
Panos Louridas—Ed. (grnet)
George Tsoukalas (grnet)
Dimitris Mitropoulos (grnet)

Final Service
Deliverable D5.4

January 31, 2019
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

Dissemination Level: Public

Ref. Ares(2019)565804 - 31/01/2019

http://www.panoramix-project.eu

Revision History

Revision Date Author(s) Description

0.1 2018-10-20 DM, GT, PL (GRNET) Proposed table of contents

0.2 2018-11-20 DM, GT, PL (GRNET) Added evaluation diagrams

0.3 2018-11-21 DM, GT, PL (GRNET) Added panoramix Trust Control
Panel

0.4 2018-11-22 DM, GT, PL (GRNET) Added evaluation chapter & require-
ments

0.5 2018-11-25 DM, GT, PL (GRNET) Added intro draft

0.6 2018-12-05 DM, GT, PL (GRNET) Added architecture part

0.7 2018-12-10 DM, GT, PL (GRNET) Added conclusions & minor correc-
tions

0.8 2018-12-15 TZ (UEDIN) Comments on the deliverable

0.9 2018-12-17 DM, GT, PL (GRNET) Addressed comments from UEDIN

1.0 2018-12-17 MW (UEDIN) Final pass & draft submitted to EC

1.1 2019-01-31 MW (UEDIN) Final version submitted to EC

Executive Summary

We describe the final version of the Zeus e-voting system, which was developed in the context of
Work Package 5. It is an integrating service, where Zeus is running in the context of panoramix
and can work with different mix-nets to carry out an electronic election. The final service incor-
porates our adjustments following the experience gained with the panoramix mvp (described
in Deliverable 5.2) and the integrated service (discussed in Deliverable 5.3). We have evaluated
the final version by integrating two different mix-nets and creating testbeds to observe how the
service handles hundreds of thousands of votes, with very positive results.

Contents

Executive Summary 5

1 Introduction 9

2 Fulfilled Requirements 11
2.1 E-voting Context Roles . 11
2.2 Authentication and Key Management . 11
2.3 Usable Election Configuration . 12
2.4 Usable Mix-net Configuration . 12
2.5 Integrated Mix-nets . 12

3 PANORAMIX Integration with Zeus 13
3.1 Overall Architecture . 13
3.2 Integration with PANORAMIX Services . 14
3.3 Mix-net and Trustees . 14
3.4 Architectural Specification of a Zeus Election Process 16

3.4.1 Software Integration . 16
3.4.2 Architectural Specification Walkthrough 17

4 Integrated mix-nets and Evaluation 21
4.1 The Hat-shuffle Mix-Net . 21
4.2 The Verificatum Mix-net . 22

5 Conclusions 25

A Zeus Configuration Integration Reference 29

D5.4 - FINAL SERVICE

– 8 of 31 –

D5.4 - FINAL SERVICE

1. Introduction

We present the current, updated version of Zeus [8], an e-voting application developed by grnet.
By employing the technology and the tools developed in the context of the panoramix project,
grnet has extensively enhanced the security, performance, and usability of the application, as
we describe in this deliverable.

Zeus has been in production since late 2012. Figure 1.1 illustrates the registered users and
the actual voters for all the elections that took place from early 2014 to this day. In general,
voters were fewer than the users that were initially registered in the electoral roll, which is
consistent with the norms observed in paper-based ballots. As the figure shows, Zeus has been in
continuous use and production; this means that any improvements developed inside panoramix
should be at a production-level maturity, and not just proof of concept implementations.

As we described in the project’s proposal and in Deliverable 5.1, a limiting factor in the wider
adoption of e-voting is the mix-net implementation used by the voting platform. Specifically,
the Zeus e-voting system used a standard mix-net implementation that is simple, but not very
efficient; holding elections with more than a few thousand voters cannot produce results in an
acceptable amount of time (about an hour). Following panoramix, the updated version of
Zeus can run with four different mix-nets and can handle efficiently hundreds of thousands of
votes, as we extensively describe in our evaluation.

The reminder of this deliverable is as follows: first, we provide the basic requirements that
are met by the final service in Chapter 2. In Chapter 3 we describe in detail the architecture of
the final system, and in Chapter 4 we discuss its evaluation. Finally, in Chapter 5 we provide
our conclusions and lessons learned.

