
George Danezis—Ed. (UCL)
Vasilios Mavroudis (UCL)
Sebastian Meiser (UCL)
Michał Zając (UT)
Rafael Galvez (KUL)
Thomas Zacharias (UEDIN)

Final report
Deliverable D3.3

February 28, 2018
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

Ref. Ares(2018)1379685 - 13/03/2018



D3.3 - Final report

– 2 of 210 –



D3.3 - Final report

Revision History

Revision Date Author(s) Description
0.1 2018-02-09 Vasilios

Mavroudis
Initial Deliverable compilation.

0.2 2018-02-20 George Danezis Internal WP3 UCL Review.
0.3 2018-02-23 Aggelos Kiayias External Review (UEDIN).
0.4 2018-02-26 Mirjam Wester Final Review by Coordinator.
0.5 2018-03-03 Vasilios

Mavroudis
Final WP3 UCL Review.

1.0 2018-03-09 Mirjam Wester Final version submitted to EC.

– 3 of 210 –



D3.3 - Final report

– 4 of 210 –



D3.3 - Final report

Executive summary

Deliverable D3.3 summarizes the research & development contributions of the PANORAMIX
project partners involved in Work Package 3 (WP3) over months M20–M30 of the project. The
work-package as a whole provides solutions to open research problems relating to mix nets that
are blocking or otherwise impeding the adoption of advanced mix network designs, within the
context of the project, and within the wider community.

Part I presents the project advances in relation to Non-Interactive Zero Knowledge shuffle proofs,
cryptographic mechanisms that ensure the correctness of mixing operations, as necessary for
applications to electronic voting; Part II and Part III present the evaluation of anonymous com-
munication systems, modelled on the PANORAMIX designs, using advanced attack techniques
based on machine learning, and cryptographic techniques to secure mix network routing; Finally,
Part IV presents state of the art anonymity definitions and an important resulting new theorem,
that formally captures the fundamental trade-offs between anonymity, and system overheads
such as bandwidth and latency.

– 5 of 210 –



D3.3 - Final report

– 6 of 210 –



D3.3 - Final report

Contents

Executive summary 5

1 Introduction 8

I Non-interactive Zero-Knowledge Proofs 13

2 Efficient non-interactive zero-knowledge shuffles 15

3 Secure parameter generation 31

4 Efficient Designated-Verifier Zero-Knowledge Proofs 44

II Traffic & Routing Analysis 69

5 Multiparty Routing: Secure Routing for Mixnets 71

III Communication Patterns & Fingerprinting Techniques 97

6 Automated Website Fingerprinting through Deep Learning 99

7 Website Fingerprinting Defenses at the Application Layer 125

IV Optimal & Adaptive Mixnet Designs 155

8 Anonymity trilemma: Anonymity, Bandwidth overhead, Latency 157

9 A cryptographic framework for the privacy of email ecosystems 194

– 7 of 210 –



D3.3 - Final Report

1. Introduction

This is deliverable D3.3 from the EU PANORAMIX project, and concludes the activity of Work
Package 3 relating to the research and advanced development support, largely from academic part-
ners. The work-package as a whole provides solutions to open research problems relating to mix
nets that are blocking or otherwise impeding the adoption of advanced mix network designs, within
the context of the project, and within the wider community. The precise commitment underlying
D3.3 is summarized in the project proposal as:

Deliverable D3.3 (Final report) final iteration of the NIZK shuffle proof together with security
analysis, and an implementation; validation of mix-net design options and refinement of definitions
to suit other WPs. [M30]

1.1 Outline of the deliverable

The structure of the deliverable follows closely the description of work as outlined above. In this
section, we relate the research papers and technical reports produced to each of the tasks of WP3,
and discuss how they relate to deliverable D3.3.

Part I presents the project advances in relation to NIZK shuffle proofs, cryptographic mecha-
nisms that ensure the correctness of mixing operations, as necessary for applications to electronic
voting; Part II and Part III present the evaluation of anonymous communication systems, modeled
on the PANORAMIX designs, using advanced attack techniques based on machine learning, and
cryptographic techniques to secure mix network routing; Finally, Part IV presents state of the art
anonymity definitions and an important resulting new theorem, showing that there is a fundamental
trade-off between anonymity, and systems overheads such as bandwidth and latency.

1.2 The WP3 results in PANORAMIX and beyond

The results from WP3 directly support other work packages within the project, and are also high
quality research results that will support wider engineering and research in the space of anonymous
communications. WP4 implements the techniques presented in Part I, as part of supporting the
electronic elections use-case fully developed in WP5. WP4 designs, and in particular the Katzenpost
mix network, also support cover traffic regimes to foil traffic analysis attacks presented in Part III,
that directly support the messaging use-case elaborated in WP7. Part II presents an alternative
design strategy for messaging and other mix networks – which can in the future be integrated into
practical systems. Finally, the privacy definitions in Part III provide the foundation for how to
evaluate the security of mix networks across WP5, WP6 and WP7, how anonymity degrades, and
fundamental trade-offs with other desirable properties of networked systems.
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Besides the practical relevance to the PANORAMIX project, we are proud to conclude the work
in WP3 with a sense that the outputs produced will have a lasting impact beyond the project
timeline. In particular the work presented in this deliverable has appeared in very well established
computer security and cryptography conferences and journals, such as AsiaCrypt, Conference on
Computer and Communications Security, RSA Conference, the Proceedings of Privacy Enhancing
Technologies, ACM Transactions on Internet Technology, Network and Distributed System Security
Symposium. Besides the dissemination value of such publications, subjecting key aspects of the
PANORAMIX innovation through scientific peer review, provides a high degree of external valida-
tion for the results presented. This external validation is complementary to the input from partners,
and the peer review this specific deliverable has benefited from.

1.3 WP3 tasks and mapping to Deliverable D3.3

In this section, we relate each chapter of this deliverable to the WP3 tasks, and summarize the
key contributions to the PANORAMIX project. For each part of the deliverable we introduce
some background information, provide the definitions of the relevant tasks and summarize the key
contributions of our work.

1.3.1 Part I – Non-interactive Zero-Knowledge Proofs

After the Snowden revelations, there has been a recent surge of interest in constructing crypto-
graphic primitives and protocols secure against active subversion. In the context of PANORAMIX
objectives, it seems crucial to provide a secure parameter generation for the protocols developed
during the project. Especially taking into account that the proposed zero-knowledge arguments
were shown secure in the common reference string (CRS) model, that relies on the honest genera-
tion of the CRS. Through WP3 we will disseminate to more use-case oriented packages like WP5
(e-voting). Our new shuffle arguments were motivated by two factors: 1. Such arguments are crucial
for providing privacy in mix networks, especially in the use case of e-voting, 2. Known solutions
are usually not efficient enough. In particular, we needed a new argument that scales for a network
where the number of messages traversing the mix goes into hundreds of thousands or even millions.
Otherwise the whole system would become inefficient with shuffling appointed as a bottleneck, what
would deteriorate the usability of the system dramatically.

Definition of Task 3.2.3. The results of WP3.2 will be validated by (a) peer review: that is, by
submitting a research paper with a description of the proposed NIZK shuffle proof to one of the top
conferences in cryptography or data security, and (b) efficiency and basic correctness test: this will
be validated within by an implementation. This subtask starts in parallel with subtask 3.2.2. The
main deliverable of this subtask is a result of this validation, consisting of a research paper (that
describes the final version of the NIZK shuffle proof together with security proofs; not necessarily
published yet) together with an implementation and a short description of thereof.

In compliance with the requirements of the validation Task 3.2.3, we published the following
papers in top conferences and journals:

• P. Fauzi and H. Lipmaa “Efficient Culpably Sound NIZK Shuffle Argument Without Random
Oracles.” In: Sako K. (eds) Topics in Cryptology - CT-RSA 2016. Lecture Notes in Computer
Science, vol 9610. 2016.

– 9 of 210 –



D3.3 - Final Report

• P. Fauzi, H. Lipmaa, and M. Zając “A Shuffle Argument Secure in the Generic Model.” In
Proceedings, Part II, of the 22nd International Conference on Advances in Cryptology —
ASIACRYPT 2016.

• H. Lipmaa “Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs.” AFRICACRYPT
2016. Lecture Notes in Computer Science, vol 9646. 2016.

• H. Lipmaa “Optimally Sound Sigma Protocols Under DCRA.” 21st International Conference
on Financial Cryptography and Data Security 2017.

• H. Lipmaa and K. Pavlyk “Simpler Rate-Optimal CPIR Protocol” 21st International Confer-
ence on Financial Cryptography and Data Security 2017.

• P. Fauzi, H. Lipmaa, J. Siim and M. Zając “An Efficient Pairing-Based Shuffle Argument”
ASIACRYPT 2017.

• P. Chaidos and G. Couteau. “Efficient Designated-Verifier Non-Interactive Zero-Knowledge
Proofs of Knowledge”, under submission 2017.

1.3.2 Parts II & III – Traffic & Routing Analysis and
Communication Patterns & Fingerprinting Techniques

For the validation Task 3.1.3, we first proposed a series of techniques for traffic and routing analysis,
communication patterns inference and fingerprinting and subsequently used those insights to develop
efficient countermeasures.

Definition of Task 3.1.3. This task will look at validating both the security and the performance
of different design options for mix-nets, including decryption mix-net, re-encryption mix nets and
hybrid designs. The security evaluation will focus on rigorous cryptographic arguments of security,
as well as the application of modern metrics for the measurement of traffic analysis resistance. The
performance evaluation will look at key figures of merit for networks such as latency, bandwidth
overhead, and the effect of different optimizations.

Part of this work is outlined in Part II, we released the largest web-fingerprinting dataset ever
gathered to date. Our closed-world dataset consists of 900 websites, with traffic traces generated by
2,500 visits each. Our open-world dataset is based on 400,000 unknown websites and 200 monitored
websites. We made the generated dataset publicly available, allowing researchers to replicate our
results and systematically evaluate new approaches. We then provide a complete overview of existing
works and measure their effectiveness, by reevaluating many of them on our dataset and reproduce
their results. Moreover, we perform the first systematic exploration of state-of-the-art deep learning
(DL) algorithms applied for fingerprinting, and introduce new techniques that reach a high success
rate, comparable to the state-of-the-art techniques. Our published papers and technical reports
relevant to this task are:

• R. Jansen, M. Juarez, R. Gálvez, T. Elahi, and C. Diaz, “Inside Job: Applying Traffic Analysis
to Measure Tor from Within”, in Network and Distributed System Security Symposium, IEEE
Internet Society, 2018.

• F. Shirazi, M. Simeonovski, M. Asghar, M. Backes, and C. Diaz, “A Survey on Routing in
Anonymous Communication Protocols”, to appear at ACM Computing Surveys (CSUR), 2018.
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• F. Shirazi, E. Andreeva, M. Kohlweiss, and C. Diaz, “Multiparty Routing: Secure Routing for
Mixnets”, Technical Report, under submission, 2018.

• R. Gálvez and S. Gurses, “The Odyssey: modeling privacy threats in a brave new world”,
Technical Report, under submission, 2018.

Based on our study on traffic analysis and fingerprinting, we first introduce the first implemen-
tation of a server-side web-fingerprinting defense and a simple yet effective lightweight client-side
defense, and then explore the space of application-layer defenses specifically designed to counter
de-anonymization attacks in anonymous sites (Part III). As part of this work, we have collected the
largest (to the best of our knowledge) dataset of sizes and types of content hosted by Tor onion
sites. Finally, based on our traffic analysis, fingerprinting, and countermeasure effectiveness mea-
surements, we also proposed a multiparty routing, a novel type of anonymous routing that broadens
the design space with a fourth kind of routing and comes with important advantages over the
previous routing approaches. The papers corresponding this work are:

• E. Balsa, C. Pérez-Solà, and C. Diaz, “Towards Inferring Communication Patterns in Online
Social Networks”, ACM Transactions on Internet Technology 17(3), 2017.

• V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen, “Automated Feature
Extraction for Website Fingerprinting through Deep Learning”, in Network and Distributed
System Security Symposium, IEEE Internet Society, 2018.

• B. Overdorf, M. Juarez, G. Acar, C. Diaz, and R. Greenstadt, “How Unique is Your .onion? An
Analysis of the Fingerprintability of Tor Onion Services”, in ACM Conference on Computer
and Communications Security, ACM, pp. 2021-2036, 2017.

• G. Cherubin, J. Hayes, and M. Juarez, “Website Fingerprinting Defenses at the Application
Layer”, Proceedings on Privacy Enhancing Technologies 2017(2), pp. 187-204, 2017.

• F. Shirazi, E. Andreeva, M. Kohlweiss, and C. Diaz, “Multiparty Routing: Secure Routing for
Mixnets”, ArXiv preprint arXiv:1708.03387, 2017.

1.3.3 Part IV – Optimal & Adaptive Mixnet Designs

This part outlines the works that fall under Task 3.3.3. Initially, we confirm the previously con-
jectured relationship between bandwidth overhead, latency overhead and anonymity. We find that
there are fundamental bounds on sender and recipient anonymity properties of a protocol that
directly depend on the introduced bandwidth and latency overheads. To inform future mixnet de-
cisions and better quantify efficiency objectives, we derive upper bounds on anonymity as functions
of bandwidth overhead and latency overhead.

Definition of Task 3.3.3. At the validation stage we will apply the designs and evaluate the level
that they meet the stated objectives in the contexts of mix-nets. During validation we will employ
peer review, invoke the expertise of our advisory board and design simulations in order to establish
that the protocols meet their efficiency objectives.

In order for our model to be applicable in different scenarios, we consider two prominent adver-
sary classes: global passive network-level adversaries and strictly stronger adversaries that addition-
ally (passively) compromise some protocol parties (e.g., relays in case of Tor). Using this setup, we
analyze the trade-off between latency overhead and bandwidth overhead required to achieve strong
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anonymity, i.e., anonymity up to a negligible (in a security parameter η) chance of failure. We
also assess the practical impact of our results by analyzing prominent anonymous communication
protocols. Furthermore, we enable the security analysis of email ecosystems based on the standards
of state-of-the art cryptography. Using these techniques, we can formally analyse the anonymity
of the PANORAMIX email ecosystem and compare with the anonymity of other existing solutions.
The following works are currently in progress or are going through the peer-review process as part
of their submission to conferences:

• D. Das, S. Meiser, E. Mohammadi and A. Kate, “Anonymity Trilemma: Strong Anonymity,
Low Bandwidth Overhead, Low Latency — Choose Two”, 2018 IEEE Symposium on Security
and Privacy (SP), pp. 170-188, 2018.

• T. Zacharias and A. Kiayias, “E-Mail Anonymity Modelling”, Technical Report, 2018.
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2. Efficient non-interactive zero-knowledge
shuffles

2.1 Introduction

Consider the case of using mix-networks [12] in e-voting, where n voters individually encrypt their
vote using a blindable public-key cryptosystem and send the encrypted votes to a bulletin board.
After the vote casting period ends, the first mix-server gets all encrypted votes from the bulletin
board. The mix-servers are ordered sequentially, creating a mix-network, and it is assumed that
some of them are honest. The kth mix-server obtains input ciphertexts (Mi)

n
i=1, shuffles them,

and sends the resulting ciphertext tuple (M′i)
n
i=1 to the next mix-server. Shuffling means that

the mix-server generates a random permutation σ ←r Sn and a vector ~t of randomizers, and sets
M′i = Mσ(i) + Encpk(0; ti). 1

If at least one of the mix-servers behaves honestly, the link between a voter and his votes is
completely hidden. However, in the malicious model, a corrupt mix-server can do an incorrect
shuffle, resulting in a set of decrypted votes that do not reflect the original voters’ votes. Hence
there needs to be some additional steps to achieve security against corruption.

The cryptographically prudent way to proceed is to get each mix-server to prove in zero-
knowledge [25] that her shuffle was done correctly. The resulting proof is known as a (zero-knowledge)
shuffle argument. Based on earlier work [32, 39], in CT-RSA 2016, Fauzi and Lipmaa (FL, [17])
proposed the then most efficient shuffle argument in the common reference string (CRS, [10]) model
in terms of prover’s computation.2 Importantly, the FL shuffle argument is based on the standard
Elgamal cryptosystem. The culpable soundness [32, 33] of the FL shuffle argument is proven under
a knowledge assumption [14] and three computational assumptions. Intuitively, culpable soundness
means that if a cheating adversary produces an invalid (yet acceptable) shuffle together with the
secret key, then one can break one of the underlying knowledge or computational assumptions. The
later scheme, by Fauzi, Lipmaa and Zając [19] made shuffles more efficient for the verifier with
a small loss in the prover efficiency. The third scheme by Fauzi, Lipmaa, Siim, Zając [18] gives the
most efficient scheme for prover’s and verifier’s online computation for the time being.

1Throughout this chapter, we use additive notation combined with the bracket notation of [16]. We also denote
group elements by using the Fraktur script as in Mi or 0. Thus, adding Encpk(0; ti) results in a blinded version of
Mσ(i).

2Many random-oracle model shuffle arguments are known, such as [20, 2, 29]. We will not provide comparisons
with such arguments or discussions about the benefits of the CRS vs the random oracle model. We remark that the
CRS can be created by using multi-party computation, see, e.g., [6]
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2.1.1 Shuffles as a part of the PANORAMIX project

The design of efficient shuffle arguments is an important part of WP3. Through WP3 we will
disseminate to more use-case oriented packages like WP5 (e-voting). The requirement for new
shuffle arguments can be easily motivated twofold. The argument itself is crucial for providing
privacy of the mix network, especially in the use case of e-voting. On the other hand, known
solutions are usually not efficient enough. For a network where the number of messages to mix goes
into hundreds of thousands or even millions, new arguments were a must. Otherwise the whole
system would become inefficient with shuffling appointed as a bottleneck, what would compromise
usability of the system in a great manner.

