the operation spec-
ified by the endpoint and uploads the processed messages.

"GET /panoramix/messages/?box=ACCEPTED&endpoint_id=ep_1 HTTP/1.1" 200 2037

– 19 of 41 –

D4.3 - INTEGRATED SYSTEM

"POST /panoramix/messages/ HTTP/1.1" 201 2034

Depending on the use-case, messages may be forwarded to the contributors’ endpoints for further
processing, until the final results reach the outbox. Further technical details are discussed in
Appendix A.

3.4 Future development

The existing software functionality is expected to have a few more development iterations to
address maintenance issues (bug fixing, code cleanup).

Regarding new functionality, the e-voting and messaging use-cases are going to provide detailed
configuration options for their scenarios so that example demonstrators can be developed.

– 20 of 41 –

4. Validation of the functionality

There are different aspects related to the validation of the panoramix toolkit. One of the main
aspects that has been successfully validated is the ability to port different mix-nets into the
system. Another aspect involves different demonstrators. So far we have developed two demon-
strators in the context of the project. We discuss these advances in the upcoming subsections.

4.1 Integrated Mix-nets

As we have discussed in Deliverable 4.2, panoramix provides to interested third parties a way
to integrate the functionality it provides through an easy to use and fully documented api.
By using this api different mix-nets can be integrated to the platform in an easy manner. To
validate the functionality of the panoramix toolkit we attempted to integrate different mix-
nets. We have managed to successfully integrate: (a) the Sphinx decryption mix-net [3], and (b)
a Sako-Kilian re-encryption mix-net [2] (which is also used by the Zeus [4] e-voting application).

In the case of re-encryption mix-net, the trustees must specify the exact sequence on which the
mixing and decrypting endpoints will operate. panoramix enables the contributors to agree
on these settings in a cryptographically secure way, before launching the mix-net. Through a
negotiation they can formally agree on the creation of the involved endpoints (such endpoints
are described in detail in Deliverable 5.2).

To support this setup, the panoramix toolkit allows an endpoint description to specify the
endpoints it expects to retrieve its input from. This facilitates a workflow which can be easily
streamlined, with each endpoint polling other endpoints for their output. It also allows a clean
separation between the mix-net’s public and private interfaces (recall Figure 3.3): the ballot
box’s inbox and outbox constitutes the public interface; while actual processing is delegated to
the other endpoints, which can be private.

In each integration we need to create a joint peer (see Subsection 3.3.4). This fixes the cryp-
tographic settings across a mix-net, but does not involve any application settings. A simple
negotiation is enough. In the case of the Zeus mix-net we start off a negotiation based on the
following json (JavaScript Object Notation) canonical form:

[

{

"peer_id": "joint_peer",

"endpoint_id": "ballotbox_election",

"endpoint_type": "ZEUS_BALLOT_BOX",

"links": [{"from_endpoint_id": "combine",

"from_box": "OUTBOX",

"to_box": "PROCESSBOX"}]

},

{

D4.3 - INTEGRATED SYSTEM

"peer_id": "peer1",

"endpoint_id": "mix_peer1",

"endpoint_type": "ZEUS_SK_MIX",

"links": [{"from_endpoint_id": "ballotbox_election",

"from_box": "ACCEPTED",

"to_box": "INBOX"}]

},

{

"peer_id": "peer2",

"endpoint_id": "mix_peer2",

"endpoint_type": "ZEUS_SK_MIX",

"links": [{"from_endpoint_id": "mix_peer1",

"from_box": "OUTBOX",

"to_box": "INBOX"}]

},

{

"peer_id": "peer1",

"endpoint_id": "decr_peer1",

"endpoint_type": "ZEUS_SK_PARTIAL_DECRYPT",

"links": [{"from_endpoint_id": "mix_peer2",

"from_box": "OUTBOX",

"to_box": "INBOX"}]