– 9 of 31 –

D5.4 - FINAL SERVICE

10

20

50

100

200

500

1000

2000

5000

10000

20000

 1

 100000

2012
2013

2014
2015

2016
2017

2018
2019

Zeus Elections

Voters

Voted

Figure 1.1: Zeus elections from 2012 to the present.

– 10 of 31 –

2. Fulfilled Requirements

We describe the requirements that were considered critical (as stated in Deliverable 5.3 and 4.3)
and were met in the context of panoramix. Note that, as we have described in Deliverable
5.1, the Zeus workflow consists of 7 basic steps, namely: (1) registration, (2) generation of the
trustee keys, (3) voter invitation, (4) voting, (5) mixing, (6) decryption and (7) generation of
the results, transcripts and proofs. Currently, the panoramix services support the majority of
the above steps with new functionalities and features, thus fulfilling all the requirements of the
use case.

Moreover, the final service utilizes all three panoramix services:

• The registration service is used to introduce, authorize, and identify participants.

• The configuration service is employed to produce service deployment parameters that
cover trustees and mixers.

• Finally, the messaging service to mix votes in a secure manner.

2.1 E-voting Context Roles

The two basic roles in the e-voting context include trustees and mixers. Each role has spe-
cific requirements and expectations that the final service meets successfully. First, each trustee
launches the panoramix software to generate, keep, and contribute a secret share to the elec-
tion encryption key. Then, trustees validate the shares of other trustees and agree on basic
parameters for the election including (1) name, (2) ballot type and content, (3) date, (4) voter
list and (5) mixer list. Furthermore, they propose and consent to start the election process
using the agreed parameters. Finally, they validate mixing and they decrypt the mixed ballots.

Turning to the mixers, each one of them utilizes the panoramix software to agree on
the mixing algorithm and the corresponding parameters, receive votes and shuffle them and
optionally validate other mixers’ shuffles.

2.2 Authentication and Key Management

The final service has means to authenticate the different entities (trustees, mixers, and voters)
by employing public-key cryptography through the registration service. Furthermore, all entities
in the mix-net produce their identity credentials in the form of a public-private key pair and
record it together with a mix-net specific role designation (e.g., trustee). Then, the registration
service decides on and distributes a common view of the roles and peers in the network. The
generation of identities and the assignment of roles are mix-net specific actions, and may involve
different configuration steps that utilize the service as we discuss in the next section.

D5.4 - FINAL SERVICE

2.3 Usable Election Configuration

The configuration service provides means to set-up a secure configuration of an election in an
easy and usable way. Trustees can agree on specific common preferences and parameters and
record the agreements to support the auditability and accountability of the mix-net operations.
The configuration service accepts various proposals for an agreement and then trustees negotiate
through rounds where they collect the proposals of other administrators and submit their own.
Finally, the service publishes the agreements in a secure and immutable manner. Notably, the
agreements can be recorded on a secure bulletin board as described in the Deliverable 2.10 and
on the corresponding research work done in the context of the project [7].

2.4 Usable Mix-net Configuration

panoramix provides a usable and intuitive user interface that presents all decisions and actions
in a unified way so that the mixers can have sufficient overview themselves without needing to
delegate to more technically savvy operators. Besides, mix-net contributors should be indepen-
dent because they have critical responsibilities for the process. At the same time, non-experts
are hesitant to take on such responsibilities, so the provision of a straightfoward process and
service is essential. The final service is both usable and inspires safety that address those issues.

2.5 Integrated Mix-nets

One of the basic requirements of the panoramix system is to support mix-nets with specification
diversity so that a wide range of use-case scenarios can be covered. Currently, our system
supports a number of different mix-nets, including:

1. the Sako-Kilian re-encryption mix-net [5] (i.e., the mix-net that Zeus used before the
project started),

2. the Bayer Groth mix-net [3],

3. the Verificatum Mix-Net (vmn) [2], and

4. a prototype mix-net based on the re-encryption mix-net designed by Fauzi et al. [6] (known
as hat-shuffle).