As a technique to provide robust and private mixing, shuffle arguments are crucial for Tasks
3.1.1 (notions of unlinkability and anonymity) and 3.1.3 (security evaluation). Development of this
primitive was stated as of independent interest in Task 3.2. We justify the model we used as it is
stated in Task 3.2.1; propose shuffle arguments as required in Task 3.2.2. Furthermore, we validate
our results (Task 3.2.3) – all three proposed arguments were accepted to top-notch cryptographic
conferences: the argument by Fauzi and Lipmaa to CT-RSA and the arguments by Fauzi, Lipmaa
and Zając and Fauzi, Lipmaa, Siim and Zając to Asiacrypt. Task 3.3, focused on making mix
networks more efficient will benefit from the below results as well. We emphasize that proposed
protocols are currently the fastest CRS-based shuffle arguments (we motivated using this model
above).

Knowledge gained during designing these arguments has been proven useful in WP5 (Use case:
e-voting) Tasks: 5.1 (Requirement analysis and specification), 5.2 (Design), 5.3 (Validation and
product implementation). The arguments make it possible to process (i.e. mix, re-encrypt and
provide a proof) almost 100,000 ciphertexts in about 2minutes. Verification time for such an
amount of messages is under 3minutes. Both of these numbers were computed on a standard PC
with i5 processor and 8GB of RAM. We can easily assume that these numbers would be much
better if the computations are done on a server, what indeed is the case for e-voting. Furthermore,
since the numbers are not large, verification of the whole e-voting process could be processed on
a PC.

2.1.2 Previous work

During the PANORAMIX project the team working at the University of Tartu published three
shuffle-related articles, each of them in the top cryptographic conferences. Given that shuffles of
Fauzi, Lipmaa [17] and Fauzi, Lipmaa, Zając [19] were described in details in Deliverable 3.2, we
provide here only short description of these results.

Fauzi-Lipmaa shuffle argument

In Efficient Culpably Sound NIZK Shuffle Argument without Random Oracles [17] Fauzi and Lipmaa
proposed a new, more efficient, shuffle argument in the CRS model. Its online prover’s computational
complexity was dominated by only two (n+ 1)-wide multi-exponentiations, where n is the number
of ciphertexts. Compared to the previously fastest argument by Lipmaa and Zhang [39], it satisfied
a stronger notion of soundness (culpable soundness). While the new shuffle argument was still at
least 2 times slower than the most efficient known random oracle based shuffle arguments, it had
almost optimal online prover’s computation.
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Fauzi-Lipmaa-Zając shuffle argument

In A Shuffle Argument Secure in the Generic Model [19] Fauzi, Lipmaa and Zając proposed a
random oracle-less NIZK shuffle argument. It had a simple structure, where the first verification
equation ascertained that the prover has committed to a permutation matrix, the second verification
equation ascertained that the same permutation was used to permute the ciphertexts, and the third
verification equation ascertained that input ciphertexts were “correctly” formed. The argument had
3.5 times more efficient verification than the up-to-now most efficient shuffle argument by Fauzi and
Lipmaa [17]. Compared to the Fauzi-Lipmaa shuffle argument, they

1. removed the use of knowledge assumptions and prove that the scheme is sound in the generic
bilinear group model, and

2. proved the standard soundness, instead of the culpable soundness.

2.1.3 Fauzi-Lipmaa-Siim-Zając shuffle argument

In An Efficient Pairing-Based Shuffle Argument [18] Fauzi, Lipmaa, Siim and Zając tried to de-
termine whether it possible to construct a NIZK shuffle argument that shares the best features of
the FL and the FLZ shuffle arguments. That is, it would use standard Elgamal (and in only one
group), be (non-whitebox) sound, have linear-length CRS, have prover as efficient or better than in
the FL shuffle argument, and have verifier as efficient or better than in the FLZ shuffle argument.
The answer for the question was positive. They constructed a new pairing-based NIZK shuffle
argument that is more efficient than prior work in essentially all parameters. As in [17], they use
the Elgamal cryptosystem (with plaintexts in G2), which means that unlike [19], compatible voting
mechanisms are not restricted by the size of the plaintext space. Furthermore, they construct more
efficient subarguments, which sometimes leads to a significant efficiency gain. Since the CRS has
very few elements from G2, the new shuffle has much simpler soundness proofs than in the case of
the FLZ shuffle argument. Moreover, as in [32, 17] (but not in [39, 19]), they do not give the generic
adversary in the soundness proof access to the discrete logarithms of encrypted messages. Their
high-level approach in the shuffle argument is similar to the approach in the FL shuffle argument
except that we they use (significantly) more efficient subarguments.

Fauzi et al. first let the prover choose a permutation matrix and commit separately to its every
row. The prover then proves that the committed matrix is a permutation matrix, by proving that
each row is a unit vector, including the last row which is computed explicitly. Then they construct
a new unit vector argument based on the square span programs of Danezis et al. [15]; it is similar
to but somewhat simpler than the 1-sparsity argument of [19]. Basically, to show that a vector
~a is unit vector, they choose polynomials (Pi(X))i∈[0 .. n] that interpolate a certain matrix (and a
certain vector) connected to the definition of “unit vectorness”, and then commit to ~a by using a
version of the extended Pedersen commitment scheme, c =

∑n
i=1 ai[Pi(χ)]1 + r[%]1 for trapdoor

values (χ, %) and randomizer r. (This commitment scheme, though for different polynomials Pi(X),
was implicitly used first by Groth [31] in EUROCRYPT 2016, and then used in the FLZ shuffle
argument; similar commitment schemes have been used before [26, 30, 37].) The new unit vector
argument differs from the corresponding (1-sparsity) argument in [19] by a small optimization that
makes it possible to decrease the number of trapdoor elements by one. If the unit vector argument
for each row is accepting, it follows that the committed matrix is a permutation matrix [17]. The
knowledge-soundness proof of the new unit vector argument is almost trivial, in contrast to the very
complex machine-assisted knowledge-soundness proof in [19].

The authors then use the same high-level idea as previous NIZK shuffle arguments [32, 39, 17, 19]
to obtain a shuffle argument from a permutation matrix argument. Namely, they construct a
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verification equation that holds tautologically under a corresponding KerMDH [41] assumption.
That is, if the permutation matrix argument is knowledge-sound, the mentioned verification equation
holds, and the KerMDH assumption holds, then the prover has used his committed permutation
matrix to also shuffle the ciphertexts.

However, as in [32, 39, 17, 19], the resulting KerMDH assumption itself will not be secure if one
use here the same commitment scheme as before. Intuitively, this is since the polynomials Pi(X)
were carefully chosen to make the permutation matrix argument as efficient as possible. Therefore,
Fauzi et al. define an alternative version of the extended Pedersen commitment scheme with the
commitment computed as ĉ =

∑
ai[P̂i(χ)]1 + r[%̂]1 for trapdoor values (χ, %̂) and randomizer r.

Here, P̂i(X) are well-chosen polynomials that satisfy a small number of requirements, including
that {Pi(X)P̂j(X)}1≤i,j≤n is linearly independent.

Moreover, the authors need an efficient argument (that they call, following [17], a same-message
argument) to show that c and ĉ commit to the same vector ~a (and use the same randomness r)
while using different shrinking commitment schemes. They first write down the objective of this
argument as the requirement that

(
~a
r

)
belongs to a subspace generated by a certain matrix ~M . After

doing that, the authors use the quasi-adaptive NIZK (QANIZK, [34, 35]) argument of Kiltz and Wee
(EUROCRYPT 2015, [36]) for linear subspaces to construct an efficient same-message argument.
Since it additionally need to be knowledge-sound, the authors give a proof in GBGM.

The new consistency argument is similar to but again more efficient than the consistency ar-
guments of previous pairing-based shuffles. Here, the authors crucially use the fact that neither
the permutation matrix argument nor the same-message argument add “too many” G2 elements to
the CRS. Hence, while the Groth-Lu and FL shuffle arguments require two consistency verification
equations, for us it suffices to only have one. (The Lipmaa-Zhang [39] and FLZ shuffle arguments
have only one consistency verification equation, but this was compensated by using a non-standard
cryptosystem with ciphertexts of length 6.)

In fact, they generalize the consistency argument to prove that given a committed matrix ~E and
two tuples of ciphertexts ~M′ and ~M, it holds that Decsk( ~M′) = ~E ·Decsk( ~M). Moreover, they prove
that the consistency argument is culpably sound [32, 33] under a suitable KerMDH [41] assumption,
and prove that the concrete KerMDH assumption holds in the GBGM.

Finally, the authors give a standard (i.e., non-culpable) soundness proof for the full shuffle argu-
ment, assuming that the used commitment scheme is computationally binding, the same-message
argument and the permutation matrix argument are knowledge-sound, and the consistency argument
is culpably sound. Additionally, as in the FLZ shuffle argument, they use batching techniques [4]
to speed up verification time. However, they use batching in a more aggressive manner than in the
FLZ shuffle argument.

2.1.4 Efficiency Comparison.

Fauzi, Lipmaa, Siim, Zając in [18] provide an implementation of a pairing-based shuffle argument.
The implementation is built on top of the freely available libsnark library, [8]. In fact, the authors
implement two versions of th shuffle argument, where in the second version they switch the roles of
the groups G1 and G2. In the first case they get better overall prover’s computation, while in the
second case they get the most efficient online computation for both prover and verifier, and overall
the most efficient verifier.

Table 2.1 shows a comparison between both versions of the shuffle argument and prior state of
the art CRS-based shuffle arguments with either the best prover’s computational complexity or best
verifier’s computational complexity.

Hence, we for instance do not include in this comparison table prior work by Groth and Lu [32]
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Table 2.1: A comparison of the new NIZK shuffle argument and prior work by Fauzi and Lipmaa (FL,
[17]), and Fauzi, Lipmaa and Zając (FLZ, [19]). We include shuffling itself to the efficiency analysis
of communication and prover’s computation.

FL FLZ Current Work
Current Work
(G1/G2 switched)

|CRS| in (G1,G2,GT ) (6n+ 8, 2n+ 8, 1) (2n+ 6, n+ 7, 1) (4n+ 7, n+ 7, 1) (n+ 7, 4n+ 7, 1)
Communication (7n+ 2, 2n, 0) (5n+ 1, 4n+ 2, 0) (4n− 1, 3n+ 1, 0) (3n+ 1, 4n− 1, 0)

Prover’s computation

Exp. in (G1,G2) (2n− 1, 0) (2n, 0) (n, 0) (0, n)
Fb-exp. in (G1,G2) (8n− 2, 2n− 2) (4n− 1, 4n− 1) (3n− 1, 3n− 1) (3n− 1, 3n− 1)
M. exp. in (G1,G2) (6n+ 6, 2n+ 2) (3n+ 3, 5n+ 5) (n+ 1, 2n+ 2) (2n+ 2, n+ 1)
Units 4.84 5.34 2.87 4.25

Prover’s online computation

M. exp. in (G1,G2) (2n+ 2, 0) (3n+ 3, 3n+ 3) (0, 2n+ 2) (2n+ 2, 0)
Units 0.26 1.2 0.54 0.26

Verifier’s computation

Exp. in (G1,G2,GT ) (0, 0, 0) (7n+ 6, 7, 1) (n, 2n+ 3, 1) (2n+ 3, n, 1)
M. exp. in (G1,G2) (0, 0) (4n, 3n) (4n− 4, 0) (0, 4n− 4)
Pairing product 18n+ 6 3n+ 6 3n+ 6 3n+ 6
Units 38.52 14.75 12.98 12.02

Verifier’s online computation

Exp. in (G1,G2) (0, 0) (6n+ 3, 3) (0, 2n+ 1) (2n+ 1, 0)
M. exp. in (G1,G2) (0, 0) (3n, 3n) (0, 0) (0, 0)
Pairing product 8n+ 4 2n+ 3 2n+ 1 2n+ 1
Units 17.12 11.48 9.32 6.28

Lifted encryption No Yes No No
Soundness Culpable White-box Full Full

or Lipmaa and Zhang [39], since their shuffle arguments are slower than [17] and [19] in both prover’s
and verifier’s computation. We also do not include the shuffle argument of González and Ràfols [27]
since it has quadratic CRS length. In each row, the argument with best efficiency or best security
property is highlighted.

One should compare the number of units, which is a weighted sum of different exponentiations
and pairings, and hence takes into account the fact that (say) computations in G1 and G2 take
different time. Moreover, this table counts separately the number of general exponentiations, multi-
exponentiations, and fixed-base exponentiations, since the last two can be much more efficient than
general exponentiations. We take this into account by using different unit values for these three
types of exponentiations, see Table 2.2 for the number of units required for each type of operation.
Note that we use the implementation of each operation in libsnark to compute the number of units.

Table 2.3 gives the running time of the [18] shuffle argument (without and with switching the
groups) on our test machine. As seen from this table, the preliminary implementation enables one to
prove a shuffle argument in less than 1 minute and verify it in less than 1.5 minutes for n = 100 000.
After switching the groups, the prover’s online computation takes less than 15 seconds and online
verification takes less than 3 minutes for n = 300 000. This means that the new shuffle argument is
actually ready to be used in practice.
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Table 2.2: Efficiency comparison of various operations based on libsnark. Units in the last column
show efficiency relative to n exponentiations in G1 for n = 100, 000.

10,000 100,000 1000,000 units

Multi-exp. G1 0.26s 2.54s 24.2s 0.13
Fixed-base exp. G1 0.28s 2.40s 18.44s 0.12
Multi-exp. G2 0.65s 5.54s 48.04s 0.27
Fixed-base exp. G2 0.75s 5.62s 44.34s 0.28
Exp. G1 2.15s 20.29s 207.11s 1
Exp. G2 5.54s 51.10s 506.26s 2.52
Pairing product 4.38s 43.37s 471.72s 2.14
Pairings 10.24s 97.07s 915.21s 4.78
Exp. GT 10.65s 100.20s 1110.53s 4.94

Table 2.3: Efficiency of the shuffle implementation (in minutes and seconds) using the libsnark
library: the original argument (left) and the one with switched groups (right), for various values of
n.

10,000 100,000 300,000

CRS generation 1.7s 13.4s 37.0s

Prover 6.4s 56.7s 2m38.3s
Prover (online) 1.1s 10.2s 32.3s

Verifier 8.5s 1m27.8s 5m18.8s
Verifier (online) 5.7s 1m0.5s 3m29s

10,000 100,000 300,000

CRS generation 2.6s 20.5s 55.0s

Prover 9.1s 1m24.0s 4m2.4s
Prover (online) 0.5s 4.1s 13.5s

Verifier 8.3s 1m22.0s 4m49.2s
Verifier (online) 5.0s 49.9s 2m55.5s

2.2 Preliminaries

Let Sn be the symmetric group on n elements. For a (Laurent) polynomial or a rational function f
and its monomial µ, denote by coeffµ(f) the coefficient of µ in f . Write f(λ) ≈λ g(λ), if f(λ)−g(λ)
is negligible as a function of λ.

2.2.1 Bilinear maps

Let λ be the security parameter. Let q be a prime of length O(λ) bits. Assume use of a secure
bilinear group generator genbp(1λ) that returns gk = (q,G1,G2,GT , ê), where G1, G2, and GT are
three multiplicative groups of order q, and ê : G1 × G2 → GT . Here, we denote the elements of
G1, G2, and GT as in [1]1, [1]2, [1]T and by using the Fraktur typeface. We use additive notation
for groups operations. It is required that ê is bilinear (i.e., ê([a]1, [b]2) = ab · ê([1]1, [2]2)), efficiently
computable, and non-degenerate. Equivalently, we write also ê([a]1, [b]2) = [a]1 • [b]2 Assume that
[1]z is a generator of Gz for i ∈ {1, 2}, and set [1]T ← ([1]1 • [2]2).

For λ = 128, the current recommendation is to use an optimal (asymmetric) Ate pairing over
a subclass of Barreto-Naehrig curves. In that case, at security level of λ = 128, an element of
G1/G2/GT can be represented in respectively 256/512/3072 bits.
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2.2.2 Zero knowledge

Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language. A non-interactive zero-knowledge argument
system Ψ for R consists of six PPT algorithms:
CRS trapdoor generator: Ktc is a probabilistic algorithm that, given (R, zR) ∈ range(R(1λ)),

outputs a CRS trapdoor tc. Otherwise, it outputs a special symbol ⊥.
Simulation trapdoor generator: Kts is a deterministic algorithm that, given (R, zR, tc) where

(R, zR) ∈ range(R(1λ)) and tc ∈ range(Ktc(R, zR))\{⊥}, outputs the simulation trapdoor ts.
Otherwise, it outputs ⊥.

CRS generator: Kcrs is a deterministic algorithm that, given (R, zR, tc), where (R, zR) ∈ range(R(1λ))
and tc ∈ range(Ktc(R, zR)) \ {⊥}, outputs crs. Otherwise, it outputs ⊥. For the sake of effi-
ciency and readability, we divide crs into crsP (the part needed by the prover), crsV (the part
needed by the verifier), and crsCV (the part needed only by CV and not by P or V).

Prover: P is a probabilistic algorithm that, given (R, zR, crsP, x,w) for CV(R, zR, crs) = 1 and
(x,w) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, zR, crsV, x, π), returns either 0 (reject) or 1
(accept).

Simulator: Sim is a probabilistic algorithm that, given (R, zR, crs, ts, x) where CV(R, zR, crs) = 1,
outputs an argument π.