},

{

"peer_id": "peer2",

"endpoint_id": "decr_peer2",

"endpoint_type": "ZEUS_SK_PARTIAL_DECRYPT",

"links": [{"from_endpoint_id": "mix_peer2",

"from_box": "OUTBOX",

"to_box": "INBOX"}]

},

{

"peer_id": "joint_peer",

"endpoint_id": "combine",

"endpoint_type": "ZEUS_SK_COMBINE",

"links": [{"from_endpoint_id": "decr_peer1",

"from_box": "OUTBOX",

"to_box": "INBOX"},

{"from_endpoint_id": "decr_peer2",

"from_box": "OUTBOX",

"to_box": "INBOX"}]

}

]

This describes a graph of endpoints where each list element is a prescription to create an
endpoint. The attribute "links" describes where each endpoint takes its input from (be it
the input of the inbox or the processbox). We observe that there are different types of
endpoints e.g. an endpoint used only for mixing, another for partial decryption etc. The mix-
net contributors (peers) inspect the definition, negotiate in order to change e.g. the endpoint ids
(or any other attributes not shown in the above definition), and finally create the endpoints
according to the definition.

To start a negotiation in the case of Sphinx mix-net (static routing) we show the corresponding
definition:

[

{

– 22 of 41 –

D4.3 - INTEGRATED SYSTEM

"peer_id": "joint_peer",

"endpoint_id": "our_sphinx_mix-net",

"endpoint_type": "SPHINXMIX_STATIC_GW",

"size_min": 3,

"links": [{"from_endpoint_id": "peer2_mix",

"from_box": "OUTBOX",

"to_box": "PROCESSBOX"}]

},

{

"peer_id": "peer1",

"endpoint_id": "peer1_mix",

"endpoint_type": "SPHINXMIX_STATIC",

"size_min": 3,

"links": [{"from_endpoint_id": "our_sphinx_mix-net",

"from_box": "ACCEPTED",

"to_box": "INBOX"}]

},

{

"peer_id": "peer2",

"endpoint_id": "peer2_mix",

"endpoint_type": "SPHINXMIX_STATIC",

"size_min": 3,

"links": [{"from_endpoint_id": "peer1_mix",

"from_box": "OUTBOX",

"to_box": "INBOX"}]

}

]

4.2 Testing End-to-End

Each mix-net implementation has its own tests. Such tests are being monitored regardless of the
integration. However, it is important to be able to prove that the integration of each mix-net
was successful and that the mix is working properly at all times as the code bases change. After
all, it is the integrated mix-net that will serve applications by receiving and mixing ciphertexts.

A robust approach for testing an application is to feed the interface random input and validate
the output, repeating over many cycles. We have implemented this approach for random input
testing by setting up a controlled environment for the test. In this environment, an integrated
mix-net is initialized and is able to properly run with real input and produce also real output.

For every cycle, a random input of ciphertexts is created by encrypting a set of plaintexts. The
plaintexts are recorded while the ciphertexts are provided to the mix-net. After the mix-net
processes the ciphertexts, it produces a new set of shuffled ciphertexts as output. The output is
then collected and decrypted. Finally, the final shuffled plaintexts are compared to the original
ones.

There are two kinds of comparisons. First, the original and the output plaintexts are compared.
We assert of course that the sets are different, because we expect them to have been shuffled.
Second, the two sets are sorted and then compared. In this case, we assert that they are identical,
because we expect them to be exactly the same set without any corruption or omission.

The testing process is due for all integrated mix-nets and beyond end-to-end testing and val-
idation. It offers developers quick insights on their mix-net configuration, integration design,
and performance.

– 23 of 41 –

D4.3 - INTEGRATED SYSTEM

Figure 4.1: The panoramix-enabled version of Thunderbird.

4.3 Demonstrators

Both of the above integrations led to two demonstrators: (1) a prototype private chat room,
and (2) a Zeus version based on panoramix.