The first two mix-nets have been already discussed in Deliverable 5.3. The third mix-net is
a new version of the hat-shuffle mix-net that has been developed in the context of panoramix
and the fourth is a well-known mix-net for e-voting, widely respected by the cryptographic e-
voting community. The integration of Verificatum and the Bayer Groth mix-net are examples of
how mix-nets designed outside of the project can be easily incorporated into our service (which,
in the big picture, is essential for standardization, as we discuss in Deliverable 4.4).

– 12 of 31 –

3. PANORAMIX Integration with Zeus

We describe the complete integration of the Zeus application with panoramix. First, we
describe an overall architecture to link the chapter to Deliverable 5.3. Then we discuss specifics
regarding the integration with the different panoramix services and show the architectural
specification of an election process in the context of the final service.

3.1 Overall Architecture

Contributors

Users

Contributor Computer

Voter Computer

Mix Server

Local Agent

Contributor Computer

Contributor Computer

Zeus Booth

Panoramix
Client

Voter
Computer

Crypto
Module

Panoramix
Client

Crypto
Module

Wizard

Voter
Computer

PANORAMIX

Configuration MessagingRegistration

send ballots

Zeusretrieve details

Trustee Computer
Local Agent

Control
Panel

Panoramix
Client

Crypto
Module

Trustee
Computer

Figure 3.1: The architecture of the final service.

We provide a description of the overall architecture of the final service, based upon the
panoramix software toolkit. Specifically, we describe how Zeus uses the three panoramix
services, namely: registration, configuration, and messaging. An overview is depicted in Fig-
ure 3.1, and it involves the controller system with the three services, voters, trustees, mix-net

D5.4 - FINAL SERVICE

contributors and their interaction. More details regarding the overall architecture can be found
in Deliverable 5.3.

3.2 Integration with PANORAMIX Services

Server Role Set-up through PANORAMIX Wizard

Start

Stop

Register Peer
Deployment
Parameters

Configuration

Create
Inboxes

Launch Local
Server

Software

Application-
specific
Action

including voting, mixing,
decryption of the results

Figure 3.2: The workflow behind the set-up of a server role through the panoramix wizard.

First, Zeus uses the registration service to manage public key identities for

• any panoramix component (e.g., controller),

• Zeus trustees and mixers,

• any authenticated servers operating under trustee or mixer control.

Voters, authorities, and auditors may query the registration service to retrieve details for the
identities of participants whose keys appear in the proofs Zeus compiles for the whole election
process.

To use the panoramix tools through the wizard for configuration and setup, the integration
framework must provide configuration options and corresponding scripts that can be used to
launch software and act on specific choices. Figure 3.2 displays the steps that a user must follow
to set-up a server through the panoramix wizard. First, the registration credentials must be
provided. Then, the deployment parameters are configured. The user should also create the
inboxes (used for forwarding mix-net payloads) and launch the software. Finally, there are
actions that are use-case related. Hence, the finally step could take place multiple times.

When the Zeus reaches the voting stage, an election inbox is launched, where panoramix
clients may submit votes through the generic panoramix messaging api described in Deliverable
5.3.

3.3 Mix-net and Trustees

Zeus e-voting is an application essentially built around a mix-net. The mix-net in Zeus provides
the most technologically challenging aspect of the system, the one that uses advanced cryptog-
raphy for the anonymization of submitted encrypted ballots along with mathematical proofs of
correctness that hide the actual shuffling (zero-knowledge).

The mix-net is composed of a sequence of independent servers, the mixers, each one of which
secretly shuffles the ballots of the previous mixer. The input of the first mixer is the contents of

– 14 of 31 –

D5.4 - FINAL SERVICE

Voters

 PANORAMIX

PANORAMIX
Wizard

Contoller

Configuration

Messaging

Registration

Trustee

Deploy
Parameters

ZeusRunning
Instance

Trustee

Trustees provide their
preferences and reach
a consensus through
the PANORAMIX wizard

The parameters are
accompanied by a
proof of agreement
between trustees

Figure 3.3: Trustees using the panoramix Trust Control Panel.

the ballot box as it was collected throughout the voting process. The output of the last mixer
is the ballots to be decrypted in order to obtain the final results.