We also define the CRS generation algorithm K(R, zR) that first sets tc ← Ktc(R, zR) and then
outputs (crs ‖ ts)← (Kcrs ‖Kts)(R, zR, tc).

One can remove Sim from the definition of Ψ, and instead require that for each PPT verifier V∗

there exists a corresponding PPT simulator Sim.

2.2.3 Security definitions

An NIZK argument has to satisfy various security definitions. The most important ones are com-
pleteness (an honest prover convinces an honest verifier, and an honestly generated CRS passes the
CRS verification test), computational knowledge-soundness (if a prover convinces an honest verifier,
then he knows the corresponding witness), and zero knowledge.

Definition 1 (Perfect Completeness [31]). A non-interactive argument Ψ is perfectly complete for
R, if for all λ, all (R, zR) ∈ range(R(1λ)), tc ∈ range(Ktc(R, zR)) \ {⊥}, and (x,w) ∈ R,

Pr [crs← Kcrs(R, zR, tc) : V(R, zR, crsV, x,P(R, zR, crsP, x,w)) = 1] = 1 .

Definition 2 (Computational Knowledge-Soundness [31]). Ψ is computationally (adaptively) knowledge-
sound for R, if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr




(R, zR)← R(1λ), (crs ‖ ts)← K(R, zR),

r ←r RND(A), ((x, π) ‖w)← (A‖XA)(R, zR, crs; r) :

(x,w) 6∈ R ∧ V(R, zR, crsV, x, π) = 1


 ≈λ 0 .

Here, zR can be seen as a common auxiliary input to A and XA that is generated by using a
benign [9] relation generator; we recall that we just think of zR as being the description of a secure
bilinear group. A knowledge-sound argument system is called an argument of knowledge.

Next, we define statistically unbounded ZK.

Definition 3 (Statistically Unbounded ZK [28]). Ψ is statistically unbounded Sub-ZK for R, if
for all λ, all (R, zR) ∈ range(R(1λ)), and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs ‖ ts)← K(R, zR) : AOb(·,·)(R, zR, crs) = 1] .
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Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, zR, crsP, x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, zR, crs, ts, x).
Ψ is perfectly unbounded Sub-ZK for R if one requires that εunb0 = εunb1 .

2.2.4 Generic bilinear group model

The soundness of [19, 18] and new assumption in [17] are proven in the generic bilinear group model.
We start by picking a random asymmetric bilinear group gk := (p,G1,G2,GT , ê)← genbp(1λ, n).

Consider a black box B that can store values from additive groups G1,G2,GT in internal state vari-
ables cell1, cell2, . . . , where for simplicity we allow the storage space to be infinite (this only increases
the power of a generic adversary). The initial state consists of some values (cell1, cell2, . . . , cell|inp|),
which are set according to some probability distribution. Each state variable celli has an accompa-
nying type typei ∈ {1, 2, T,⊥}. We assume initially typei = ⊥ for i > |inp|. The black box allows
computation operations on internal state variables and queries about the internal state. No other
interaction with B is possible.

Let Π be an allowed set of computation operations. A computation operation consists of selecting
a (say, t-ary) operation f ∈ Π together with t+ 1 indices i1, i2, . . . , it+1. Assuming inputs have the
correct type, B computes f(celli1 , . . . , cellit) and stores the result in cellit+1 . For a set Σ of relations, a
query consists of selecting a (say, t-ary) relation % ∈ Σ together with t indices i1, i2, . . . , it. Assuming
inputs have the correct type, B replies to the query with %(celli1 , . . . , cellit). In the GBGM, we define
Π = {+, ê} and Σ = {=}, where

1. On input (+, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1+celli2 and typei3 ← typei1 .
2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ← ê(celli1 , celli2) and

typei3 ← T .
3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1. Otherwise return

0.
Since we are proving lower bounds, we will give a generic adversary A additional power. We assume
that all relation queries are for free. We also assume that A is successful if after τ operation queries,
he makes an equality query (=, i1, i2), i1 6= i2, that returns 1; at this point A quits. Thus, if
typei 6= ⊥, then celli = Fi(cell1, . . . , cell|inp|) for a polynomial Fi known to A.

2.3 FLSZ shuffle argument

In this section we show intuitions behind the new shuffle argument proposed by Fauzi, Lipmaa, Siim
and Zając in [18]. We also present and explain subarguments used therein.

Intuitively, in the new shuffle argument the prover first commits to the permutation σ (or
more precisely, to the corresponding permutation matrix), then executes three subarguments (the
same-message, the permutation matrix, and the consistency arguments). Each of the subarguments
corresponds to one check performed by the verifier (see Prot. 2). However, since all subarguments
use the same CRS, they are not independent. For example, the permutation matrix argument uses
the ((Pi(X))ni=1, X%)-commitment scheme and the consistency argument uses the ((P̂i(X))ni=1, X%̂)-
commitment scheme for different polynomials (P̂i(X))ni=1. Both commitment schemes share a part
of their trapdoor (χ), while the second part of the trapdoor is different (either % or %̂). Moreover, the
knowledge-soundness of the same-message argument is a prerequisite for the knowledge-soundness
of the permutation matrix argument. The verifier recovers explicitly the commitment to the last
row of the permutation matrix (this guarantees that the committed matrix is left stochastic), then
verifies the three subarguments.
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Kcrs(gk, n): Generate random (χ, β, β̂, %, %̂, sk) ←r Z3
q × (Z∗q)2 × Zq. Denote ~P = (Pi(χ))ni=1,

P0 = P0(χ), and ~̂
P = (P̂i(χ))ni=1. Let crssm ←

(
[(βPi + β̂P̂i)

n
i=1, β%+ β̂%̂]1, [β, β̂]>2

)
,

crspm ←
(

[1, P0, (((Pi + P0)
2 − 1)/%)ni=1,

∑n
i=1 Pi,

∑n
i=1 P̂i]1,

[P0,
∑n

i=1 Pi]2, [1]T

)
,

crscon ← [
~̂
P
%̂

]1. Set crs ←
(
pk = [1, sk]2, [

~P
% ]1, [

~P
% ]2, crssm, crspm, crscon

)
. Set td ← (χ, %̂).

Return (crs, td).
P(gk, crs, ~M ∈ Gn×2

2 ;σ ∈ Sn,~t ∈ Znq ):

1. For i = 1 to n− 1: // commits to the permutation σ
(a) ri ←r Zq; ri ← ri[%]1;
(b) Ai ← [Pσ−1(i)]1 + ri; bi ← [Pσ−1(i)]2 + ri[%]2; Âi ← [P̂σ−1(i)]1 + ri[%̂]1;

2. An ← [
∑n

i=1 Pi]1 −
∑n−1

j=1 Aj ; bn ← [
∑n

i=1 Pi]2 −
∑n−1

j=1 bj ;
3. Ân ← [

∑n
i=1 P̂i]1 −

∑n−1
j=1 Âj ;

4. rn ← −
∑n−1

i=1 ri; rn ← rn[%]1;
5. For i = 1 to n:

(a) di ← [βPσ−1(i) + β̂P̂σ−1(i)]1 + ri[β%+ β̂%̂]1;
(b) ci ← ri · (2(Ai + [P0]1)− ri) + [((Pσ−1(i) + P0)

2 − 1)/%]1;

6. rt ←r Zq; t← ~t>[
~̂
P ]1 + rt[%̂]1;

7. For i = 1 to n: t′i ← ti · pk;
8. ~M′ ← (Mσ(i) + t′i)

n
i=1; // Shuffling, online

9. ~N← ~r> ~M + rt · pk; // Online
10. πsm ← ~d; // Same-message argument
11. πpm ← ((bi)

n−1
i=1 ,~c); // Permutation matrix argument

12. πcon ← ((Âi)
n−1
i=1 , t,

~N); // Consistency argument
13. Return πsh ← ( ~M′, (Aj)

n−1
j=1 , πsm, πpm, πcon).

Protocol 1: The CRS generation and the prover of the new shuffle argument.

The full description of the new shuffle argument is given in Prot. 1 (the CRS generation and
the prover) and in Prot. 2 (the verifier). The CRS has entries that allow to efficiently evaluate
all subarguments, and hence also both commitment schemes. The CRS in Prot. 1 includes three
substrings, crssm, crspm, and crscon, that are used in the three subarguments. To prove and verify
(say) the first subargument (the same-message argument), one needs access to crssm. However, the
adversary of the same-message argument will get access to the full CRS. For the sake of exposition,
the verifier’s description in Prot. 2 does not include batching. An explanation of batching technique
is given in the full version of the paper.

We will next briefly describe the subarguments. Later, we will give more detailed descriptions
of each of them.

For the sake of completeness, we also present a batched version of Prot. 2 as Prot. 3.
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V(gk, crs, ~M; ~M′, (Aj)
n−1
j=1 , πsm, πpm, πcon):

1. Parse (πsm, πpm, πcon) as in the prover’s Steps 11–12, abort if unsuccessful;
2. Compute An, bn, and Ân as in the prover’s Steps 2 and 3;
3. α←r Zq;
4. For i = 1 to n: check that di • [1]2

?
= (Ai, Âi) •

[
β

β̂

]
2
; // Same-message argument

5. For i = 1 to n: check that // Permutation matrix argument
(Ai + α[1]1 + [P0]1) • (bi − α[1]2 + [P0]2)

?
= ci • [%]2 + (1− α2)[1]T ;

6. Check that // Consistency argument

[
~̂
P ]>1 ◦ ~M′ −

~̂
A> ◦ ~M ?

= t ◦ pk− [%̂]1 ◦ ~N;

Protocol 2: The non-batched verifier of the new shuffle argument.

V(gk, crs, ~M; (M′i)
n
i=1, (Aj)

n−1
j=1 , πuv, πsm, πcon):

1. Parse (πuv, πsm, πcon) as in the prover’s Steps 11–12,
2. Compute An, bn, and Ân as in the prover’s Step 2,
3. Set (y1j)j∈[1 .. n−1] ←r [1 .. t]n−1, Set y1n ← 1,
4. Set y21 ←r [1 .. t], y22 ← 1,
5. α←r Zq;
6. Check that // Permutation matrix argument∑n

j=1 ((y1j(Aj + α[1]1 + [P0(χ)]1)) • (bj − α[1]2 + [P0(χ)]2)) = (~y>1 ~c) • [%]2 +

(
∑n

j=1 y1j)(1− α2)[1]T ;

7. Check that (~y>1 ~d) • [1]2 = (~y>1 (~A,
~̂
A)) •

[
β

β̂

]
2
// Same-message argument

8. Set q← t • (pk · ~y2).
9. Check that // Consistency argument, online

[
~̂
P ]>1 • ( ~M′~y2)− ~̂A> • ( ~M~y2) = q− [%̂]1 • (~N~y2).

Protocol 3: The batched verifier of the new shuffle argument.

Same-Message Argument.

Consider the subargument of the new shuffle argument where the verifier only computes An and
then performs the check on Step 4 of Prot. 2 for one concrete i. The authors call it the same-message
argument [17] and motivate this name, by showing that if the same-message argument accepts, then
the prover knows a message ~a and a randomizer r, such that Ai = [

∑
aiPi(χ) + r%]1 and Âi =

[
∑
aiP̂i(χ) + r%̂]1 both commit to ~a with randomizer r, by using respectively the ((Pi(X))ni=1, X%)-

commitment scheme and the ((P̂i(X))ni=1, X%̂)-commitment scheme.
For the same-message argument to be knowledge-sound, they require that {Pi(X)}ni=1 and

{P̂i(X)}ni=1 are both linearly independent sets.
The argument consists of four PPT algorithms Kcrs,P, Sim,V that can be formalized as follows:
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Kcrssm(gk, [ ~M ]1 ∈ G2×(n+1)
1 ): ~A ←r Dk; ~K ←r Z2×k

q ; [ ~Q]1 ← [ ~M ]>1 ~K ∈ Z(n+1)×k
q ; ~C ← ~K ~̄A ∈

Z2×k
q ; crssm ← ([ ~Q]1, [~C]2, [

~̄A]2); tdsm ← ~K; Return (crssm, tdsm);

Psm(gk, crssm,
(

A
Â

)
, ( ~ar )): Return πsm ← ( ~ar )

>
[ ~Q]1 ∈ G1×k

1 ;

Simsm(gk, crssm, tdsm,
(

A
Â

)
): Return πsm ←

(
A
Â

)>
~K ∈ G1×k

1 ;

Vsm(gk, crssm,
(

A
Â

)
, πsm): Check that πsm • [ ~̄A]2

?
=
(

A
Â

)>
• [~C]2;

Security of the same message argument has been formalized in the following theorem:

Theorem 4. Assume crs = (crssm, aux) where aux does not depend on β or β̂. The same-message
argument has perfect zero knowledge for

L ~M = {
(

A
Â

)
: ∃( ~ar ) ∈ Zn+1

q :
(

A
Â

)
= [ ~M ]1( ~ar )} .

. It has adaptive knowledge-soundness in the GBGM.

Permutation Matrix Argument.

Consider the subargument of Prot. 1 and Prot. 2, where (i) the prover computes ~A and πpm, and
(ii) the verifier computes An and then checks the verification equation on Step 5 of Prot. 2. This
argument is called the permutation matrix argument. The authors motivate this name, by proving
in the GBGM that if the verifier accepts the permutation matrix argument, then either the prover
knows how to open (A1, . . . ,An) as a ((Pi(X))ni=1, X%)-commitment to a permutation matrix or
one can break the same-message argument. For this, the authors first prove the security of a
subargument of the permutation matrix argument — the unit vector argument [17] — where the
verifier performs the verification Step 5 for exactly one i.

For the unit vector argument to be efficient, one need to make a specific choice of the polynomials
Pi(X). For the knowledge-soundness of the unit vector argument, they additionally need that
{Pi(X)}ni=0 and {Pi(X)}ni=1 ∪ {1} are linearly independent. More precisely, in [19], the prover adds
[α+P0]1 to ai, while in this case, it is the verifier that adds [α]1+[P0]1 to ai (and similarly, with bi).
Due to this small change, the authors could make the CRS independent of α, and let the verifier
sample a new α at the time of verification. (In fact, it suffices if the verifier chooses α once and then
uses it at each verification.) This makes the CRS shorter, and also simplifies the latter soundness
proof. For this optimization to be possible, one has to rely on the same-message argument.

Let Un be the set of all unit vectors of length n. The unit vector argument is the following
subargument of the new shuffle argument:

Kcrsuv(gk, n): the same as in Prot. 1.
Puv(gk, crs,Aj , (~a ∈ Un, r)): Compute (bj , cj) as in Prot. 1.
Vuv(gk, crs,Aj , (bj , cj)): α←r Zq; Check that (Aj + [α]1 + [P0]1) • (bj + [−α]2 + [P0]2)

?
= ci • [%]2 +

[1− α2]T ;

Security of the permutation matrix argument has been formalized in the following theorems:

Theorem 5. The described unit vector argument is perfectly complete and perfectly witness-indistin-
guishable. Assume that {Pi(X)}ni=1 ∪{1}, and {Pi(X)}ni=1 ∪{P0(X)} are two linearly independent
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sets. Assume that the same-message argument accepts. The unit vector argument is knowledge-
sound in the GBGM in the following sense: there exists an extractor X such that if the verifier
accepts Eq. 6 for j = i, then X returns (rj , Ij ∈ [1 .. n]), such that

Aj =[PIj (χ) + rjX%]1 . (2.1)

Theorem 6. The permutation matrix argument of this section is perfectly complete and perfectly
witness-indistinguishable. Assume that {Pi(X)}ni=1 ∪ {1} is a linearly independent set. The per-
mutation matrix argument is knowledge-sound in the GBGM in the following sense: there exists an
extractor X such that if the verifier accepts the verification equation on Step 5 of Prot. 2 for all
j ∈ [1 .. n], and An is explicitly computed as in Prot. 2, then X outputs (σ ∈ Sn, ~r), such that for all
j ∈ [1 .. n], Aj = [Pσ−1(j)(χ) + rj%]1.

Consistency Argument.

Consider the subargument of the new shuffle argument where the prover only computes πcon and
the verifier performs the check on Step 6 of Prot. 2. We will call it the consistency argument. The
authors motivate this name by showing that if ~̂A ({P̂i(X)}, X%̂)-commits to a permutation, then
Dec(M′i) = Dec(Mσ(i)) for the same permutation σ that the prover committed to earlier. The
authors show that the new consistency argument is culpably sound under a (novel) variant of the
KerMDH computational assumption [41]. In particular, the KerMDH assumption has to hold even
when the adversary is given access to the full CRS of the shuffle argument.

For the consistency argument to be sound (and in particular, for the KerMDH variant to be
secure in the GBGM), it is required that {P̂i(X)}ni=1 and {Pi(X)P̂j(X)}1≤i,j≤n are both linearly
independent sets.

Kcrscon(gk, n): Return (crscon; td) = ([ ~M ]1 = [
~̂
P
%̂

]1, aux; (χ, %̂))← Dn+1,1.

Pcon(gk, crs, ( ~M, ~M′), ( ~E,~r)): // ~M′ = ~E ~M + (ti · pk)ni=1

~̂
A←

(
~E
~r>

)>
[
~̂
P
%̂

]1; rt ←r Zq; t← ~t>[
~̂
P ]1+rt[%̂]1; ~N← ~r> ~M+rt·pk; Return (πcon ← (

~̂
A, t, ~N)).

Vcon(gk, crs, ( ~M, ~M′), πcon): Check that [
~̂
P ]>1 ◦ ~M′ −

~̂
A> ◦ ~M ?