The private chat room was presented as a demo at the 10th International Conference on Com-
puters, Privacy & Data Protection (cpdp 2016), in January 2017 in Brussels. This prototype
demonstrates how messages can be broadcast anonymously, without allowing an eavesdropper
or even legitimate users to figure out which user sent which message (for more information refer
to Deliverable 4.2).

Apart from the open-source mobile client for secure messaging discussed in Deliverable 7.2,
additional demonstrators have also been developed in the context of work package 7, including
a panoramix-enabled version of Thunderbird1 (see Figure 4.1).

A panoramix-based version of Zeus has already been developed as we have discussed in De-
liverable 5.2. We have not used this version in a real election yet. However, we are planning to
do so in the upcoming months.

4.4 Continous Integration Services

Our validation also utilizes Travis ci (Continuous Integration), a hosted, distributed continuous
integration service used to build and test software projects hosted at GitHub. With Travis we
can specify our building and testing environment, the dependencies which must be installed
before the software can be built and tested and more. When Travis has been activated for a
given repository, GitHub will notify it whenever new commits are pushed to that repository or
a pull request is submitted. Figure 4.2 for instance, illustrates the various tests related to the
Katzenpost system (described in detail in Deliverable 7.2).

1https://www.mozilla.org/en-US/thunderbird/

– 24 of 41 –

https://www.mozilla.org/en-US/thunderbird/

D4.3 - INTEGRATED SYSTEM

Figure 4.2: Travis ci tests for Katzenpost.

4.5 Future Scenario for Messaging Integration

In this section we discuss an initial scenario that we use as a basis to validate messaging with
panoramix.

The scenario follows the user experience of an independent administrator of a server. The
administrator discovers a messaging mix network and joins it with their server as a new mix
node.

For the first step, the administrator launches the panoramix wizard and provides the mix-
net coordinator url. The wizard connects to the coordinator api and retrieves and displays
information about the mixnet and the node peers it consists of.

The administrator then requests to join the mix network. The wizard asks if there is an existing
identity key to be registered with the coordinator, or if it is to create a new one. After the
registration of the server as a node peer, the administrator is presented with a form listing
configuration options regarding cryptographic, topology, and functional parameters, as well as
other important metadata, such as terms of service, or mix-net policies and disclaimers.

After the administrator configures and accepts the form, the other mix-net nodes process and
accept the join request. If there is consensus about the joining, the configuration options
submitted with the form are signed-off by everyone and are returned to the wizard.

The wizard then allows the administrator to automatically translate the agreed configuration
options to configuration files and then launch the mix-net software.

The signed configuration options are exported so that the administrator can inspect them for
their own use or to show auditors.

– 25 of 41 –

D4.3 - INTEGRATED SYSTEM

– 26 of 41 –

D4.3 - INTEGRATED SYSTEM

5. Conclusion

The Integrated System has already been used internally to develop the latest versions of the
use cases, giving solid and real world feedback that the final version of D4.3 has been able to
incorporate.

The system has addressed all the requirements, the team has validated the implementation
along with the interested partners and the provided documentation has been proven useful to
them.

Thanks to the service oriented architecture, the development of the Final System will benefit
from a well thought and state of the art Software Architecture that facilitates the deployment
of the system as an scalable and robust Internet service as well as the independent development
of any remaining integration issues in a particular component.

– 27 of 41 –

D4.3 - INTEGRATED SYSTEM

– 28 of 41 –

D4.3 - INTEGRATED SYSTEM

A. Documentation for System Ad-
ministrators

This section provides all the information that a coordinator and a contributor will need to set
up the framework. The scenario follows the steps described in Section 3.3.4.

A.1 Coordinator

To set up a mix-net, the coordinator must use the controller. Specifically, the coordinator
first sets up the controller database and service on a specified url, using a dedicated server
configuration wizard.