Each mixer provides a proof that they have performed the shuffle correctly, and that in
doing so they have preserved the original contents of the ballots. Therefore, we do not have
to trust any of them for correctness. However, the shuffle is only effective if the mixer keeps
the shuffle details secret. Therefore, we have to trust that at least one of the mixers is honest,
which is the basic security requirement by Zeus: anonymity is guaranteed as long as at least
one of the mixers is honest, even if all the other misbehave.

Figure 3.4: panoramix Trust Control Panel: Trustees record their identities.

Moreover, the input of the mix-net has to be encrypted, and the output decrypted. The
cryptographic operation of verifiable shuffling dictates the cryptography used for the encryption
of the ballots and their decryption after mixing. The cryptographic shuffles can only shuffle ci-

– 15 of 31 –

D5.4 - FINAL SERVICE

phertexts from a specific cryptosystem. Therefore, the trustees must use the same cryptosystem,
with the same parameters, as the mixers.

Additionally, trustees share a similar trust requirement as the mixers. Trustees provide
cryptographic zero-knowledge proof for their ownership of their key shares and the correctness
of their decryption. However, if the trustees decrypt anything other than the mixed ballots, or
they do not check the shuffle proofs before decrypting, the secrecy of the election is compromised.
Therefore, we must trust that at least one of the trustees is honest; or, in other words, Zeus
guarantees correct decryption as long as at least one of the trustees is honest.

Because of the similar trust requirements for both trustees and mixers, the two roles can be
combined so that the need to trust is reduced. It is safer to have to trust at least one of the
trustee-mixers than it is to trust at least one trustee and at least one mixer. Having to trust
both trustees and mixers is a stronger security assumption.

Following the above, as a design choice to enhance security using panoramix, we have fused
the roles of trustee and mixer, at least from the perspective of the controlling end-user, providing
a streamlined, user-friendly experience that can help non-experts configure their election while
guaranteeing security.

The practical details of this architectural choice are presented in Subsection 3.4, where the
election process has been mapped in a sequence of configuration choices across different stages.

Figure 3.5: panoramix Trust Control Panel: The first trustee proposes a specific signing
cryptosystem (ecdsa – Elliptic Curve Digital Signature Algorithm).

3.4 Architectural Specification of a Zeus Election Process

In this section we discuss details on the software integration and provide an architectural spec-
ification walkthrough of a trustee.

3.4.1 Software Integration

The “Trust Control Panel” depicted in Figures 3.4 to 3.8 is a user-friendly name for the
panoramix wizard after it has been integrated and packaged as a Zeus component. The
panoramix framework allows applications to provide specifications for the configuration op-
tions that have to be presented to the persons that control important parts of the process (such
as the mixer servers, or additionally in the case of Zeus, the trustees).

– 16 of 31 –

D5.4 - FINAL SERVICE

All parties must agree on the exact same parameters that are then enacted by the application.
The panoramix wizard consists of a back-end, the panoramix local agent as was described
since the first versions of the architecture, and a user-friendly front-end that is controlled by
the back-end agent. This provides flexibility to either deploy the wizard locally at the trustee’s
computer, or deploy the wizard at a remote trusted server, while retaining the ability to control
it through a graphical user interface.

The screen-shots in the figures are from a Trust Control Panel user interface that has been
integrated for a demonstrator election.

Figure 3.6: panoramix Trust Control Panel: The trustees move on to configure the election
parameters.

3.4.2 Architectural Specification Walkthrough

In this section we describe the specification for the Trust Control Panel of a Zeus trustee. This
specification corresponds to the important architectural parts from the trustee point of view,
that is, from the view point of the important choices and agreements that have to be made
by distributed independent participants in order to guarantee proper election process. The
reader may either browse through the screen-shots or the configuration integration reference
document that is listed in the next section. Note that we also provide technical details regarding
specifications in the Appendix.

The election process is split into seven stages, A through G:

Stage A: General cryptography setup and trustee registration (Figures 3.4, 3.5).

Trustees, mixers, and other important actors in the process must be authenticated by
their cryptographically secure signature for every important action or communication
they make. The cryptographic setup for this functionality does not depend on the actual
cryptography used for encrypting, mixing, and decrypting votes. Nevertheless, it is an
important security configuration and participants must be able to inspect and ensure that
strong enough technology is being used according to their specific use-case need.