= t ◦ pk− [%̂]1 ◦ ~N.

Security of the consistency argument has been formalized in the theorem below:

Theorem 7. Assume that Dconn is a valid CRS distribution, where the matrix distribution outputs
[ ~M ]1 = [

~ˆ (χ)P
%̂

]1 ∈ Zn+1
q for (χ, %̂) ←r Zq × Z∗q. The consistency argument is perfectly complete and

perfectly zero knowledge. Assume that the Dconn -KerMDH assumption with an auxiliary input holds
in G1. Then the consistency argument is culpably sound using Rguilt

con with the CRS crs = ([ ~M ]1, aux),
where

Rguilt
con,n =





(gk, ( ~M, ~M′, ~̂A), ( ~E,~r)) :

~̂
A =

(
~E
~r>

)>
[
~̂
P
%̂

]1 ∧ Decsk( ~M
′) 6= ~E · Decsk( ~M)



 .
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3. Secure parameter generation

3.1 Relevance to the PANORAMIX project

After the Snowden revelations, there has been a recent surge of interest in constructing crypto-
graphic primitives and protocols secure against active subversion. In the context of PANORAMIX
objectives, it seems crucial to provide a secure parameter generation for the protocols developed
during the project. Especially taking into account that the proposed zero-knowledge arguments
were shown secure in the CRS [10] model, that relies on the honest generation of the CRS.

In [3], Bellare, Fuchsbauer and Scafuro tackled the problem by studying how much security one
can still achieve when the CRS generator cannot be trusted. They proved several negative and
positive results. In particular, they showed that it is impossible to achieve subversion soundness
and (even non-subversion) zero knowledge simultaneously, the essential reason being that the zero
knowledge simulator can be used to break subversion soundness.

In one of their positive solutions, Bellare et al. show that it is possible to get (non-subversion)
soundness and computational subversion zero knowledge (Sub-ZK, ZK even if the the CRS is not
trusted). Their main new idea is to use a knowledge assumption in the Sub-ZK proof, so that the
simulator can extract a “trapdoor” from the untrusted CRS and then use this trapdoor to simulate
the argument. While neat, the resulting argument system is quite complicated.

Abdolmaleki et al. [1] (see the attached article) shown an efficient way to transform the most
efficient, for the time being, zero-knowledge succinct non-interactive argument for QAP [31]. To
that end they proposed a number of algorithms that assures that the CRS is correctly generated
and that there is an extractable trapdoor that can be provided to a simulator. Although their result
does not show implicite how to generate a subversion-resistant shuffle argument, their work shows
general design recommendations that should make designing of the new, resistant, shuffle argument
much simpler.

3.2 Preliminaries

3.2.1 Quadratic Arithmetic Programs.

Quadratic Arithmetic Program (QAP) was introduced by Gennaro et al. [23] as a language where for
an input x and witness w, (x,w) ∈ R can be verified by using a parallel quadratic check, and that has
an efficient reduction from the well-known language (either Boolean or Arithmetic) Circuit-SAT.
Hence, an efficient zk-SNARK for QAP results in an efficient zk-SNARK for Circuit-SAT.

For an m-dimensional vector ~A, let aug( ~A) =
(
1
~A

)
. For an n-dimensional vector ~M (0) and an

n × m matrix M over finite field F, let aug(M) := ( ~M (0),M). Let m0 < m be a non-negative
integer. An instance Q of the QAP language is specified by (F,m0, aug(U), aug(V ), aug(W )) where
U, V,W ∈ Fn×m.
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In the case of Arithmetic Circuit-SAT, n is the number of multiplication gates and m to the
number of wires in the circuit. Here, we consider arithmetic circuits that consist only of fan-in-2
multiplication gates, but either input of each multiplication gate can be a weighted sum of some
wire values, [23].

For a fixed instance Q of QAP, define the relation R as follows:

RQ =

{
(x,w) : x = (A1, . . . , Am0)> ∧ w = (Am0+1, . . . , Am)>∧
(aug(U) · aug( ~A)) ◦ (aug(V ) · aug( ~A)) = aug(W ) · aug( ~A)

}

where ~a ◦~b = (aibi)
n
i=1 denotes the entrywise product of vectors ~a and ~b.

In a cryptographic setting, it is more convenient to work with the following alternative def-
inition of QAP and of the relation RQ. (This corresponds to the original definition of QAP
in [23].) Let F = Zp, such that ω is the n-th primitive root of unity modulo p. Let Q =
(Zp,m0, aug(U), aug(V ), aug(W )) be a QAP instance. For j ∈ [0 ..m], define uj(X) := L~U(j)(X),
vj(X) := L~V (j)(X), and wj(X) := L ~W (j)(X). Thus, uj , vj , wj ∈ Z(≤n−1)

p [X].
An QAP instance Qp is specified by the so defined (Zp,m0, {uj , vj , wj}mj=0). This instance

defines the following relation, where we assume that A0 = 1:

RQp =





(x,w) : x = (A1, . . . , Am0
)> ∧ w = (Am0+1, . . . , Am)>∧

(∑m
j=0Ajuj(X)

)(∑m
j=0Ajvj(X)

)
≡∑m

j=0Ajwj(X) (mod `(X))





Alternatively, (x,w) ∈ R if there exists a (degree ≤ n− 2) polynomial h(X), s.t.
(∑m

j=0Ajuj(X)
)(∑m

j=0Ajvj(X)
)
−∑m

j=0Ajwj(X) = h(X)`(X) .

Clearly, RQ = RQp , given that Qp is constructed from Q as above.

3.2.2 Definitions: SNARKs and Subversion Zero Knowledge

Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language. A (subversion-resistant) non-interactive zero-
knowledge argument system Ψ for R consists of seven PPT algorithms: CRS trapdoor generator,
simulation trapdoor generator, CRS generator, prover, verifier and simulator along with an addi-
tional algorithm that verifies the correctness of the CRS:
CRS verifier: CV is a probabilistic algorithm that, given (R, zR, crs), returns either 0 (the CRS

is incorrectly formed) or 1 (the CRS is correctly formed),
We also define the (non-subverted) CRS generation algorithm K(R, zR) that first sets tc← Ktc(R, zR)
and then outputs (crs ‖ ts)← (Kcrs ‖Kts)(R, zR, tc).

SNARKs.

A non-interactive argument system is succinct if the proof size is polynomial in λ and the verifier
runs in time polynomial in λ + |x|. A succinct non-interactive argument of knowledge is usually
called SNARK. A zero knowledge SNARK is abbreviated to zk-SNARK.

Security definitions

A Sub-ZK SNARK has to satisfy various security definitions. The most important ones are
subversion-completeness (an honest prover convinces an honest verifier, and an honestly generated
CRS passes the CRS verification test), computational knowledge-soundness (if a prover convinces an
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honest verifier, then he knows the corresponding witness), and statistical Sub-ZK (given a possibly
subverted CRS, an argument created by the honest prover reveals no side information). Next, we
will give definitions of those properties that guarantee both composability and subversion resistance.

Definition 1 (Perfect Subversion-Completeness). A non-interactive argument Ψ is perfectly subversion-
complete for R, if for all λ, all (R, zR) ∈ range(R(1λ)), tc ∈ range(Ktc(R, zR)) \ {⊥}, and
(x,w) ∈ R,

Pr

[
crs← Kcrs(R, zR, tc) : CV(R, zR, crs) = 1∧
V(R, zR, crsV, x,P(R, zR, crsP, x,w)) = 1

]
= 1 .

The following definition of unbounded Sub-ZK differs from the standard definitions as follows.
Since we allow the CRS to be subverted, the CRS is generated by a subverter who also returns zΣ.
The adversary’s access to zΣ models the possibility that the subverter and the adversary collaborate.
The extractor XΣ extracts tc from Σ, and then tc is used to generate the simulation trapdoor ts
that is then given as an auxiliary input to the adversary and to the oracle O1.

Definition 2 (Statistically Unbounded Sub-ZK). Ψ is statistically unbounded Sub-ZK for R, if for
any NUPPT subverter Σ there exists a NUPPT XΣ, such that for all λ, all (R, zR) ∈ range(R(1λ)),
and all computationally unbounded A, εunb0 ≈λ εunb1 , where εunbb is defined as

Pr


 r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r),

ts← Kts(R, zR, tc) : CV(R, zR, crs) = 1∧ AOb(·,·)(R, zR, crs, ts, zΣ ) = 1


 .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, zR, crsP, x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, zR, crs, ts, x).
Ψ is perfectly unbounded Sub-ZK for R if one requires that εunb0 = εunb1 .

3.2.3 Sub-GBGM and BDH-KE assumption

In previous sections, we introduced the GBG model, here we make it weaker, by allowing adversary
to learn group elements without knowing their discrete logarithms. However, we assume that it is
not known how to create four elements [1]z, [a]z, [b]z, and [ab]z without knowing either a or b. The
corresponding assumption — that may also be true in the case of symmetric pairings — was named
DH-KE(A) in [3].

Asymmetric pairings are much more efficient than symmetric pairings. If we work in the type
III pairing setting where there is no efficient isomorphism either from G1 to G2 or from G2 to G1,
then clearly an adversary cannot, given [a]z for z ∈ {1, 2} and an unknown a, compute [a]3−z.
In the same vein, it seems reasonable to make a stronger assumption (that we call BDH-KE, a
simplification of the asymmetric PKE assumption of [15]) that if an adversary creates [a]1 and [a]2
then she knows a. Really, since there is no polynomial-time isomorphism from G1 to G2 (or back),
it seems to be natural to assume that one does not have to worry about an adversary knowing some
trapdoor that would break the BDH-KE assumption. Since BDH-KE is not a falsifiable assumption,
this does not obviously mean that it must hold for each type III pairing. Instead, the BDH-KE
assumption can be interpreted as a stronger definition of the type III pairing setting. We formalize
the added adversarial power as follows.

We give the generic model adversary an additional power to effectively create new indeterminates
Yi in groups G1 and G2 (e.g., by hashing into elliptic curves), without knowing their values. We note
since [Y ]1 • [1]2 = [Y ]T and [1]1 • [Y ]2 = [Y ]T , the adversary that has generated an indeterminate Y
in Gz can also operate with Y in GT . Formally, this means that Π will contain one more operation
create, with the following semantics:
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4. On input (create, i, t): if typei = ⊥ and t ∈ {1, 2, T } then set celli ← Zp and typei ← t.
The semantics of create dictates that the actual value of the indeterminate Yi is uniformly random
in Zp, that is, the adversary cannot create indeterminates for which she does not know the discrete
logarithm and that yet are not random. This assumption is needed for the lower bound on the
generic adversary’s time to be provable in Thm. 5.

In the type III setting, this semantics does not allow the adversary to create the same indeter-
minate Yi in both groups G1 and G2; she can only create a representation of a known to her integer
in both groups. We formalize this by making the following Bilinear Diffie-Hellman Knowledge of
Exponents (BDH-KE ) assumption: if the adversary, given random generators g1 = [1]1 ∈ G1 and
g2 = [1]2 ∈ G2, can generate elements [α1]1 ∈ G1 and [α2]2 ∈ G2, such that [1]1 • [α2]2 = [α1]1 • [1]2,
then the adversary knows the value α1 = α2. To simplify the further use of the BDH-KE assumption
in security reductions, we give the adversary access to (R, zR) ∈ range(R(1λ)). As before, zR just
contains gk, that is, the description of the bilinear group together with [1]1 and [1]2.

Definition 3 (BDH-KE). We say that genbp is BDH-KE secure for R if for any λ, (R, zR) ∈
range(R(1λ)), and NUPPT adversary A there exists a NUPPT extractor XA, such that

Pr

[
r ←r RND(A), ([α1]1 , [α2]2 ‖ a)← (A‖XA)(R, zR; r) :

[α1]1 • [1]2 = [1]1 • [α2]2 ∧ a 6= α1

]
≈λ 0 .

The BDH-KE assumption is a simple special case of the PKE assumption as used in the case of
asymmetric pairings say in [15]. In the PKE assumption of [15], adversary is given as an input the
tuple {(

[
χi
]
1
,
[
χi
]
2
)}ni=0 for some n ≥ 0, and it is assumed that if an adversary outputs ([α]1 , [α]2)

then she knows (a0, a1, . . . , an), such that α =
∑n

i=0 aiχ
i. In our case, n = 0. BDH-KE can also be

seen as an asymmetric-pairing version of the original KE assumption [14].
We think that for the following reasons, the BDH-KE assumption is more natural than the

DH-KE assumption by Bellare et al. [3] which states that if the adversary can create elements [α1]z,
[α2]z and [α1α2]z of the group Gz then she knows either α1 or α2.

First, the BDH-KE assumption is well suited to type-III pairings that are by far the most
efficient pairings. The DH-KE assumption is tailored to type-I pairings. In the case of type-III
pairings, DH-KE assumption can still be used, but it results in inefficient protocols. For example
in [3], in security proofs the authors employs an adversary that extracts either α1 or α2. Since it is
not known a priori which value will be extracted, several elements in the argument system have to
be doubled, for the case α1 is extracted and for the case α2 is extracted.

Second, most of the efficient SNARKs are constructed to be sound and zero-knowledge in the
(most efficient) type-III setting. While the SNARK of Groth [31] is known to be sound in the case
of both symmetric and asymmetric pairings, in the case of symmetric pairings it will be much less
efficient. To take the advantage of already known efficient SNARKs, it is only natural to keep the
type-III setting. In the current paper, we are able to have the best of both worlds. As in the case
of [31], we construct a SNARK that uses type-III pairings. On the one hand, we prove it to be
Sub-ZK solely under the BDH-KE assumption. On the other hand, we prove that it is (adaptively)
knowledge-sound in the Sub-GBGM, independently of whether one uses type-I, type-II, or type-III
pairings. This provides a partial hedge against cryptanalysis: even if one were to later find an
efficient isomorphism between G1 and G2, this would only break the Sub-ZK of the new SNARK
but leave the soundness property intact.
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3.3 A Subversion-Resistant SNARK

Combined effort of a large number of recent research papers (to only mention a few, [30, 37, 23, 43,
38, 15, 31]) has made it possible to construct very efficient succinct non-interactive zero-knowledge
arguments of knowledge (zk-SNARKs) for both the Boolean and the Arithmetic Circuit-SAT and
thus for NP. The most efficient known approach for constructing zk-SNARKs for the Arithmetic
Circuit-SAT is based on Quadratic Arithmetic Programs (QAP, [23]).

In a QAP, the prover builds a set of polynomial equations that are then checked by the verifier by
using a small number of pairings. QAP-based zk-SNARKs have additional nice properties that make
them applicable in verifiable computation [22, 23, 43] where the client outsources some computation
to the server, who returns the computation result together with a succinct efficiently-verifiable
correctness argument. Especially due to this application, zk-SNARKs have several heavily optimized
implementations [43, 7, 8, 13]. Other applications of zk-SNARK include cryptocurrencies [5]. See,
e.g., [31] for more references.

One drawback of zk-SNARKs is that they are all based on non-falsifiable assumptions (like the
knowledge assumptions [14], or the generic bilinear group model, GBGM [42, 44, 40, 11]). In fact,
Gentry and Wichs [24] showed that non-falsifiable assumptions are needed to construct zk-SNARKs
for non-trivial languages. The currently most efficient zk-SNARK for Arithmetic Circuit-SAT was
proposed by Groth (EUROCRYPT 2016, [31]) who proved it to be knowledge-sound in the GBGM.
In Groth’s zk-SNARK, the argument consists of only 3 bilinear group elements and the verifier has
to check a single pairing equation, dominated by the computation of only 3 bilinear (type III [21])
pairings and m0 exponentiations, where m0 is the statement size.

3.3.1 Contributions of [1]

Abdolmaleki et al. [1] takes Groth’s zk-SNARK from EUROCRYPT 2016 [31] as a starting point
since, since it is currently the most efficient and thus the most attractive zk-SNARK. 1 They
propose a minimal modification to Groth’s zk-SNARK that makes it computationally knowledge-
sound in what the authors call the “subversion generic bilinear group model” (Sub-GBGM) and
perfect composable Sub-ZK.

They change Groth’s zk-SNARK by adding extra elements to the CRS so that the CRS will
become publicly verifiable; this minimal step (clearly, some public verifiability of the CRS is needed
in the case the CRS generator cannot be trusted) will be sufficient to obtain Sub-ZK. However,
choosing which elements to add to the CRS is not straightforward since the zk-SNARK must remain
knowledge-sound even given enlarged CRS; adding too many or just “wrong” elements to the CRS
can break the knowledge-soundness.

On the other hand, importantly, the prover and the verifier of the new zk-SNARK are un-
changed compared to Groth’s SNARK [31]. In the rest of this presentation, we will outline the
novel properties of the new SNARK as compared to [31].

Abdolmaleki et al. start by defining perfect subversion-complete (this includes the requirement
that an honestly generated CRS is accepted by the CRS verification), computationally adaptively
knowledge-sound, and statistically unbounded (or composable) Sub-ZK SNARKs. These definitions
are similar to but subtly different from the non-subversion security definitions as given in, say, [28].
First, since one cannot check whether the subverter uses perfectly uniform coins (or, the CRS
trapdoor) to generate the CRS, they divide the CRS generation into three different algorithms:

1While less efficient zk-SNARKs like Pinocchio [43] are used more widely, this situation might change. Moreover,
Groth’s zk-SNARK is also more efficient from the theoretical perspective: it has both a more complex CRS and more
sophisticated soundness proof; hence, we expect that it is easier to achieve Sub-ZK for Pinocchio.
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• generation of the CRS trapdoor tc (a probabilistic algorithm Ktc),
• creation of the CRS from tc (a deterministic algorithm Kcrs), and
• creation of the simulation trapdoor from tc (a deterministic algorithm Kts).