% panoramix-server-wizard

welcome to panoramix server wizard!

configuration file is: /tmp/panserver

set panoramix_config environment variable to override

set catalog_url: (enter for default 'http://127.0.0.1:8000/')

catalog_url: http://127.0.0.1:8000/

After setting the controller url (catalog url), the coordinator must specify the cryptographic
backend and settings. observe that in our current set up, the Sphinx [3] decryption mix-net is
the default option.

Select backend, one of SPHINXMIX, ZEUS (default: 'SPHINXMIX')

backend: SPHINXMIX

Set BODY_LEN (default: '1024')

BODY_LEN: 1024

Set GROUP (default: '713')

GROUP: 713

Set HEADER_LEN (default: '192')

HEADER_LEN: 192

BODY LEN, GROUP, HEADER LEN are settings related to Sphinx (e.g. BODY LEN is the maximum
length that a message may have). The coordinator is then instructed how to initialize the
database and the server.

You need to setup your database once with

panoramix-manage migrate

Start server with

PANORAMIX_CONFIG=/tmp/panserver panoramix-manage runserver 127.0.0.1:8000

Then the coordinator can employ the contributor wizard to jointly set up the mix-net along with
any other mix-net contributor. The coordinator first specifies the controller url and selects the

– 29 of 41 –

D4.3 - INTEGRATED SYSTEM

cryptographic settings, which should match those of the controller.

% panoramix-wizard

Welcome to PANORAMIX wizard!

Configuration file is: /tmp/pancfg1

Set PANORAMIX_CONFIG environment variable to override

Set CATALOG_URL (default: 'http://127.0.0.1:8000/')

CATALOG_URL: http://127.0.0.1:8000/

Choose 'create' or 'join' mix-net

role: create

Select backend, one of SPHINXMIX, ZEUS (default: 'SPHINXMIX')

backend: SPHINXMIX

Set BODY_LEN (default: '1024')

BODY_LEN: 1024

Set GROUP (default: '713')

GROUP: 713

Set HEADER_LEN (default: '192')

HEADER_LEN: 192

Next, the coordinator creates and registers their personal cryptographic key to the controller.

No key available. Choose 'set' or 'create' (default: 'create')

action: create

Created key with values: {'SECRET':

u'A808BCBBCC3BC141EA7B2FAFB5D', 'PUBLIC':

'039073ae91caf2eed8971f26cfcb'}

Specify name to register as peer

PEER_NAME: peer1

Registered peer with PEER_ID: 039073ae91caf2eed8971f26cfcb

Then, the coordinator selects the mix-net attributes and initiates a negotiation in order to
create the mix-net in agreement with other mix-net contributors. The coordinator invites them
to join the process, by sharing with them the controller url and a cryptographically secure
invitation.

Choose mix-net peer name

name: our_mix-net

Give number of invitations to create

invitations: 1

Send invitations to peers:

TLCWFVt8Y3gnvvtYNVRM0uM4|xHqbpCEmGirxpSsrByx9zQhm

Your initial proposal is contribution: 21

A.2 Contributor

Using the same wizard, the invited contributors can choose to approve the coordinator’s proposal
and finalize the creation of the mix-net. This is done via rounds of negotiations until all involved
contributors agree upon the same proposal. The contributor will see the same messages but
instead he or she will choose to join the mix-net.

% panoramix-wizard

Welcome to PANORAMIX wizard!

Configuration file is: /tmp/pancfg2

– 30 of 41 –

D4.3 - INTEGRATED SYSTEM

Set PANORAMIX_CONFIG environment variable to override

Set CATALOG_URL (default: 'http://127.0.0.1:8000/')

CATALOG_URL:

Choose 'create' or 'join' mix-net

role: join

Give invitation to create mix peer

JOIN_INVITATION:

TLCWFVt8Y3gnvvtYNVRM0uM4|xHqbpCEmGirxpSsrByx9zQhm

Negotiation initialized by peer

039073ae91caf2eed8971f26cfcb with contribution

21.