Besides setting up this general cryptography setup, the identities of the trustees themselves
have to be registered as the controlling actors of every important choice in the following
steps.

– 17 of 31 –

D5.4 - FINAL SERVICE

Figure 3.7: panoramix Trust Control Panel: The Trustees indicate if they are going to take
part on the mixing process.

Stage B: Setup election cryptography, trustee-shared election key, type of mixnet (Figures 3.6, 3.7).

The executive power distributed to trustees is possible through the cryptographic technol-
ogy of secret sharing, applied on the private key of the election. In effect, this means that
each trustee controls part of the secret key of the electoral process. The public key of the
election is a combination of the distributed secret private keys. All votes are encrypted
using the combined election public key. The decryption of any vote requires the consent
and action of every trustee to use their secret to produce partial decryptions. Using this
power, any of the trustee can technologically prevent the election process from producing
any result whatsoever. Therefore, the production of the election key in this stage is one
of the most important trust acts in the process.

For mathematical reasons, the cryptosystem used to create the election public key must
be exactly the same as the cryptosystem used by the mixnet. Therefore the mixnet type
must be decided in this stage along with the election key.

Stage C: Mixer registration (Figure 3.8).

Technically, the set of mixers can be independent from the set of the trustees. However,
as analyzed previously, to minimize the trust assumptions and related risks, the ideal
configuration is to assign trustee and mixer roles to the same group of people.

At this stage, the identities of the people responsible for the independent mixers have
to be registered so that they can be known for the rest of the process, in order to be
accountable, and so that they can acquire the necessary executive power to contribute to
the election process.

Stage D: Election ballot, poll event setup, voter registration.

This stage defines all the election attributes that are important for the application se-
mantics of the actual election process. The record of these choices is critical for the
interpretation of the results and for every auditing that is made to verify them, or to
investigate any incident or anomaly.

Stage E: Voting.

– 18 of 31 –

D5.4 - FINAL SERVICE

During this stage votes are received by the ballot box. The important outcome for this
stage is a strong commitment to the exact contents of the ballot box to be processed.
Again, record of this information is essential for the verification of results or for investi-
gating by auditors.

Figure 3.8: panoramix Trust Control Panel: The trustees move on to configure the election
parameters.

Stage F: Mixing.

Encrypted ballots go through a pipeline of mixers that shuffle their input and forward
the result for further mixing along with cryptographic proofs of correctness. Mixers, just
as trustees, are responsible for the secrecy of the votes. Therefore, it is important for
them to verify the entire election process until their input, including the shuffle proofs of
preceding mixers. Failure to do that may lead to them not actually participating in the
election process they have committed to protect.

Stage G: Decryption of results.

In this final stage, the trustees must make the ultimate verification of everything up to
this point before they use their secret to enable decryption of the results. Failure to verify
means, (a) that they may be led to decrypt ciphertexts that have not been mixed and
therefore their secrecy is not protected by any mixers, or (b) that a mixer manufactured
their own encrypted ballots in replacement of the legitimate ones, therefore compromising
the entire election result. It is critical that trustees do not allow their secret key to be
used in unverified, untrusted ballots.

– 19 of 31 –

D5.4 - FINAL SERVICE

– 20 of 31 –

4. Integrated mix-nets and Evaluation

To evaluate the final service we used two mix-nets: (a) the Verificatum Mix-Net (vmn) [2], (b)
a prototype mix-net based on the re-encryption mix-net designed by Fauzi et al. [6] (also known
as hat-shuffle). We have also developed test suites to validate the functionality of the service.

We describe the integration of the two mix-nets and the corresponding benchmarking we
performed after their integration to evaluate their efficiency. Note that these are the latest mix-
nets that were integrated, which is why we focus on them here. Recall that we have previously
also ported the Sako-Kilian re-encryption mix-net [5] and the Bayer Groth mix-net (as discussed
in D5.3).