Since one cannot check that Ktc works correctly, they guarantee that given a fixed tc, Kcrs has been
executed on this tc. More precisely, they require that a Sub-ZK SNARK satisfies a CRS trapdoor
extractability property that allows one to extract tc used by the subverter, s.t. if the subverted CRS
crs is accepted by the CRS verification algorithm (see below) then Ktc maps tc to crs.

The extractability requirement forces a ZK proof to use either a computationally unbounded
extractor or a knowledge assumption. Sub-ZK is defined with respect to an efficient subverter and
extractor.

In the proof of knowledge-soundness, the authors use (a version of) the GBGM. Using GBGM
seems to be well motivates since Groth’s non-Sub zk-SNARK is proven knowledge-sound in GBGM
and as mentioned above, the use of a knowledge assumption or the generic model in the knowledge-
soundness proof is necessary due to the impossibility result of Gentry and Wichs [24]. However,
following Bellare et al. [3], the authors weaken the usual definition of GBGM by allowing the generic
adversary to create (under realistic restrictions) random elements in the source groups without
knowing their discrete logarithms. They call the resulting somewhat weaker model the subversion
generic bilinear group model (Sub-GBGM). Following Groth [31], the authors prove that the new
SNARK is (adaptively) knowledge-sound in the Sub-GBGM even in the case of type-I pairings. This
provides a hedge against possible future cryptanalysis that finds an efficient isomorphism between
the two source groups.

In the proof of perfect composable Sub-ZK, the authors use a well-known knowledge assumption
(see, e.g., [15]) that they call BDH-KE. The Sub-ZK proof of the only previously known non-
interactive Sub-ZK argument system by Bellare et al. [3] also relies on knowledge assumptions. The
authors follow the main idea of [3] by first using BDH-KE to extract the CRS trapdoor tc from
the CRS and then construct a non-subversion simulator (that gets a part of the tc as an input)
to simulate the argument. However, since they construct a zk-SNARK, the concrete approach is
different from [3].

Also here, they rely on the existence of the efficient CRS verification algorithm CV. The authors
show that if CV accepts a crs, then crs has been computed correctly by Kcrs from a tc bijectively fixed
by crs. From this, it follows under the BDH-KE assumption that for any subverter that produces a
crs accepted by CV, there exists an extractor that produces tc such that Kcrs given tc outputs crs.

What should be emphasized is fact that security proofs of knowledge-soundness and of Sub-ZK
are in incomparable models. The knowledge-soundness proof uses the full power of Sub-GBGM in
the case of any pairings (including type-I). The Sub-ZK proof, on the other hand, uses a concrete
standard-looking knowledge assumption BDH-KE that holds in the the GBGM but does not hold in
the Sub-GBGM in the case of type-I pairings. This allows to construct an efficient Sub-ZK SNARK
that uses type-III pairings, while guaranteeing its knowledge-soundness even in the case of type-I
pairings.

3.3.2 General Design Recommendations.

It would be unexpected if constructing Sub-ZK SNARKs could be done automatically. In particular
since the framework of [1] points to the necessity of making CRS publicly verifiable which potentially
means adding new elements to the CRS. Since knowledge-soundness proofs of many SNARKs are
very subtle, it seems to be difficult to give a general “theorem” about which SNARKs can be modified
to be Sub-ZK or even whether their CRS can be made verifiable without a major reconstruction.
Whether a SNARK remains sound after that must be proven separately in each case.
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However, the authors give a few recommendations for designing a Sub-ZK SNARK from a non
subversion-secure SNARK (or from scratch) when using the same approach as in [1]:

1. Division of duties: make sure that K can be divided into randomized Ktc, deterministic Kts,
and deterministic Kcrs.

2. CRS trapdoor extractability: for each element of tc, make sure that it can be extracted
from the CRS. For this, one can use a generic proof of knowledge, a specific knowledge-
assumption, or a computationally unbounded extractor.

3. CRS verifiability: the CRS must be publicly verifiable.
4. Sound approach: make sure that the previous steps do not hurt the knowledge-soundness.

To achieve it, one should aim at designing a SNARK with a very simple CRS or where CRS
verifiability comes naturally. Depending on the SNARK in question, this step may be the
most difficult one.

3.3.3 On Efficiency.

Since the new zk-SNARK is closely based on the most efficient known non-subversion zk-SNARK
of Groth [31], it has comparable efficiency. Importantly, the new CRS verification algorithm CV
has to be executed only by the prover (this is since the authors achieve Sub-ZK and non-subversion
knowledge-soundness). This means that it suffices for CV to have the same computational complexity
as the prover’s algorithm. The initial CV we describe in Fig. 3.1 is quite inefficient. However, as
it was shown (see the full version [1] for more information), by using batching techniques the CV
algorithm can be sped up to be faster than the prover’s algorithm (at the information-theoretical
security level 2−80) and even faster at the information-theoretical security level 2−40.

3.4 Construction

See Fig. 3.1 and Fig. 3.2 for detained description of the new SNARK. This SNARK uses crucially
several random variables, χ, α, β, γ, δ. As in [31], α and β (and the inclusion of αβ in the verification
equation) will guarantee that A, b, and c are computed by using the same coefficients Ai. The role
of γ and δ is to make the three products in the verification equation “independent” of each other.

As emphasized before, the new Sub-ZK SNARK is closely based on Groth’s zk-SNARK. In fact,
the differences between the construction of the two SNARKs can be summarized very briefly:
(i) [1] adds to the CRS 2n + 3 new elements (see the variable crsCV in Fig. 3.1) that are needed

for CV to work efficiently.
(ii) They divide the CRS generation algorithm into three algorithms, Ktc, Kts, and Kcrs. Groth’s

CRS generation algorithm returns Kcrs(R, zR,Ktc(R, zR)) (minus the mentioned crsCV part)
as the CRS and Kts(R, zR,Ktc(R, zR)) as the simulation trapdoor.

(iii) They describe an efficient CRS verification algorithm CV (see Fig. 3.1).
It is straightforward to see that Groth’s original zk-SNARK does not achieve Sub-ZK. Really,

since neither [`i(χ)]1 nor
[
χi
]
1
are given to the prover, he cannot check the correctness of [uj(χ)]1

and [vj(χ)]1. This means that a subverter can change those values to some bogus values and due to
that, the proof computed by an honest prover and a simulated proof (that relies on the knowledge
of trapdoor elements α and β and does not use the CRS elements [uj(χ)]1 and [vj(χ)]1) will have
different distributions.

3.4.1 Subversion Completeness, Soundness and Subversion Zero Knowledge

Security of the new SNARK has been formalized in the following theorems:
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Ktc(R, zR): Generate tc = (χ, α, β, γ, δ)←r Z3
p × (Z∗p)2.

Kts(R, zR, tc): Set ts← (χ, α, β, δ).
Kcrs(R, zR, tc): Compute (`i(χ))ni=1 Set uj(χ) ← ∑n

i=1 Uij`i(χ) , vj(χ) ← ∑n
i=1 Vij`i(χ), wj(χ) ←∑n

i=1Wij`i(χ) for all j ∈ {0, . . . ,m}. Let

crsP ←




[
α, β, δ,

(
uj(χ)β+vj(χ)α+wj(χ)

δ

)m
j=m0+1

]

1

,

[
(χi`(χ)/δ)n−2i=0 , (uj(χ), vj(χ))mj=0

]
1
,
[
β, δ, (vj(χ))mj=0

]
2


 ,

crsV ←
([(

uj(χ)β+vj(χ)α+wj(χ)
γ

)m0

j=0

]

1

, [γ, δ]2 , [αβ]T

)
,

crsCV ←
(
[γ, (χi)n−1i=1 , (`i(χ))ni=1]1, [α, χ, χ

n−1]2
)
.

Return crs← (crsCV, crsP, crsV).
K(R, zR): Let tc← Ktc(R, zR). Return (crs ‖ ts)← (Kcrs ‖Kts)(R, zR, tc).
CV(R, zR, crs):

1. For ι ∈ {γ, δ}: check that [ι]1 6= [0]1
2. For ι ∈ {α, β, γ, δ}: check that [ι]1 • [1]2 = [1]1 • [ι]2,
3. For i = 1 to n− 1: check that

[
χi
]
1
• [1]2 =

[
χi−1

]
1
• [χ]2,

4. Check that ([`i(χ)]1)
n
i=1 is correctly computed,

5. For j = 0 to m:
(a) Check that [uj(χ)]1 =

∑n
i=1 Uij [`i(χ)]1,

(b) Check that [vj(χ)]1 =
∑n

i=1 Vij [`i(χ)]1,
(c) Set [wj(χ)]1 ←

∑n
i=1Wij [`i(χ)]1,

(d) Check that [vj(χ)]1 • [1]2 = [1]1 • [vj(χ)]2,
6. For j = m0 + 1 to m: check that [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 • [δ]2 = [uj(χ)]1 • [β]2 +

[vj(χ)]1 • [α]2 + [wj(χ)]1 • [1]2,
7. Check that

[
χn−1

]
1
• [1]2 = [1]1 •

[
χn−1

]
2
,

8. For i = 0 to n− 2: check that
[
χi`(χ)/δ

]
1
• [δ]2 =

[
χi+1

]
1
•
[
χn−1

]
2
−
[
χi
]
1
• [1]2,

9. Check that [α]1 • [β]2 = [αβ]T .

Figure 3.1: The CRS generation and verification of the Sub-ZK SNARK for R

Theorem 4. The new SNARK of Fig.3.2 is perfectly subversion-complete.

Theorem 5 (Knowledge-soundness). Consider the new argument system of Fig.3.2. It is adaptively
knowledge-sound in the Sub-GBGM even in the case of symmetric pairings. More precisely, any
generic adversary attacking the knowledge-soundness of the new argument system in the symmetric
setting requires Ω(

√
p/n) computation.

Subversion Zero-Knowledge proof has been divided into a number of lemmas. First the authors
shows that if CV algorithm accepts then there is a bijection between trapdoor elements and the
output CRS.

Lemma 6. Let (R, zR) ∈ range(R(1λ)), and let crs be any CRS such that CV(R, zR, crs) = 1.
Then, with probability 1, crs = Kcrs(R, zR, tc) for a tc bijectively corresponding to [χ, α, β, γ, δ]1.

For the sake of simulatability, one has to show that from a given CRS it is possible to extract
the trapdoor.

– 38 of 210 –



D3.3 - Final Report

P(R, zR, crsP, x = (A1, . . . , Am0),w = (Am0+1, . . . , Am)):
/* After executing CV & assuming A0 = 1, the prover does: */
1. Let a†(X)←∑m

j=0Ajuj(X), b†(X)←∑m
j=0Ajvj(X),

2. Let c†(X)←∑m
j=0Ajwj(X),

3. Set h(X) =
∑n−2

i=0 hiX
i ← (a†(X)b†(X)− c†(X))/`(X),

4. Set [h(χ)`(χ)/δ]1 ←
∑n−2

i=0 hi
[
χi`(χ)/δ

]
1
,

5. Set ra ←r Zp; Set A←
∑m

j=0Aj [uj(χ)]1 + [α]1 + ra [δ]1,
6. Set rb ←r Zp; Set b←

∑m
j=0Aj [vj(χ)]2 + [β]2 + rb [δ]2,

7. Set c← rbA + ra

(∑m
j=0Aj [vj(χ)]1 + [β]1

)
+∑m

j=m0+1Aj [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 + [h(χ)`(χ)/δ]1,
8. Return π ← (A, b, c).

V(R, zR, crsV, x = (A1, . . . , Am0), π = (A, b, c)): assuming A0 = 1, check that

A • b =c • [δ]2 +
(∑m0

j=0Aj

[
uj(χ)β+vj(χ)α+wj(χ)

γ

]
1

)
• [γ]2 + [αβ]T .

Figure 3.2: The prover and the verifier of the Sub-ZK SNARK for R (unchanged from Groth’s
zk-SNARK)

Theorem 7. The SNARK from Sect. 3.4 has perfect CRS trapdoor extractability under the BDH-KE
assumption.

Finally, the authors show that given A and b there exists only one c that verifier would accept.

Lemma 8. Let (R, zR) ∈ range(R(1λ)), and let crs be any CRS such that CV(R, zR, crs) = 1.
Consider any values of A, b, and (Aj)

m0
j=0. Then there exists at most one value c, such that

V(R, zR, crsP, x, (A, b, c)) = 1.

These lemmas conclude in the following theorem:

Theorem 9. The SNARK from Sect. 3.4 is perfectly composable Sub-ZK under the BDH-KE as-
sumption.
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4. Efficient Designated-Verifier
NIZK Proofs

4.1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth of a statement,
without revealing anything beyond the fact that the statement is true. After their introduction in
the seminal work of Goldwasser, Micali, and Rackoff [34], they have proven to be a fundamental
primitive in cryptography. Among them, non-interactive zero-knowledge proofs (NIZK proofs), where
the proof consists of a single flow from the prover to the verifier, are of particular interest, in part
due to their tremendous number of applications in cryptographic primitives and protocols, and in
part due to the theoretical and technical challenges that they represent.

For almost two decades after their introduction in [10], NIZKs coexisted in two types: inefficient
NIZKs secure under standard assumptions (such as doubly enhanced trapdoor permutations [30])
in the common reference string model, and practically efficient NIZKs built from the Fiat-Shamir
heuristic [31,47], which are secure in the random oracle model [6] (hence only heuristically secure in
the standard model). This state of affairs changed with the arrival of pairing-based cryptography,
from which a fruitful line of work (starting with the work of Groth, Ostrovsky, and Sahai [37,38])
introduced increasingly more efficient NIZK proof systems in the standard model. That line of work
culminated with the framework of Groth-Sahai proofs [39], which provided an efficient framework
of pairing-based NIZKs for a large class of useful languages. Yet, one decade later, pairing-based
NIZKs from the Groth-Sahai framework remain the only known efficient NIZK proof system in the
standard model. Building efficient NIZKs in the standard model, without pairing-based assumptions,
is a major open problem, and research in this direction has proven elusive.

4.1.1 Contributions to the PANORAMIX project

In this chapter, we first introduce a framework for designated-verifier NIZKs on group-dependent
languages, in the spirit of the Groth-Sahai framework for NIZKs on languages related to pairing-
friendly elliptic curves. Our framework only requires that the underlying abelian group on which
it is instantiated has order M , where ZM is the plaintext-space of an homomorphic cryptosystem
with specific properties, and allows to prove a wide variety statements formulated in terms of the
operation associated to this abelian group. In particular, we do not need to rely on pairings. The
DVNIZKs obtained with our framework are efficient, as they only require a few group elements and
ciphertexts.

The zero-knowledge property of our schemes reduces to the IND-CPA security of the underlying
encryption scheme. Additionally, our DVNIZKs enjoy the following properties: they are (adap-
tively) knowledge-extractable; their knowledge-extractability holds statistically; their knowledge-
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extractability is unbounded. We stress that previously, no efficient construction of DVNIZK in the
standard model satisfying any of the above properties was known. The third property, unbounded
soundness, was only claimed to hold for the construction of [23], and this claim was formalized with a
proof in an idealized model, but as previously mentioned, we found this claim to be flawed. We also
point out that in the Groth-Sahai framework, witness extraction is limited either to statements about
group elements, or to statements about exponents committed in a bit-by-bit fashion (making the
proof highly inefficient). In contrast, our proof system allows to efficiently extract large exponents,
without harming the efficiency of the proof. In addition to the above properties, our DVNIZKs
satisfy some other useful properties: they are multi-theorem [30], randomizable [3], and same-string
zero-knowledge [27] (i.e., the common reference string used by the prover and the simulator are the
same).

Second, our framework comes with a dual variant, where the role of the encryption scheme
and the abelian group are reversed, to prove statements, not about elements of the abelian group,
but about the underlying homomorphic encryption scheme. This dual variant leads to DVNIZKs
satisfying adaptive statistical unbounded soundness, but not knowledge-extractability (i.e. the dual
variant does not give proofs of knowledge).

Third, we show that if one is willing to give up unbounded soundness for efficiency, our techniques
can be used to construct extremely efficient DVNIZKs with bounded-soundness. The DVNIZKs that
we obtain this way are more efficient than any previously known construction of non-interactive
zero-knowledge proofs, even when considering NIZKs in the random oracle model using the Fiat-
Shamir transform: the proofs we obtain are shorter than the proofs obtained via the Fiat-Shamir
transform by almost a factor two. To our knowledge, this is the first example of a NIZK construction
in the standard model which (conditionally) improves on the Fiat-Shamir paradigm.

4.1.2 Designated-Verifier Non-Interactive Zero-Knowledge

Parallel to the research on NIZKs, an alternative promising line of research has focused on designated-
verifier non-interactive zero-knowledge proof systems (DVNIZKs). A DVNIZK retains most of the
security properties of a NIZK, but is not publicly verifiable: only the owner of some secret information
(the designated verifier) can check the proof. Nevertheless, DVNIZKs can replace publicly verifiable
NIZKs in a variety of applications. In addition, unlike their publicly-verifiable counterpart, it is
known that efficient DVNIZKs secure in the standard model for rich classes of languages can be
constructed without pairing-based assumptions [17,23,43,49]. However, to date, research in DVNIZKs
has attracted less attention than NIZKs, the previously listed papers being (to our knowledge) the
only existing works on this topic, and several important questions have been left open. We list the
main open questions below.

Proofs Versus Arguments.

A non-interactive zero-knowledge argument system is a NIZK in which the soundness property
is only required to hold against computationally bounded adversaries. In a NIZK proof system,
however, soundness is required to hold even against unbounded adversaries.