Proposed crypto backend: 'SPHINXMIX'; 'accept' or 'abort'? (default:

'accept')

response: accept

Proposed crypto params: '{u'BODY_LEN': 1024, u'GROUP': 713, u'HEADER_LEN':

192}'; 'accept' or 'abort'? (default: 'accept')

response: accept

In the meantime, this message will be displayed to the coordinator.

Invitations pending: set(['xHqbpCEmGirxpSsrByx9z'])

All invited peers have joined. Sending accept contribution.

Your new contribution id is: 24

No consensus yet.

Consensus reached:

f1f3055b0be745c6224e9ad4f9512c9

Negotiation finished successfully. Applying consensus.

Created combined peer

0255e5a9676ad006a8443acf5fc45d.

Since the mix-net is now set up, we can give the end-users the mix-net url, which can be used
to access the mix-net.

http://127.0.0.1:8000/panoramix/peers/0255e5a9676ad006a8443acf5fc45d/

However, the mix-net is not ready to accept incoming messages, before all mix-net contributors
agree to create and open an inbox. This is also be done through the wizard. The coordinator
selects the inbox attributes and then it is up to the other contributors accept them through a
round of negotiations.

Specify endpoint name to create on combined peer

ENDPOINT_NAME: gateway

Select endpoint type, one of SPHINXMIX_GATEWAY, SPHINXMIX (default:

SPHINXMIX_GATEWAY)

ENDPOINT_TYPE: SPHINXMIX_GATEWAY

Specify minimum size

MIN_SIZE: 3

Specify maximum size:

MAX_SIZE: 10

Give description:

EP_DESCRIPTION: the mix-net gateway

Contribution pending from: set([u'024f06abba6aa750acb07'])

...

– 31 of 41 –

D4.3 - INTEGRATED SYSTEM

All peer owners have agreed. Sending accept contribution.

Sent contribution 28

No consensus yet.

Consensus reached:

6e2ca8b1198efed79df24b988b6ce

Negotiation finished successfully. Applying consensus.

Created endpoint gateway_1.

Now the mix-net is ready to accept messages on the created inbox. The mix-net contributors
can use the wizard to automate the processing of the inbox. The wizard polls the inbox to check
whether it is ready to be processed, and facilitates the contributors to agree on the its closure.

Waiting until minimum inbox size is reached.

Contribution pending from:

set([u'024f06abba6aa750acb07'])

All peer owners have agreed. Sending accept contribution.

Sent contribution 34

Consensus reached:

365e84425bb914bb4342cb2df8e

Negotiation finished successfully. Applying consensus.

Closed endpoint gateway_1.

Next, each contributor retrieves the inbox messages, processes them locally using the crypto-
graphic operation specified by the endpoint and uploads the processed messages. Depending
on the application, messages may be forwarded to the contributors’ own endpoints for further
processing, until the final results reach the outbox.

Waiting to collect inbox.

Collected input for inbox of 039073a_for_ep_gateway_1.

Closed endpoint 039073a_for_ep_gateway_1

Processed endpoint 039073a_for_ep_gateway_1

Collected input for processbox of gateway_1.

Contribution pending from:

set([u'024f06abba6aa750acb07'])

All peer owners have agreed. Sending accept contribution.

Sent contribution 41

Consensus reached:

ddb5dfeb2adf62f682fb1500b2

Negotiation finished successfully. Applying consensus.

Processed endpoint gateway_1.

– 32 of 41 –

D4.3 - INTEGRATED SYSTEM

B. Documentation for Software De-
velopers

B.1 Overview

As we discussed in D4.1, the PANORAMIX api is based around peers who exchange
messages. Each peer performs supported operations (e.g. mixing, decrypting) through re-
spective endpoints. Each endpoint processes messages in bulk: An endpoint cycle opens up
in order to accept messages in its inbox. When sufficient messages are collected in the inbox,
the peer retrieves the messages, processes them and posts them to its outbox. An external
posting mechanism is responsible to send the outbox messages to the inboxes of their recipients.