4.1 The Hat-shuffle Mix-Net

The hat-shuffle mix-net was developed in the context of panoramix [1]. Specifically, it is
a non-interactive zero-knowledge proof (nizk) [4] shuffle argument. We discussed the initial
integration in Deliverable 5.3. Since then, various software updates have taken place, hence we
provide the evaluation done with the latest version of the mix-net.

One of the key components of this mix-net involves a common reference string (crs). Specif-
ically, a crs model incorporates the assumption of a trusted setup in which all involved entities
get access to the same string crs taken from some distribution D. Schemes proven secure in
the crs model are secure given that the setup was performed correctly, which actually happens
in panoramix as we have already explained.

25000 50000 75000 100000 125000 150000 175000 200000
Votes

200

400

600

800

1000

Pr
ov

e
+

Ve
rif

y
(s

ec
on

ds
)

Protocol Benchmark

Figure 4.1: Relationship between number of votes and time.

D5.4 - FINAL SERVICE

0 25000 50000 75000 100000 125000 150000 175000 200000
Votes

0

1000000

2000000

3000000

4000000

5000000

6000000

kb
yt

es

Memory Consumption
prover
verifier
decryption

Figure 4.2: Relationship between number of votes and memory.

We have performed extensive tests regarding the performance of the hat-shuffle integration.
More specifically, we have examined the generation and serialization of the crs. In addition, we
have written benchmarks for all the phases of the mix-net including (1) encryption, (2) proving,
(3) verification and (4) decryption. Our benchmarks included a different number of votes each
time. We started with 10k votes, continued with 100k, then 200k and finally 1m votes. Our
tests included settings where threads were running in parallel. Our experiments were performed
on a run-of-the-mill Ubuntu machine (16.04) with 4 cpus, 8gb ram and 40gb system disk.

Figure 4.1 presents the different sizes of the files that are generated, for the different numbers
of votes. We observe that there is a linear correlation and as the message number becomes
larger the size increases too. This linearity is important because it proves that the theoretical
scalability of the algorithm is indeed achieved in practice.

A linear relationship also exists between memory consumption and number of votes. Fig-
ure 4.2 illustrates the relationship of these two. To measure the relationship we used the same
methodology as the one described above, specifically, measuring the memory consumption for
a different number of votes.

We need to highlight here that hat-shuffle handles 1m votes efficiently as seen in Table 4.1.
Recall that Zeus (the e-voting platform involved in wp5), uses a standard mix-net implemen-
tation that is simple, but not very efficient; only a few thousand voters can be handled within
an acceptable amount of time (about an hour). Now, by using hat-shuffle through panoramix,
Zeus will be able to support millions of voters as set out in the beginning of the project.

4.2 The Verificatum Mix-net

Verificatum is an open-source re-encryption mix-net written in Java that can be employed in on-
line voting. As we mentioned in Chapter 2, the integration of Verificatum is an example of how
a mix-net designed outside the panoramix project can be used effectively on the panoramix
platform.

A typical Verificatum workflow is that the operators of the mixing nodes have a physical
meeting where they agree upon common parameter files and then employ them on their re-
spective servers during deployment. This is no longer necessary in the context of our final

– 22 of 31 –

D5.4 - FINAL SERVICE

Table 4.1: Hat shuffle mix-net benchmark

module phase 1.000.000 votes

crs
Generation 218.1849s
Serialization 152.4044s

Total 370.5893s

generate votes 66.1600s

encrypt

CRS Deserialization 31.2038s
Votes Deserialization 4.0429s

Encryption 2700.1721s
Ciphertexts Serialization 50.7118s

Total 2786.1306s

prove

CRS Deserialization 56.2043s
Ciphertexts Deserialization 45.9318s

Prove 389.7539s
Proofs Serialization 101.1021s

Total 603.2646s

verify

CRS Deserialization 58.4569s
Ciphertexts Deserialization 42.6796s

Proofs Deserialization 103.6393s
Verify 1655.6244s

Total 1860.4001s

decrypt

Votes Deserialization 2.0494s
Ciphertexts Deserialization 36.8059s

Table 408.1059s
Decryption 381.1743s

Votes Serialization 0.5766s

Total 828.7121s

mix * 41:03m

* mix = Prove + Verify
** MacOSX: 16GB RAM + SWAP Memory
-P: Running Parallel Threads
vm specs: Ubuntu LTS 16.04 (image), 4 (CPUs), 8192MB (RAM), 40GB
(System Disk)

service because of the functionalities provided by the panoramix Trust Control Panel, which
we described earlier.