Currently, while several DVNIZK argument systems have been designed in the standard model
without pairing-based assumptions, efficient DVNIZK proof systems without pairings remain an
open question. In fact, to our knowledge, the only known constructions of (possibly inefficient)
DVNIZK proofs rely on publicly-verifiable NIZK proofs.
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Soundness Versus Knowledge Extraction.

A non-interactive zero-knowledge proof (or argument) system is a NIZK of knowledge if it guarantees
that, when the prover succeeds in convincing the verifier, he must know a witness for the truth of
the statement. This is in constrast with the standard soundness notion, which only guarantees that
the statement is true. Formally, this is ensured by requiring the existence of an efficient simulator
that can extract a witness from the proof.

Non-interactive zero-knowledge proofs of knowledge are more powerful than standard NIZKs,
and the knowledge-extractability property is crucial in many applications. In particular, they are
necessary for the very common task of proving relations between values committed with a perfectly
hiding commitment scheme, and they are a core component in privacy-preserving authentication
mechanisms [4]. Currently, all known DVNIZK argument systems are not arguments of knowledge.
Designing efficient DVNIZKs of knowledge without pairing-based assumptions remains an open
question.

Bounded Soundness Versus Unbounded Soundness.

The classical soundness security notion for non-interactive zero-knowledge proof systems states that
if the statement is not true, no malicious prover can possibly convince the verifier of the truth of
the statement with non-negligible probability. While this security notion is sufficient for publicly-
verifiable NIZKs, it turns out to be insufficient when considering designated-verifier NIZKs, and
corresponds only to a passive type of security notion. Indeed, the verification of a DVNIZK involves
a secret value, known to the verifier. The fact that a DVNIZK satisfies the standard soundness
notion does not preclude the possibility for a malicious prover to learn this secret value, e.g. by
submitting a large number of proofs and receiving feedback on whether the proof was accepted or
not. Intuitively, this is the same type of issue as for encryption schemes indistinguishable against
chosen-plaintext attacks, which can be broken if the adversary is given access to a decryption oracle,
or for signature schemes secure against key-only or known-message attacks, which can be broken
if the adversary is given access to a signing oracle. Here, an adversary could possibly break the
soundness of a DVNIZK if it is given access to a verification oracle.

In practice, this means that as soon as a proof system with bounded soundness is used for
more than a logarithmic number of proofs, the soundness property is no longer guaranteed to hold.
This calls for a stronger notion of soundness, unbounded soundness, which guarantees security even
against adversaries that are given arbitrary access to a verification oracle.

Designing a DVNIZK with unbounded soundness has proven to be highly non-trivial. In fact,
apart from publicly-verifiable NIZKs (which can be seen as particular types of DVNIZKs where the
secret key of the verifier is the empty string), the only known construction of DVNIZK claiming to
satisfy unbounded soundness is the construction of [23], where the claim is supported by a proof of
security in an idealized model. However, we found this claim to be flawed: there is an explicit attack
against the unbounded soundness of any protocol obtained using the compiler of [23], which operates
by using slightly malformed proofs to extract the verification key. In the full version of this work [16],
we describe our attack, and identify the flaw in the proof of Theorem 5 in [23, Appendix A]. We
have notified the authors of our finding and will update future versions of this work with their reply.
To our knowledge, in all current constructions, the common reference string and the public key
must be refreshed after a logarithmic number of proofs.
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Instantiating the Encryption Scheme.

Informally, the security properties we require from the underlying scheme are the following: it
must be additively homomorphic, with plaintext space ZM , random source ZR, and gcd(M,R) = 1,
and it must be decodable, which means that a plaintext m can be efficiently recovered from an
encryption of m with random coin 0. A natural candidate for the above scheme is the Paillier
encryption scheme [45] (and its variants, such as Damgård-Jurik [24]). This gives rise to efficient
DVNIZK proofs of knowledge over abelian groups of composite order (e.g. subgroups of F∗p, with
order a prime p = k · n + 1 for a small k and an RSA modulus n, or composite-order elliptic
curves), as well as efficient DVNIZKs for proving relations between Paillier ciphertexts (using the
dual variant of our framework). Alternatively, the scheme can also be instantiated with the more
recent Castagnos-Laguillaumie encryption scheme [15] to get DVNIZKs over prime-order abelian
groups.

Our framework captures many useful zero-knowledge proofs of knowledge that are commonly used
in cryptography. This includes DVNIZK proofs of knowledge of a discrete logarithm, of correctness
of a Diffie-Hellman tuple, of multiplicative relationships between Pedersen commitments or ElGamal
ciphertexts (or variants thereof), among many others. Our results show that, in the settings where
a designated-verifier is sufficient, one can build efficient non-interactive zero-knowledge proofs of
knowledge for most statements of interest, under well-known assumptions and with strong security
properties, without having to rely on pairing-friendly groups.

4.1.3 Our Method
It is known that linear relations (i.e., membership in linear subspaces) can be non-interactively
verified, using the homomorphic properties of cryptographic primitives over abelian groups. Indeed,
DVNIZK proofs for linear languages can be constructed, e.g., from hash proof systems [33,41]. In [39],
pairings provide exactly the additional structure needed to evaluate degree-two relations, which can
be easily generalized to arbitrary relations.

An alternative road was taken in [23] and subsequent works, to obtain non-interactive zero-
knowledge proofs for a wide variety of relations, in the designated-verifier setting. To illustrate,
let us consider a prover interacting with a verifier, with a common input (g1, g2, h1, h2) ∈ G4 in
some group G of order p, where p is a λ-bit prime. The prover wants to show that (h1, h2) have the
same discrete logarithm in the basis (g1, g2), i.e., there exists x such that (h1, h2) = (gx1 , gx2 ). The
standard interactive zero-knowledge proof for this statement proceeds as follows:1

1. The prover picks r $← {0, 1}3λ, and sends (a1, a2)← (gr1, gr2).

2. The verifier picks and sends a uniformly random challenge e $← Zp.

3. The prover computes and sends d ← e · x + r. The verifier accepts the proof if and only if
(gd1 , gd2) = (he1a1, he2a2).

The idea of [23] is to squash this interactive protocol into a (designated-verifier) non-interactive
proof, by giving the challenge to the prover in advance. As knowing the challenge before sending
the first flow gives the prover the ability to cheat, the challenge is encrypted with an additively
homomorphic encryption scheme. That way, the prover cannot see the challenge; yet, he can still
compute an encryption of the value d homomorphically, using the encryption of e. The verifier, who
is given the secret verification key, can decrypt the last flow and perform the above check. Thus, the

1More formally, this proof only satisfies zero-knowledge against honest verifiers, but this property is sufficient for
the construction of [23].
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proof is a tuple (a1, a2, cd), where cd is an encryption of d computed from (x, r) and an encryption
ce of the challenge e.

Although natural, this intuitive approach has proven quite tough to analyze. In [23], the
authors had to rely on a new complexity-leveraging-type assumption tailored to their scheme, which
(informally) states that the simulator cannot break the security of the encryption scheme, even if he
is powerful enough to break the problem underlying the protocol (in the above example, the discrete
logarithm problem over G). Even in the bounded setting, analyzing the soundness guarantees of the
protocols obtained by this compilation technique (and its variants) is non-trivial, and it has been
the subject of several subsequent works [17,43,49]. Additionally, in the unbounded setting, where
we must give an efficient simulator that can successfully answer to the proofs submitted by any
malicious prover, this compilation technique breaks down. Furthermore, for DVNIZKs constructed
with this method, soundness holds only computationally, and security does not guarantee that the
simulator can extract a witness for the statement.

Our core idea to overcome all of the above issues is to implement the same strategy in a slightly
different way: rather than encrypting the challenge e as the plaintext of an homomorphic encryption
scheme, we encrypt it as the random coin of an encryption scheme which is also homomorphic over
the coins. To understand how this allows us to improve over all previous constructions, suppose that
we have an encryption scheme Enc which is homomorphic over both the plaintext and the random
coins, with plaintext space ZM and random source ZR, and that M is coprime to R. Consider the
previously described protocol for proving equality of two discrete logarithms. Given an encryption
Enc(0; e) of 0, where the challenge is the random coin, a prover holding (x, r) can compute and
send Enc(x; ρ) and Enc(r;−eρ), for some random ρ. This allows the verifier, who knows e, to
compute Enc(x · e+ r; 0), from which she can extract d = x · e+ r mod M (note that the verifier
only needs to know e; unlike in previous work, she does not need to know the decryption key of
Enc). Observe that the extracted value depends only on e modulo M . At the same time, however,
the ciphertext E(0; e) only leaks e modulo R, even to an unbounded adversary. By picking e to
be sufficiently large (e > MR), as M is coprime to R, the verifier can ensure that this leaks no
information (statistically) about e mod M . Therefore, we can use a statistical argument to show
that the prover cannot cheat when the verification using d succeeds. To allow for efficient simulation
of the verifier, we simply give to the simulator the secret key of the scheme, which will allow him to
extract all encrypted values, and to check the validity of the equations, without knowing e mod M .
As the simulator is able to extract the values encrypted with Enc, the scheme can be proven to be
(statistically) knowledge-extractable. Contrary to previous constructions, the verification key is a
random coin rather than the secret key of an encryption scheme. The secret key is only used to
extract information in the simulated game.

Example: DVNIZK Proof of Knowledge of a Discrete Logarithm.

We illustrate our method with the classical example of proving knowledge of a discrete logarithm.
For concreteness, we describe an explicit protocol using the Paillier encryption scheme; therefore, this
section assumes some basic knowledge of the Paillier encryption scheme. All necessary preliminaries
can be found in Section 4.2. Let G be a group of order n, where n = p · q is an RSA modulus (i.e.,
a product of two strong primes). Let g be a generator of G, and let T be a group element. A prover
P wishes to prove to a verifier V that he knows a value t ∈ Zn such that gt = T .

Let h← un mod n2, where u denotes an arbitrary generator of Jn, the subgroup of elements of
Z∗n with Jacobi symbol 1. The Paillier encryption of a message m ∈ Zn with randomness r ∈ Zϕ(n)/2
is Enc(m; r) = (1 + n)mhr mod n2. The public key of the DVNIZK is E = he ∈ Z∗n2 , for a random
e� n · ϕ(n)/2; observe that this is exactly Enc(0; e). The secret key is e. The DVNIZK proceeds as
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follows:
The prover P picks x $← Zn and a Paillier random coin r, and computes X ← gx, T ′ ←

(1 +n)thr mod n2, and X ′ ← (1 +n)xE−r mod n2. The verifier V computes D ← T eX mod n2 and
D′ ← (T ′)eX ′ mod n2. Then, she checks that D′ is of the form (1 + n)d mod n2. If so, V computes
d mod n from D′, and checks that D = gd. V accepts iff both checks succeeded.

Let us provide an intuition of the security of this scheme. Correctness follows easily by inspection.
Zero-knowledge comes from the fact that T ′ hides t, under the IND-CPA security of Paillier. For
statistical knowledge extractability, note E only reveals e mod ϕ(n) to an unbounded adversary,
which leaks (statistically) no information on e mod n as ϕ(n) is coprime to n. This ensures the
value t′ encrypted in T ′ must be equal to t, otherwise the verification equations would uniquely
define e mod n, which is statistically unknown to the prover. The simulator knows ϕ(n) (but not
e mod n) and gets t by decrypting T ′.

4.1.4 Applications

A natural application of non-interactive zero-knowledge proofs of knowledge is the design of privacy-
preserving non-interactive authentication schemes. This includes classical authentication protocols,
but also P-signatures [4] and their many applications, such as anonymous credentials [4], group
signatures [20], electronic cash [19], or anonymous authentication [48]. Our framework can lead
to a variety of efficient new constructions of designated-verifier variants for the above applications
without pairings, whereas all previous constructions either had to rely on the random oracle model,
or use pairing-based cryptography.2 In many scenarios of non-interactive authentication, the
designated-verifier property is not an issue.

In addition, the aforementioned applications build upon the Groth-Sahai framework for NIZKs.
However, Groth-Sahai NIZKs only satisfy a restricted notion of extractability, called f -extractability
in [4]. As a result, constructions of privacy-preserving authentication mechanisms from Groth-
Sahai NIZKs require a careful security analysis. Our framework leads to fully extractable zero-
knowledge proofs, which could potentially simplify this. We note that our DVNIZKs are additionally
randomizable, which has applications for delegatable anonymous credential schemes [3].

Other potential applications of our framework include round-efficient two-party computation
protocols secure against malicious adversaries, electronic voting (see e.g. [17]), as well as designated-
verifier variants of standard cryptographic primitives, such as verifiable encryption [13], or verifiable
pseudorandom-functions [5]. Potential applications to the construction of adaptive oblivious transfers
can also be envisioned: in [35], the authors mention that an adaptive oblivious transfer protocol
can be designed by replacing the interactive zero-knowledge proofs of the protocol of [14] by non-
interactive one. They raise two issues to this approach, namely, that Groth-Sahai proofs are only
witness-indistinguishable for the required class of statements, and that they only satisfy a weak
form of extractability. None of these restrictions apply to our DVNIZK constructions.

4.1.5 Related Work

Non-interactive zero-knowledge proofs were first introduced in [10]. Efficient publicly-verifiable
non-interactive zero-knowledge proofs can be constructed in the random oracle model [31, 32, 47], or
in the non-programmable random oracle model [42] (using a common reference string in addition).

2These applications typically require a proof-friendly signature scheme, but designated-verifier variants of such
scheme can easily be constructed (without pairings) from algebraic MACs [18,40], by committing to the secret key of
the MAC and proving knowledge of the committed value with a DVNIZK; such statements are naturally handled by
our framework.
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The latter construction was improved in [21]. In the standard model, the main construction of
efficient publicly-verifiable NIZKs is the Groth-Sahai framework [39].

Designated-verifier non-interactive zero-knowledge arguments where first introduced in [46],
where it was shown that the existence of semantically secure encryption implies the existence of
DVNIZK arguments with bounded soundness; however, the construction is highly inefficient and
therefore only of theoretical interest. Furthermore, even putting aside efficiency consideration, the
construction is inherently limited to arguments (as opposed to proofs) with bounded soundness (as
opposed to unbounded soundness).

Designated-verifier NIZKs for linear languages can be constructed from hash proof systems [22,
33, 41]. Such NIZKs are perfectly zero-knowledge and statistically adaptively sound, but are not
proofs of knowledge and are restricted to very specific statements, captured by linear equations.

Efficient designated-verifier NIZKs for more general statements were first described in [23]. The
authors describe a general compiler that converts any three-round (honest-verifier) zero-knowledge
protocol satisfying some (mild) requirements into a DVNIZK. However, the construction has several
drawbacks: the soundness only holds under a very specific complexity-leveraging assumption, and
only against adversaries making at most O(log λ) proofs (as already mentioned, the paper claims
that the construction enjoy unbounded soundness as well, but this claim is flawed, see the full
version [16]). In addition, the proofs obtained with this compiler are not proofs of knowledge.

In subsequent works [17, 49], variations of the compilation technique of [23] are described,
where the complexity-leveraging assumption was replaced by more standard assumptions (although
achieving a more restricted type of soundness) by relying on encryption schemes with additional
properties. Eventually, [43] removes some of the constraints of the constructions of [17], and provides
new protocols that can be compiled using the transformation. However, all the constructions
obtained in these papers are only computationally sound, do not enjoy unbounded soundness, and
are not proofs of knowledge; this strongly limits their scope, and in particular, prevents them from
being used in the previously discussed applications.

4.1.6 Organization
In Section 4.2, we introduce our notation, and necessary primitives. We refer the reader to the full
version of this work [16] for classical preliminaries on commitments and cryptosystems. Section 4.2
also describes the notion of a DVNIZK-friendly encryption scheme, which is central to our framework.
In Section 4.3, we introduce our framework for building DVNIZKs of knowledge over an abelian
group, illustrate it with practical examples, and prove its security. In Section 4.4, we describe
the dual variant of our framework for proving statements over plaintexts of a DVNIZK-friendly
encryption scheme. In the full version of this work [16], we additionally describe optimizations
on the efficiency of DVNIZKs for relations between plaintexts of a DVNIZK-friendly scheme, by
eschewing unbounded soundness, as well as our attack on the unbounded soundness of [23].

4.2 Preliminaries
Throughout this chapter, λ denotes the security parameter. A probabilistic polynomial time
algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit) security
parameter λ. A positive function f is negligible if for any polynomial p there exists a bound
B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with
overwhelming probability when its probability is at least 1− negl(λ) for a negligible function negl.
Given a finite set S, the notation x $← S means a uniformly random assignment of an element of
S to the variable x. We represent adversaries as interactive probabilistic Turing machines; the
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notation A O indicates that the machine A is given oracle access to O. Adversaries will sometime
output an arbitrary state st to capture stateful interactions.

Abelian Groups and Modules.

We use additive notation for groups for convenience, and write (G, ) for an abelian group of order k.
When it is clear from the context, we denote 0 its neutral element (otherwise, we denote it 0G). We
denote by • the scalar-multiplication algorithm (i.e. for any (x,G) ∈ Zk×G, x•G = G G . . . G,
where the sum contains x terms). Observe that we can naturally view G as a Zk-module (G, , •),
for the ring (Zk,+, ·). For simplicity, we write G for (−1)•G. We use lower case to denote elements
of Zk, upper case to denote elements of G, and bold notations to denote vectors. We extend the
notations ( , ) to vectors and matrices in the natural way, and write x •G to denote the scalar
product x1 • G1 . . . xt • Gt (where x,G are vectors of the same length t). For a vector v, we
denote by vᵀ its transpose. By GGen(1λ), we denote a probabilistic efficient algorithm that, given the
security parameter λ, generates an abelian group G such that the best known algorithm for solving
discrete logs in G takes time 2λ. In the following, we write (G, k) $← GGen(1λ). Additionally, we
denote by GGen(1λ, k) a group generation algorithm that allows us to select the order k beforehand.