B.2 Negotiations and Consensus

Negotiation is a mechanism that allows peers to agree upon a common text after rounds of
amendments. The final text is signed by all participating peers. A text can be a prescription
for an action that requires consensus of all stakeholders.

When a negotiation completes successfully, a consensus identifier is computed by hashing the
negotiation data. This identifier can be provided to any operation that requires a consensus
to proceed. For instance, in order to create a new peer with multiple owners there must be a
consensus among the owners. The owners of a peer must also agree in order for any peer-related
action to take place, for example to create an endpoint or to publish the endpoint’s outbox.

B.2.1 Initiate a negotiation

The peer who starts a new negotiation is given a hard-to-guess negotiation id. The peer can
then invite other peers to the negotiation by sharing the id with them.

URI Method Description

/negotiations POST Initiate a negotiation

Example request:

{

"data": {},

"info": {"resource": "negotiation", "operation": "create"},

"meta": {"signature": "payload signature", "key_data": "public key"}

}

– 33 of 41 –

D4.3 - INTEGRATED SYSTEM

B.2.2 Get negotiation details

URI Method Description

/negotiations/<negotiation id> GET Get negotiation details

Get negotiation details by id or consensus id.

Example response:

{

"data": {

"id": "long_negotiation_id",

"text": null,

"status": "OPEN",

"timestamp": null,

"consensus": null,

"signings": [],

}

}

Example response:

{

"data": {

"id": "long_negotiation_id",

"text": "agreed upon text",

"status": "DONE",

"timestamp": "consensus timestamp",

"consensus": "consensus hash",

"signings": [{"signer_key_id": "peer1",

"signature": "peer1 sig"},

{"signer_key_id": "peer2",

"signature": "peer2 sig"}

]

}

}

B.2.3 Contribute to negotiation

Contribute a signed text to a negotiation. The text consists of the text body and a metadata
dict. If all peers participating so far sign the same text that include the metadata "accept":

True, then the negotiation completes successfully and the consensus id is produced. No more
contributions are accepted.

Note: If the original contributor submits a text with "accept": True, the negotiation will
complete successfully, although just one peer has contributed. Such a single-peer “consensus”
may be useful in order to record a decision for an action in a uniform way regardless of the
number of involved peers.

URI Method Description

/contributions/ POST Contribute to negotiation

Example request:

{

"data": {"negotiation_id": "neg_id",

"text": "a text describing a peer creation",

– 34 of 41 –

D4.3 - INTEGRATED SYSTEM

"signature": "text signature"},

"info": {"resource": "contribution", "operation": "create"},

"meta": {"signature": "payload signature", "key_data": "public key"}

}

Note: The contribution text should be a canonical representation of a dictionary of the following
structure:

{

"data": { "whatever data"},

"info": { "whatever info" },

"meta": {"accept": "true/false",

"signers": [

"signer_1", "signer_2", "signer_n"

]}

}

B.2.4 List contributions to a negotiation

URI Method Description

/contributions/ GET List contributions to a negotiation

List contributions. Filtering by negotiation id is required.

Example response:

[{

"data": {

"id": "contribution_id", "negotiation_id": "neg_id",

"text": "contribution text",

"latest": true,

"signer_key_id": "signer's public key",

"signature": "signature",

}

}]

B.3 Peers

A peer is any participant to the mix-net, either a mix-net contributor, a correspondent, an
auditor, or any other stakeholder. A peer must be registered to the mix-net controller using a
cryptographic identifier.

B.3.1 Create a Peer

Create a new peer with the specified parameters; see the example below. You must always
provide a consensus id, indicating a decision to create a peer agreed upon by all stakeholders
through a negotiation. This applies for the simple case of creating a peer with no owners, as
well.