The Verificatum servers automatically create shared keys for encryption and decryption of
ciphertexts, proceed with the mixing of ciphertexts, check each other’s mathematical proofs, and
make the final results available locally to each node administrator. Nevertheless, to integrate
Verificatum into a generic panoramix framework we had to isolate the actual mixing phase
from the typical workflow of the mix-net. In particular, the encryption keys are not generated
by Verificatum itself but they are part of the initial deployment parameters agreed upon by
all contributors. In addition, Verificatum has its own communication system to coordinate
all mixnet servers at runtime. This offers panoramix no control over the workflow. Instead,
Panoramix only deploys Verificatum as multiple single-node mix-nets, and uses its proof checker
to link and verify the mix contributions into a proper mix-net. Since encryption keys are
not generated and managed by Verificatum, Verificatum is asked to skip decryption, which is
handled separately by panoramix.

We have evaluated Verificatum based on the testbed that we used for hat-shuffle. Table 4.2
shows the efficiency of Verificatum and its functionalities for different numbers of votes. Again,
it is clear that the number of votes that can be anonymized has reached the million point
threshold.

– 23 of 31 –

D5.4 - FINAL SERVICE

votes initialization mix ciphertexts verify

1000000 00:54 18:42 01:32 18:42
500000 00:27 08:04 00:43 08:04
100000 00:08 01:38 00:10 01:38
50000 00:06 00:53 00:06 00:53
10000 00:03 00:17 00:02 00:17
5000 00:03 00:12 00:02 00:12
1000 00:02 00:07 00:00 00:07

10000 00:04 00:43 00:02 00:43

Table 4.2: Verificatum efficiency benchmarks.

– 24 of 31 –

D5.4 - FINAL SERVICE

5. Conclusions

In this deliverable, we discussed the final version of the integrated service developed in the con-
text of Work Package 5 and described in Deliverables 5.2 and 5.3. We presented the integration
details of the panoramix framework, including the refactoring of the Zeus process to allow
specification of the critical configuration parameters that have to be agreed by trustees through
the panoramix tools to achieve a user-friendly but secure way for non-experts to control and
safeguard elections. At the core of the election process, we have integrated a selection of mul-
tiple mix-nets, and we have tested and validated those mix-nets in the context of the election
process.

In this final round of development, we worked out finer but important details such as a
user-friendly visual representation of the distributed control, negotiation, and consensus that
the independent trustees are responsible to exercise. These extra steps of process specification
and end-user engagement make the end-to-end verifiability of the process more practical and
less theoretical to the non-expert end-user. Therefore, along with the scalability of the mixing
that was achieved by integrating Verificatum [2], and panoramix-developed Hat-Shuffle [1],
we have made solid progress to achieve our initial goal to make the process more robust and
dependable so that end-users do not hesitate to take on the role of mixer or trustee, fearing
neither technical incompetence, nor unmanageable responsibility, while being able to scale to
elections involving millions of voters. Notably, our benchmarking in the order of millions reflects
production conditions, as promised in the grant agreement for D5.4.

– 25 of 31 –

D5.4 - FINAL SERVICE

– 26 of 31 –

Bibliography

[1] Hat-shuffle implementation. https://github.com/grnet/hat_shuffle, 2018. [Online; ac-
cessed 15-September-2018].

[2] The verificatum mix-net (vmn). https://www.verificatum.com/, 2018. [Online; accessed
15-September-2018].

[3] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In Proceedings of the 31st Annual International Conference on Theory and Appli-
cations of Cryptographic Techniques, EUROCRYPT’92, pages 263–280, Berlin, Heidelberg,
2012. Springer-Verlag.

[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pages 103–112, New York, NY, USA, 1988. ACM.

[5] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, February 1981.

[6] Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. An efficient pairing-based shuffle argu-
ment. In Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Application of Cryptology and Information Security, 2017, 2017.