RSA Groups.

A strong prime is a prime p = 2p′ + 1 such that p′ is also a prime. We call RSA modulus a
product n = pq of two strong primes. We denote by ϕ Euler’s totient function; it holds that
ϕ(n) = (p− 1)(q − 1). We denote by Jn the cyclic subgroup of Z∗n of elements with Jacobi symbol 1
(the order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗n (which is also a
subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a probabilistic efficient algorithm
that, given the security parameter λ, generates a strong RSA modulus n and secret parameters (p, q)
where n = pq, such that the best known algorithm for factoring n takes time 2λ. In the following,
we write (n, (p, q)) $← Gen(1λ).

4.2.1 Encryption Schemes
The formal definition of an IND-CPA-secure public-key encryption scheme is recalled in the full
version [16], but in short, a public-key encryption scheme S is a triple of PPT algorithms
(S.KeyGen, S.Enc, S.Dec), where S.KeyGen generates a pair (ek, dk) with an encryption key and
a decryption key, decryption (with dk, deterministically) is the reverse operation of encryption (with
ek, randomized), and no adversary can distinguish encryptions of one of two messages of its choice
(IND-CPA security).

In this work, we will focus on additively homomorphic encryption schemes, which are ho-
momorphic for both the message and the random coin. More formally, we require that the
message space M and the random source R are integer sets (ZM ,ZR) for some integers (M,R),
and that there exists an efficient operation ⊕ such that for any (ek, sk) $← KeyGen(1λ), any
(m1,m2) ∈ Z2

M and (r1, r2) ∈ Z2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that C1 ⊕ C2 =

S.Encek(m1 + m2 mod M ; r1 + r2 mod R). We say an encryption scheme is strongly additive if it
satisfies these requirements. Note that the existence of ⊕ implies (via a standard square-and-multiply
method) the existence of an algorithm that, on input a ciphertext C = S.Encek(m; r) and an integer
ρ ∈ Z, outputs a ciphertext C ′ = S.Encek(ρm mod M ; ρr mod R). We denote by ρ�C the external
multiplication of a ciphertext C by an integer ρ, and by 	 the operation C ⊕ (−1) � C ′ for two
ciphertexts (C,C ′). We will sometimes slightly abuse these notations, and write C⊕m (resp. C	m)
for a plaintext m to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)).
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A simple observation on strongly additively homomorphic encryption schemes is that IND-CPA
security implies that R must either be equal to 0 mod M , or unknown given ek. Otherwise,
an IND-CPA adversary would set (m0,m1) = (0, 1) and check if R � C equals S.Encek(0; 0) or
S.Encek(R; 0).

The Paillier Encryption Scheme.

The Paillier encryption scheme [45] is a well-known additively homomorphic encryption scheme over
Zn for an RSA modulus n. We describe here a standard variant [26,43], where the random coin is
an exponent over Jn rather than a group element. Note that the exponent space of Jn is Zϕ(n)/2,
which is a group of unknown order; however, it suffices to draw exponents at random from Zn/2 to
get a distribution statistically close from uniform over Zϕ(n)/2.

• KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g $← Jn, set h ← gn mod n2, and compute
δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return ek = (n, h) and dk = δ;

• Enc(ek,m; r): given m ∈ Zn, for a random r $← Zn/2, compute and output c ← (1 + n)m ·
hr mod n2;

• Dec(dk, c): compute x← cdk mod n and c0 ← [c · x−n mod n2]. Return m← (c0 − 1)/n.

Note that knowing dk is equivalent to knowing the factorization of n. The IND-CPA security of
the Paillier encryption scheme reduces to the decisional composite residuosity (DCR) assumption,
which states that it is computationally infeasible to distinguish random n’th powers over Z∗n2 from
random elements of Z∗n2 .3 It is also strongly additive, where the homomorphic addition of ciphertexts
is the multiplication over Z∗n2 .

The ElGamal Encryption Scheme.

We recall the additive variant of the famous ElGamal cryptosystem [28], over an abelian group
(G, ) of order k.

• KeyGen(1λ): pick G $← G, pick s $← Zk, set G← s •G, and return ek = (G,H) and dk = s;

• Enc(ek,m; r): given m ∈ Zk, for a random r $← Zk, output C← (r •G, (m •G) (r •H));

• Dec(dk,C): parse C as (C0, C1), and compute M ← C1 (dk • C0). Compute the discrete
logarithm m of M in base G, and return m.

The IND-CPA security of the ElGamal encryption scheme reduces to the decisional Diffie-Hellman
(DDH) assumption over G, which states that it is computationally infeasible to distinguish tuples
of the form (G,H, x • G, x •H) for random x from uniformly random 4-tuples over G. It is also
strongly additive (and the homomorphic operation is the vector addition over G). However, the
decryption procedure is not efficient in general, as it requires to compute a discrete logarithm. For
the decryption process to be efficient, the message m must be restricted to come from a subset of
Zk of polynomial size.

3In the variant we consider here, we must restrict our attention to elements of Z∗n2 which have Jacobi symbol 1
when reduced modulo n as g ∈ Jn, but this can be checked in polynomial time anyway.
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DVNIZK-Friendly Encryption Scheme.

We say that a strongly additive encryption scheme is DVNIZK-friendly, when it satisfies the following
additional properties:

• Coprimality Property: we require that the size M of the plaintext space and the size R of the
random source are coprime4, i.e., gcd(M,R) = 1;

• Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m 7→ Encek(m; 0) must be
efficiently invertible (i.e., there is a PPT algorithm, which is given ek, computing f−1

ek on any
value from the image of fek).

One can observe that the Paillier cryptosystem is DVNIZK-friendly (gcd(n, ϕ(n)) = 1, and
any message m can be efficiently recovered from Encek(m; 0) = (1 + n)m mod n2), while the
ElGamal cryptosystem is not (it satisfies none of the above properties). Other DVNIZK-friendly
cryptosystems include variants of the Paillier cryptosystem [12, 22, 24–26], and the more recent
Castagnos-Laguillaumie cryptosystem [15], with prime-order plaintext space. For simplicity, we
will also assume that all prime factors of the size M of the plaintext space of a DVNIZK-friendly
cryptosystem are of superpolynomial size; our results can be extended to cryptosystems with a
small plaintext space (or a plaintext space with small prime factors), but at a cost in efficiency.
Note that by the homomorphic property, the decodability property implies that a plaintext can
always be recovered from a ciphertext if the random coin is known.

4.2.2 Non-Interactive Zero-Knowledge Proof Systems
In the definitions below, we focus on proof systems for NP-languages that admit an efficient
(polynomial-time) prover. For an NP-language L , we denote RL its associated relation, i.e., a
polynomial-time algorithm which satisfies L = {x | ∃w, |w|= poly(|x|) ∧ RL (x,w) = 1}. It is
well known that non-interactive proof systems cannot exist for non-trivial languages in the plain
model [44]; our constructions will be described in the common reference string model. For conciseness,
the common reference string is always implictly given as input to all algorithms. We note that all
of our constructions can be readily adapted to work in the registered public-key model as well, a
relaxation of the common reference string model introduced by Barak et al in [2].

While languages are naturally associated to statements of membership, the constructions of this
chapter will mainly consider statements of knowledge. We write St(x) = K{w : R(x,w) = 1} to
denote the statement “I know a witness w such that R(x,w) = 1” for a word x and a polytime
relation R. Similarly, we write St(x) = ∃{w : R(x,w) = 1} to denote the existential statement
“there exists a witness w such that R(x,w) = 1”.

Definition 1. (Non-Interactive Zero-Knowledge Proof System) A non-interactive zero-knowledge
(NIZK) proof system Π between for a family of languages L = {Lcrs}crs is a quadruple of probabilistic
polynomial-time algorithms (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) such that

• Π.Setup(1λ), outputs a common reference string crs (which specifies the language Lcrs),

• Π.KeyGen(1λ), outputs a public key pk and a verification key vk,

• Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a witness w, outputs a
proof π,

4In view of our previous observation on IND-CPA security for strongly additive cryptosystems, this implies that R
is secret.
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• Π.Verify(pk, vk, x, π), on input the public key pk, the verification key vk, a word x, and a proof
π, outputs b ∈ {0, 1},

which satisfies the completeness, zero-knowledge, and soundness properties defined below.

We assume for simplicity that once it is generated, the common reference string crs is implicitly
passed as an argument to the algorithms (Π.KeyGen,Π.Prove,Π.Verify). In the above definition of
NIZK proof systems, we let the key generation algorithm generate a verification key vk which is
used by the verifier to check the proofs. We call publicly verifiable non-interactive zero-knowledge
proof system a NIZK proof system in which vk is set to the empty string (or, equivalently, in which
vk is made part of the public key). Otherwise, we call it a designated-verifier non-interactive
zero-knowledge proof system.

Definition 2. (Completeness) A NIZK proof system Π = (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for
a family of languages L = {Lcrs}crs with relations Rcrs satisfies the (perfect,statistical) completeness
property if for crs $← Π.Setup(1λ), for every x ∈ Lcrs and every witness w such that Rcrs(x,w) = 1,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1
]

= 1− µ(λ)

where µ(λ) = 0 for perfect completeness, and µ(λ) = negl(λ) for statistical completeness.

We now define the zero-knowledge property.

Definition 3. (Composable Zero-Knowledge) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the (perfect,
statistical) composable zero-knowledge property if for any crs $← Π.Setup(1λ), there exists a
probabilistic polynomial-time simulator Sim such that for any stateful adversary A ,

∣∣∣∣∣∣∣
Pr




(pk, vk) $← Π.KeyGen(1λ),
(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)


−

Pr




(pk, vk) $← Π.KeyGen(1λ),
(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)




∣∣∣∣∣∣∣
≤ µ(λ)

where µ(λ) = 0 for perfect composable zero-knowledge, and µ(λ) = negl(λ) for statistical composable
zero-knowledge. If the composable zero-knowledge property holds against efficient (PPT) verifiers,
the proof system satisfies computational composable zero-knowledge.

The composable zero-knowledge property was first introduced in [36]. It strenghtens the standard
zero-knowledge definition, in that it explicitly states that the trapdoor of the simulator is exactly
the verification key vk of the verifier. This strong security property guarantees that the same
common reference string can be used for many different proofs, as the same trapdoor is used for
simulating all proofs, which enhances the proof system with composability properties. We note
that [36] additionally required indistinguishability between real and simulated common reference
string; in our constructions, this will be trivially satisfied, as the simulated crs will be exactly the
real one. We define below the notion of (bounded) adaptive soundness, which allows the input to be
adversarially picked after the public key is fixed.
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Definition 4. (Bounded Adaptive Soundness) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the bounded
adaptive soundness property if for crs $← Setup(1λ), for every adversary A ,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x)← A (pk)

: x /∈ Lcrs ∧Π.Verify(pk, vk, x, π)
]

= negl(λ).

Definition 4 is formulated with respect to arbitrary adversaries A , which leads to a statistical
notion of soundness. A natural relaxation of this requirement is to consider only efficient (PPT)
adversarial provers. We denote by computational soundness this relaxed notion of soundness.
Computationally sound proof systems are called argument systems.

Unbounded Soundness.

Definition 4 corresponds to a bounded notion of soundness, in the sense that soundness is only
guaranteed to hold when the prover tries to forge a single proof of a wrong statement, right after
the setup phase. However, if the prover is allowed to interact polynomially many times with the
verifier before trying to forge a proof, sending proofs and receiving feedback on whether the proof
was accepted, the previous definition provides no security guarantees.

Intuitively, in this situation, the distinction between bounded and unbounded soundness is
comparable to the distinction between security against chosen plaintext attacks and security against
chosen ciphertext attacks for cryptosystems. We define unbounded soundness in a similar fashion,
by giving the prover access to a verification oracle Ovk[pk] (with crs implicitly given as parameter)
which, on input (x, π), returns b← Verify(pk, vk, x, π).

Definition 5. (Q-bounded Adaptive Soundness) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the Q-bounded
adaptive soundness property if for crs $← Π.Setup(1λ), and every adversary A making at most Q
queries to Ovk[pk], it holds that

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x)← A Ovk[pk](pk)

: x /∈ Lcrs ∧Π.Verify(pk, vk, x, π)
]

= negl(λ).

Alternatively, the above definition can be formulated with respect to polynomial-time adversarial
provers, leading to computational Q-bounded adaptive soundness. Note that the answers of the
oracle are bits; therefore, if a NIZK proof system satisfies the bounded adaptive soundness property of
Definition 4, it also satisfies the above Q-bounded adaptive soundness property for any Q = O(log λ).
Indeed, if Q is logarithmic, one can always guess in advance the answers of the verification oracle
with non-negligible (inverse polynomial) probability. We say that a NIZK proof system which is
Q-bounded adaptively sound for any Q = poly(λ) satisfies unbounded adaptive soundness.

Eventually, we define (unbounded) knowledge-extractability, a strenghtening of the soundness
property which guarantees that if the prover produces an accepting proof, then the simulator
can actually extract a witness for the statement. To this aim, we extend the syntax of the Setup
algorithm to also output a trapdoor τ , used by the extractor. The knowledge-extractibility guarantee
is stronger than soundness, in that the proof guarantees not only that there exists a witness, but
also that the prover must know that witness. A NIZK satisfying knowledge-extractability is called a
NIZK proof of knowledge.

Definition 6. (Q-bounded Knowledge-Extractability) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the Q-bounded
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knowledge-extractability property if for (crs, τ) $← Π.Setup(1λ), and every adversary A making at
most Q queries to Ovk[pk], there is an efficient extractor Ext such that

Pr



(pk, vk) $← Π.KeyGen(1λ),
(π, x)← A Ovk[pk](pk),
w ← Ext(π, x, τ),

: Rcrs(x,w) iff Π.Verify(pk, vk, x, π)


 ≈ 1.

4.3 A Framework for Designated-Verifier Non-Interactive
Zero-Knowledge Proofs of Knowledge

In this section, we let k be an integer, (G, ) be an abelian group of order k, and (α, β, γ) be
three integers. We will describe a framework for proving statements of knowledge over a wide
variety of algebraic relations over G, in the spirit of the Groth-Sahai framework for NIZK proofs
over bilinear groups. To describe the relations handled by our framework, we describe languages of
algebraic relations via linear maps. While this system was previously used to describe membership
statements [7–9], we adapt it to statements of knowledge. As previously observed in [7], this system
encompasses a wider class of languages than the Groth-Sahai framework.

4.3.1 Statements Defined by a Linear Map over G

Let G ∈ Gα denote a vector of public parameters, and let C ∈ Gβ denote a public word. We will
consider statements StΓ(G,C) defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β as follows:

StΓ(G,C) = K{x ∈ Zγk | x • Γ(G,C) = C}

That is, the prover knows a witness-vector x ∈ Zγk such that the equation x • Γ(G,C) = C holds.
This abstraction captures a wide class of statements. Below, we describe two examples of statements
that can be handled by our framework. They aim at clarifying the way the framework can be used,
illustrating its power, as well as providing useful concrete instantiations. The examples focus on
the most standard primitives (Pedersen commitments, ElGamal ciphertexts), but the reader will
easily recognize they can be naturaly generalized to all standard variants of these primitives (e.g.,
variants of ElGamal secure under t-linear assumptions [11], or under assumptions from the matrix
Diffie-Hellman family of assumptions [29]).

Example 1: Knowledge of Opening to a Pedersen Commitment.

We consider statements of knowledge of an opening (m, r) to a Pedersen commitment C.

• Public Parameters: (G,H) ∈ G2;

• Word: C ∈ G;

• Witness: a pair (m, r) ∈ Z2
k such that C = m •G r •H;

• Linear Map: ΓPed : (G,H,C) 7→ (G,H)ᵀ;

• Statement: StΓPed(G,H,C) = K{(m, r) ∈ Z2
k | (m, r) • (G,H)ᵀ = C}.
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Example 2: Multiplicative Relationship Between ElGamal Ciphertexts.

This type of statement is of particular interest, as it can be generalized to arbitrary (polynomial)
relationships between plaintexts.

• Public Parameters: (G,H) ∈ G2;

• Word: C = ((Ui, Vi)0≤i≤2) ∈ G6;

• Witness: a 5-tuple x = (m0, r0,m1, r1, r2) ∈ Z5
k such that Ui = ri •G and Vi = mi •G r •H

for i = 0, 1, and U2 = m1 • U0 r2 •G, V2 = m1 • V0 r2 •H;

• Linear Map:

ΓEM : (G,H,C) 7→




0 G 0 0 0 0
G H 0 0 0 0
0 0 0 G U0 V0
0 0 G H 0 0
0 0 0 0 G H




;

• Statement: StΓEM(G,H,C) = K{x ∈ Z5
k | x • ΓEM(G,H,C) = C}.

Conjunction of Statements.

The above framework naturally handles conjuctions. Consider two statements (StΓ0(G0,C0),StΓ1

(G1,C1)), defined by linear maps (Γ0,Γ1), with public parameters (G1,G1), words (C0,C1), and
witnesses (x0,x1). Let G ← (G1,G1), C ← (C0,C1), and x ← (x0,x1). We construct the
linear map Γ associated to StΓ(G,C) as Γ← ((Γ0, 0)ᵀ, (0,Γ1)ᵀ). One can immediatly observe that
StΓ(G,C) = StΓ0(G0,C0) ∧ StΓ1(G1,C1). The framework handles disjunction of statements as
well, as observed in [1]; we omit the details.