URI Method Description

/peers POST Create a peer

Example request:

– 35 of 41 –

D4.3 - INTEGRATED SYSTEM

{

"data": {"key_data": "public key",

"key_id": "13C18335A029BEC5",

"status": "READY",

"owners": [{"owner_key_id": "owner1"},

{"owner_key_id": "owner2"}],

"key_type": 1,

"name": "peer1"},

"info": {"operation": "create", "resource": "peer"},

"by_consensus": {"consensus_id": "<consensus id>",

"consensus_type": "structural"},

"meta": {"signature": "payload signature", "key_data": "public key"},

}

B.3.2 Get peer info

Get info for a single peer.

URI Method Description

/peers/<peer id> GET Get info for a peer

Example response:

{

"data": {"key_data": "public key",

"key_id": "13C18335A029BEC5",

"status": "READY",

"name": "peer1",

"key_type": 1,

"key_type_params": "params",

"owners": [{"owner_key_id": "owner1"},

{"owner_key_id": "owner2"}],

"consensus_logs": [{"timestamp": "action timestamp",

"status": "READY",

"consensus_id": "consensus id"}]

}

}

B.3.3 List Peers

Returns a list containing information about the registered peers.

URI Method Description

/peers GET List peers

Example response:

[{

"data": { "some data..." }

}]

– 36 of 41 –

D4.3 - INTEGRATED SYSTEM

B.4 Endpoints

A peer handles messages in its endpoints. An endpoint specifies a type of operation along with
relevant endpoint parameters, such as the minimum and maximum number of allowed messages.
A correspondent sends messages to an open endpoint. Endpoint owners can agree to close the
endpoint when suited and, after processing the inbox, publish the results in the outbox.

B.4.1 Create a peer endpoint

Creating an endpoint requires a consensus id, which proves the agreement of all peer owners on
the action.

URI Method Description

/endpoints POST Create a peer endpoint

Example request:

{

"data": {"peer_id": "13C18335A029BEC5",

"endpoint_id": "identifier",

"endpoint_type": "ZEUS_SK_MIX",

"endpoint_params": "",

"description": "a description",

"status": "OPEN",

"size_min": 10,

"size_max": 1000},

"info": {"operation": "create", "resource": "endpoint"},

"by_consensus": {"consensus_id": "<consensus id>",

"consensus_type": "structural"},

"meta": {"signature": "payload signature", "key_data": "public key"},

}

B.4.2 Update an endpoint

The status of an endpoint can be updated, given the last consensus id and status-specific
required data.

URI Method Description

/endpoint/<endpoint id> PATCH Partially update an endpoint

Example request:

{

"data": {"endpoint_id": "identifier",

"status": "PROCESSED",

"message_hashes": ["a processed message hash"],

"process_proof": "the processing proof",

},

"info": {"operation": "partial_update",

"resource": "endpoint",

"on_last_consensus_id": "previous consensus"},

"meta": {"signature": "payload signature", "key_data": "public key"},

}

– 37 of 41 –

D4.3 - INTEGRATED SYSTEM

B.4.3 Get endpoint info

URI Method Description

/endpoint/<endpoint id> GET Get info for an endpoint

Example response:

{

"data": {"peer_id": "13C18335A029BEC5",

"endpoint_id": "identifier",

"endpoint_type": "ZEUS_SK_MIX",

"endpoint_params": "",

"description": "a description",

"status": "CLOSED",

"size_min": 10,

"size_max": 1000,

"inbox_hash": "inbox hash",

"last_message_id": "message_id",

"consensus_logs": [{"timestamp": "open action timestamp",

"status": "OPEN",

"consensus_id": "consensus id1"},

{"timestamp": "close action timestamp",

"status": "CLOSED",

"consensus_id": "consensus id2"}]

}

}

B.4.4 List endpoints

URI Method Description

/endpoints GET List endpoints

Example response:

[{

"data": { "some data..." }

}]

B.5 Messages

Messages are posted to an endpoint’s inbox of a specified peer. Once a sufficient number of
messages are collected, the peer retrieves the inbox messages, processes them and uploads the
transformed messages to the processbox. Once the peer owners agree on the results and mark
the endpoint as processed (see above), the processed messages move to the outbox.