[7] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas Zacharias.
On the security properties of e-voting bulletin boards. IACR Cryptology ePrint Archive,
2018:567, 2018.

[8] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayiotis Tsanakas. From
Helios to Zeus. In 2013 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013.

https://github.com/grnet/hat_shuffle
https://www.verificatum.com/

D5.4 - FINAL SERVICE

– 28 of 31 –

A. Zeus Configuration Integration Ref-
erence

We provide the specifications that correspond to the configuration part and the stages discussed
in Subsection 3.4.

TYPES = ['string', 'int', 'datetime', 'dict']

ACTIONS = ['choices', 'compute_element', 'compute']

MODES = ['interactive', 'auto']

TRUSTEE_OPTIONS = {

'stage_A': {

'signing_cryptosystem': {

'type': 'string',

'action': 'choices',

'choices': ['ECDSA', 'RSA'],

},

'trustees': {

'type': 'dict',

'action': 'compute_element',

'label': 'Join',

'function': 'set_signing_crypto',

'undo': 'unregister_crypto',

'params': ['signing_cryptosystem'],

'icon': 'playlist_add'

},

},

'stage_B': {

'stage_A_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_A'},

'key_label': 'Trustees consensus ID',

},

'election_cryptosystem': {

'type': 'string',

'action': 'choices',

'choices': ['ElGamalIntegers', 'ElGamalCurves'],

},

'public_shares': {

'type': 'dict',

'action': 'compute_element',

'label': 'Add Share',

'function': 'set_election_public',

'undo': 'unset_election_public',

'params': ['election_cryptosystem'],

},

'election_name': {'type': 'string'},

'no_of_mixers': {'type': 'int'},

'mixnet': {

'type': 'string',

'action': 'choices',

D5.4 - FINAL SERVICE

'choices': ['SakoKilian', 'HatShuffle', 'Verificatum'],

},

},

'stage_C': {

'stage_B_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_B'},

'key_label': 'Election consensus ID',

},

'mixers': {

'type': 'dict',

'action': 'compute_element',

'label': 'Join',

'function': 'get_signing_key',

'params': [],

},

},

'stage_D': {

'stage_C_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_C'},

'key_label': 'Mixers consensus ID',

},

'opens_at': {'type': 'datetime'},

'closes_at': {'type': 'datetime'},

'candidates': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'hash_candidates',

},

'voters': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'hash_voters',

},

},

'stage_E': {

'stage_D_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_D'},

'key_label': 'Booth consensus ID',

},

'votes': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'hash_votes',

},

},

'stage_F': {

'stage_E_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

– 30 of 31 –

D5.4 - FINAL SERVICE

'params': ['stage'],

'actuals': {'stage': 'stage_E'},

'key_label': 'Votes consensus ID',

},

'mixed_data': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'verify_all_mixes',

},

},

'stage_G': {

'stage_F_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_F'},

'key_label': 'Mixes consensus ID',

},

'decryption_factors': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'verify_all_decryption_factors',

},

},

}

MIXER_OPTIONS = {

'stage_C': {

'stage_B_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_B'},

},

'mixers': {

'type': 'dict',

'action': 'compute_element',

'function': 'set_signing_crypto',

'undo': 'unregister_crypto',

'params': ['cryptosystem', 'path'],

},

},

'stage_F': {

'stage_E_result': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'get_stage_result',

'params': ['stage'],

'actuals': {'stage': 'stage_E'},

},

'mixed_data': {

'type': 'string',

'action': 'compute',

'mode': 'auto',

'function': 'verify_all_mixes',

},

},

}

– 31 of 31 –

	Executive Summary
	Introduction
	Fulfilled Requirements
	E-voting Context Roles
	Authentication and Key Management
	Usable Election Configuration
	Usable Mix-net Configuration
	Integrated Mix-nets

	PANORAMIX Integration with Zeus
	Overall Architecture
	Integration with PANORAMIX Services
	Mix-net and Trustees
	Architectural Specification of a Zeus Election Process
	Software Integration
	Architectural Specification Walkthrough

	Integrated mix-nets and Evaluation
	The Hat-shuffle Mix-Net
	The Verificatum Mix-net

	Conclusions
	Zeus Configuration Integration Reference