B.5.1 Send a message to inbox/processbox

URI Method Description

/messages POST Send a message

No consensus is needed in order to send a message.

Example request:

– 38 of 41 –

D4.3 - INTEGRATED SYSTEM

{

"data": {"endpoint_id": "endpoint name",

"box": "INBOX",

"sender": "FC650CA0F7749FF0",

"recipient": "13C18335A029BEC5",

"text": "encrypted message"

},

"info": {"operation": "create", "resource": "message"},

"meta": {"signature": "payload signature", "key_data": "public key"}

}

B.5.2 List messages

One can list the messages of a specified endpoint and box.

URI Method Description

/messages GET List messages

Example inbox response:

[

{"data": {"endpoint_id": "endpoint name",

"box": "INBOX",

"id": 1,

"sender": "orig_sender1",

"recipient": "this_peer",

"text": "encrypted message 1",

"message_hash": "msg hash 1"}

},

{"data": {"endpoint_id": "endpoint name",

"box": "INBOX",

"id": 2,

"sender": "orig_sender2",

"recipient": "this_peer",

"text": "encrypted message 2",

"message_hash": "msg hash 2"}

}

]

Example outbox response:

[

{"data": {"endpoint_id": "endpoint name",

"box": "OUTBOX",

"id": 3,

"sender": "this_peer",

"recipient": "next_peer_a",

"text": "decrypted message a",

"message_hash": "msg hash a"}

},

{"data": {"endpoint_id": "endpoint name",

"box": "OUTBOX",

"id": 4,

"sender": "this_peer",

"recipient": "next_peer_b",

"text": "decrypted message b",

"message_hash": "msg hash b"}

– 39 of 41 –

D4.3 - INTEGRATED SYSTEM

}

]

In this example, we assume that processing has shuffled the messages in order to hide the
connection between encrypted messages (1, 2) and decrypted messages (a and b).

– 40 of 41 –

Bibliography

[1] The European Union general data protection regulation. http://data.consilium.europa.
eu/doc/document/ST-5419-2016-INIT/en/pdf, 2016. [Online; accessed 30-November-
2017].

[2] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, February 1981.

[3] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix format.
In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09, pages
269–282, Washington, DC, USA, 2009. IEEE Computer Society.

[4] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayiotis Tsanakas. From
Helios to Zeus. In 2013 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013.

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf

	Executive Summary
	Introduction
	Fulfilled requirements per use case
	General requirements for all use-cases
	Peer authentication and Public Key Infrastructure
	Usable and Secure Mix-contributor Configuration and Audit-Log for Administrators
	Integration Between a Mix-net Implementation and the PANORAMIX Controller

	Use-case Specific Requirements
	E-voting
	Messaging

	Software architecture
	Overview
	Basic Services
	Registration Service
	Configuration Service
	Messaging Service

	Architecture
	Basic Components
	Sending and Receiving Messages
	Mix-net Setup
	A mix-net Setup Scenario

	Future development

	Validation of the functionality
	Integrated Mix-nets
	Testing End-to-End
	Demonstrators
	Continous Integration Services
	Future Scenario for Messaging Integration

	Conclusion
	Documentation for System Administrators
	Coordinator
	Contributor

	Documentation for Software Developers
	Overview
	Negotiations and Consensus
	Initiate a negotiation
	Get negotiation details
	Contribute to negotiation
	List contributions to a negotiation

	Peers
	Create a Peer
	Get peer info
	List Peers

	Endpoints
	Create a peer endpoint
	Update an endpoint
	Get endpoint info
	List endpoints

	Messages
	Send a message to inbox/processbox
	List messages