4.3.2 A Framework for DVNIZK Proofs of Knowledge
We now introduce our framework for constructing designated-verifier non-interactive zero-knowledge
proofs of knowledge for statements defined by a linear map over G. Let S = (S.KeyGen, S.Enc, S.Dec)
denote a DVNIZK-friendly encryption scheme with plaintext space Zk. We construct a DVNIZK
of knowledge ΠK = (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,ΠK.Verify) for a statement StΓ(G,C) over a
word C ∈ Gβ , with public parameters G ∈ Gα, defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β . Our
construction proceeds as follows:

• ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that ek defines a
plaintext space Zk and a random source ZR. As the IND-CPA and strong additive properties
of S require R to be unknown, we assume that a bound B on R is publicly available. We
denote `← 2λkB.

• ΠK.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.

• ΠK.Prove(pk,C,x): on a word C ∈ Zβk , with witness x for the statement StΓ(G,C), pick
x′ $← Zγk , r $← Zγ2λB, compute

X← S.Encek(x, r), X′ ← S.Encek(x′, 0)	 (r� pk), C′ ← x′ • Γ(G,C),

and output ß← (X,X′,C′).
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• ΠK.Verify(pk, vk,C,ß): parse ß as (X,X′,C′). Check that e�X⊕X′ is decodable, and decode
it to a vector d ∈ Zγk . Check that

d • Γ(G,C) = e •C C′.

If all checks succeeded, accept. Otherwise, reject.

The proof ß consists of 2γ ciphertexts of S, and β elements of G. Below, we illustrate our
construction of DVNIZK on the examples of statements given in the previous section. For the sake
of concreteness, we instantiate the DVNIZK-friendly encryption scheme S with Paillier (hence the
operation is instantiated as the multiplication modulo n2), so that the message space is Zn and
the randomizer space is Zϕ(n)/2 for an RSA modulus n. In the examples, we use a bound B = n
and draw Paillier random coins from Z2λB, following our generic framework. However, observe that
in the case of Paillier, we can also draw the coins from Zn/2 to get a distribution statistically close
to uniform over Zϕ(n)/2, which is more efficient.

Example 1: Knowledge of Opening to a Pedersen Commitment.

• ΠPed.Setup(1λ) : Compute ((n, h), δ) = (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Let
`← 2λn2. Let G $← GGen(1λ, n), (G,H) $← G2.

• ΠPed.KeyGen(1λ): pick e $← Z`, set pk← he mod n2 and vk← e.

• ΠPed.Prove(pk, C,x): on a word C ∈ G, with witness x = (m, r) ∈ Z2
n for the statement

StΓPed(G,C), pick x′ $← Z2
n, æ $← Z2

2λB, compute X ← (1 + n)xhæ mod n2,X′ ← (1 +
n)x′pk−æ mod n2,C′ ← x′ • (G,H)ᵀ, and output ß← (X,X′,C′).

• ΠPed.Verify(pk, vk,C,ß): parse ß as (X,X′,C′). Check that XeX′ is of the form (1 +n)d, and
recover the vector d ∈ Z2

n. Check that d • (G,H)ᵀ = e •C C′.

Example 2: Multiplicative Relationship Between ElGamal Ciphertexts.

• ΠEM.Setup(1λ) as ΠPed.Setup(1λ).

• ΠEM.KeyGen(1λ) as ΠPed.KeyGen(1λ).

• ΠEM.Prove(pk,C,x): on a word C ∈ G6, with witness x = (m0, r0,m1, r1, r2) ∈ Z5
n for the

statement StΓEM(G,C), pick x′ $← Z5
n, æ $← Z5

2λB, compute X ← (1 + n)xhæ mod n2,X′ ←
(1 + n)xpk−æ mod n2,C′ ← x′ • ΓEM(G,C), and output ß← (X,X′,C′).

• ΠEM.Verify(pk, vk,C,ß): parse ß as (X,X′,C′). Check that XeX′ is of the form (1 +n)d, and
recover the vector d ∈ Z5

n. Check that d • ΓEM(G,C) = e •C C′.

4.3.3 Security Proof
We now prove the generic DVNIZK construction from Section 4.3.2 is secure.

Perfect Completeness.

It follows from straighforward calculations: e � X ⊕ X′ = S.Encek(e · x + x′; e · r − e · r) =
S.Encek(e · x + x′; 0) is decodable and decodes to d = e · x + x′ mod k. Then, d • Γ(G,C) =
e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′ by the correctness of the statement (x • Γ(G,C) = C)
and by construction of C′.
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Composable Zero-Knowledge.

We prove the following theorem:

Theorem 1 (Zero-Knowledge of ΠK). If the encryption scheme S is IND-CPA secure, the DVNIZK
scheme ΠK is composable zero-knowledge.

We describe a simulator Sim(C, pk, vk) producing proofs computationally indistinguishable
from those produced by an honest prover on true statements. The simulator operates as follows:
let d $← Zγk, and C′ ← d • Γ(G,C) e • C. Sample x $← Zγk, r $← Zγ2λB, and compute X ←
S.Encek(x, r),X′ ← S.Encek(d− e · x,−e · r). Output πs = (X,X′,C′).

Let A be an adversary that can distinguish Sim from Prove. We will build a reduction against
the IND-CPA security of S. The reduction obtains C,x from A , samples x̃← Zγk , sends (x, x̃) to the
IND-CPA game and sets X to be the challenge from the IND-CPA game. Now, the reduction samples
d← Zγk and sets X′ := S.Encek(d; 0)	X� e. Finally, the reduction sets C′ := d • Γ(G,C) e •C.
Send π∗ = (X,X′,C) to A .

Direct calculation shows that if the IND-CPA game outputs an encryption of X̃, then X,X′,C
are distributed as those produced by Sim, whereas when it outputs an encryption of X then π∗ is
distributed identical to a real proof. Thus, whatever advantage A has in distinguishing Sim from
Prove is also achieved by the reduction against IND-CPA. Note that for simplicity, our proof assume
that the IND-CPA game is directly played over vectors, but standard methods allow to reduce this
to the classical IND-CPA game with a single challenge ciphertext.

Adaptive Unbounded Knowledge-Extractability.

We start by showing that ΠK satisfies statistical adaptive unbounded knowledge-extractability. More
precisely, we prove the following theorem:

Theorem 2 (Soundness of ΠK). There is an efficient simulator Sim such that for any (possibly
unbounded) adversary A that outputs an accepting proof ß with probability ε on an arbitrary word C
after making at most Q queries to the oracle Ovk[pk], Sim extracts a valid witness for the statement
StΓ(G,C) with probability at least ε− (Q+ 1)β/pk, where pk is the smallest prime factor of k.

The proof describes an efficient simulator Sim that correctly emulates the verifier, without
knowing vk mod k. The simulation is done as follows:

• Sim.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs← ek. The encryption key ek
defines a plaintext space Zk and a random source ZR with bound B. Let `← 2λkB.

• Sim.KeyGen(1λ): compute (pk, vk) $← ΠK.KeyGen(1λ), output pk, store eR ← vk mod R, and
erase vk.

• Sim.Verify(pk, dk, eR,C,ß): parse ß as (X,X′,C′). Using the secret key dk of S, decrypt X
to a vector x, and X′ to a vector x′. Check that (−eR) � (X 	 x) = X′ 	 x′. Check that
x • Γ(G,C) = C, and that x′ • Γ(G,C) = C′. If all checks succeeded, accept. Otherwise,
reject.

The simulator Sim first calls Sim.Setup(1λ) to generate the common reference string (note that
our simulator generates the common reference string honestly, hence the simulation of Setup cannot
be distinguished from an honest run of Setup), and stores dk. Each time the adversary A sends a
query (C,ß) to the oracle Ovk[pk], Sim simulates Ovk[pk] (without knowing vk mod k) by running
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Sim.Verify(pk, dk, eR,C,ß), and accepts or rejects accordingly. When A outputs a final answer
(C,ß), Sim computes a witness x for StΓ(G,C) by decrypting C with dk.

Observe that the distribution {(pk, vk) $← ΠK.KeyGen(1λ), ek ← vk mod k : (pk, ek)} is statisti-
cally indistinguishable from the distribution {(pk, vk) $← ΠK.KeyGen(1λ), ek $← Zk : (pk, ek)}. Put
otherwise, the distribution of vk mod k is statistically indistinguishable from random, even given pk.
Indeed, as S is a DVNIZK-friendly encryption scheme, it holds by definition that gcd(k,R) = 1. As
` = 2λBk ≥ 2λRk, the distribution {e $← Z`, ek ← e mod k, eR ← e mod R : (ek, eR)} is statistically
indistinguishable from the uniform distribution over Zk × ZR, and the value pk only leaks eR, even
to an unbounded adversary (as S.Encek(0; e) = S.Encek(0; e mod R)). We now prove the following
claim:

Claim 1. For any public parameters G and word C, it holds that

Pr




(pk, vk) $← ΠK.KeyGen(1λ),
b← Sim.Verify(pk, dk,C,ß), : b′ = b
b′ ← ΠK.Verify(pk, vk,C,ß)


 ≥ 1− β/pk,

where pk is one of the prime factors of k.

Proof. First, we show that if b = 1, then b′ = 1. Indeed, let us denote (x,x′) the plaintexts
associated to (X,X′). Let (r, r′) be the random coins of the ciphertexts (X,X′). Observe that,
by the homomorphic properties of S, the equation (−eR) � (X 	 x) = X′ 	 x′ is equivalent to
S.Encek(0;−eR · r) = S.Encek(0; r′), which is equivalent to e�X⊕X′ = S.Enc(e · x + x′ mod k; e ·
r + r′ mod R) = S.Enc(e · x + x′ mod k; 0) as e = eR mod R. Therefore, the verifier’s check
that e �X ⊕X′ is decodable succeeds if and only if Sim’s first check succeeds, and the decoded
value d ∈ Zγk satisfies d = e · x + x′ mod k. Moreover, if the equations x • Γ(G,C) = C and
x′ • Γ(G,C) = C′ are both satisfied (i.e. Sim’s other checks succeed), then it necessarily holds that
d • Γ(G,C) = (e · x + x′) • Γ(G,C) = e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′. This concludes
the proof that, conditioned on Sim’s checks succeeding, the verifier’s checks necessarily succeed.

Now, assume for the sake of contradiction that the converse is not true: suppose that Sim rejected
the proof, while the verifier accepted. We already showed that the equation (−eR)�(X	x) = X′	x′
is equivalent to the equation e � X ⊕ X′ = S.Enc(e · x + x′ mod k; 0); therefore, if e � X ⊕ X′
is decodable (it has random coin 0), then Sim’s check that (−eR) � (X 	 x) = X′ 	 x′ succeeds.
As we assumed that Sim rejects the proof, this means that at least one of Sim’s last checks must
fail: either x • Γ(G,C) 6= C, or x′ • Γ(G,C) 6= C′. By the first check of the verifier, it holds that
e�X⊕X′ is decodable; denoting (x,x′) the plaintexts associated to (X,X′), it therefore decodes
to d = e · x + x′ mod k. By the second check of the verifier, it holds that d • Γ(G,C) = e •C C′,
which implies e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′. This last equation rewrites to

e • (x • Γ(G,C) C) = C′ x′ • Γ(G,C) (4.1)

Now, recall that by assumption, either x • Γ(G,C) 6= C, or x′ • Γ(G,C) 6= C′. Observe that
Equation 4.1 further implies, as e 6= 0 (with overwhelming probability), that x′ • Γ(G,C) C′ 6= 0 if
and only if x • Γ(G,C) C 6= 0. Therefore, conditioned on Sim rejecting the proof, it necessarily
holds that x • Γ(G,C) C 6= 0 and x′ • Γ(G,C) C′ 6= 0. Let (µi, νi) be two non-zero entries of the
vectors (x • Γ(G,C) C,C′ x′ • Γ(G,C)) at the same position i ≤ β; by Equation 4.1, it holds
that e = νi · µ−1

i mod p for at least one of the prime factors p of k. However, recall that the value
e mod k is statistically hidden to the prover (and therefore, so is the value e mod p), hence the
probability of this event happening can be upper-bounded by β/p ≤ β/pk. This concludes the proof
of the claim.
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Now, consider an adversary A that outputs an accepting proof (C,ß) with probability at least
ε after a polynomial number Q of interactions with the oracle Ovk[pk]. By the above claim and a
union bound, it necessarily holds that A outputs an accepting proof (C,ß) with probability at least
ε−Qβ/pk after interacting Q times with Sim.Verify(pk, dk, eR, ·, ·); moreover, with probability at
least 1−βpk, this proof is also accepted by Sim’s verification algorithm. Overall, Sim obtains a proof
accepted by his verification algorithm with probability at least ε− (Q+ 1)β/pk. In particular, this
implies that the vector x extracted by Sim from ß satisfies x •Γ(G,C) = C with probability at least
ε− (Q+ 1)β/pk. Therefore, Sim extracts a valid witness for the knowledge statement StΓ(G,C)
with probability at least ε− (Q+ 1)β/pk. As the size k of a DVNIZK-friendly cryptosystem has only
superpolynomially large prime-factors, it holds that pk is superpolynomially large. As (Q+ 1)β is
polynomial, we conclude that if A outputs an accepting proof with non-negligible probability, then
Sim extracts a valid witness with non-negligible probability.

4.4 Dual Variant of the Framework

In the previous section, we described a framework for constructing efficient DVNIZKs of knowledge
for relations between words defined over an abelian group (G, ), using a cryptosystem with specific
properties as the underlying commitment scheme for the proof system. In this section, we show that
the framework can also be used in a dual way, by considering languages of relations between the
plaintexts of the underlying encryption scheme – we call this variant ‘dual variant’ of the framework,
as the roles of the underlying encryption scheme (which is used as a commitment scheme for the
proof) and of the abelian group (which contains the words on which the proof is made) are partially
exchanged. This allows for example to handle languages of relations between Paillier ciphertexts. To
instantiate the framework, it suffices to have any perfectly binding commitment scheme defined over
G. This dual variant leads to efficient DVNIZK proofs for relations between, e.g., Paillier ciphertexts,
whose zero-knowledge property reduces to the binding property of the commitment scheme over G
(e.g. the DDH assumption, or its variants), and with statistical (unbounded, adaptive) soundness.

4.4.1 Perfectly Binding Commitment over G

Suppose that we are given a perfectly binding homomorphic commitment C = (C.Setup, C.Com, C.Verify),
where C.Com : Zk × Zk 7→ G∗. Assume further that C.Setup generates a public vector of parame-
ters G ∈ G∗, and that there is a linear map ΓC associated to this commitment such that for all
(m, r) ∈ Z2

k, C.Com(m, r) = (m, r) • ΓC(G). Note this implies the commitment scheme is homomor-
phic over G. ElGamal (Sect. 4.2.1), can be used as a commitment scheme satisfying these properties,
is hiding under the DDH assumption and perfectly binding. We do so by using KeyGen(1λ) in place of
Setup(1λ) to generate group elements (G,H) (the public key of the encryption scheme), and commit
(i.e encrypt) via ΓC(G,H) = ((0, G)ᵀ, (G,H)ᵀ). We generalize this to commitments to length-t
vectors as follow: we let ΓC,t denote the extended matrix such that C.Com(m, r) = (m, r) •ΓC,t(G),
where (m, r) are vectors of length t (ΓC,t is simply the block-diagonal matrix whose t blocks are all
equal to ΓC). Consider now the following statement, where the word is a vector C of commitments:

StΓC,t(G,C) = K{(m, r) | (m, r) • ΓC,t(G) = C}
= K{(m, r) | C.Com(m, r) = C}.

One can immediatly observe that this statement (which is a proof of knowledge of openings to a
vector of commitments with C) is handled by the framework of Section 4.3.
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4.4.2 Equality of Plaintexts between C and S

In this section, we describe a simple method to convert a DVNIZK on the statement StΓC,t(G,C) =
K{(m, r) | C.Com(m, r) = C} into a DVNIZK on the statement St′(G,C,Xm) = ∃{(m,æm, r) | Xm =

S.Encek(m,æm) ∧C = C.Com(m, r)} for a length-t vector C of commitments with a commitment
scheme over G satisfying the requirements defined in the previous section, and a length-t vector
of DVNIZK-friendly ciphertexts Xm. Instantiating the framework of Section 4.3 for the statement
StΓC,t(G,C), we get the following DVNIZK Π:

• Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs← ek. Note that ek defines the
plaintext space Zk and the random source ZR with bound B. We denote `← 2λkB.

• Π.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.

• Π.Prove(pk,C, (m, r)): on a word C ∈ Ztk, with witness (m, r) for the statement StΓC,t(G,C)
(where G $← C.Setup(1λ)), pick random (m′, r′), random coins (æm,ær) for S, and compute

Xm ← S.Encek(m,æm), Xr ← S.Encek(r,ær),
X′m ← S.Encek(m′, 0)	 (æm � pk), X′r ← S.Encek(r′, 0)	 (ær � pk),
C′ ← (m′, r′) • ΓC,t(G,C),

and output ß← (Xm,X′m,Xr,X′r,C′).

• ΠK.Verify(pk, vk,C,ß): parse ß as (Xm,X′m,Xr,X′r,C′). Check that e � Xm ⊕ X′m and
e � Xr ⊕ X′r are decodable, and decode them to vectors (dm,dr) ∈ (Ztk)2. Check that
(dm,dr) • ΓC,t(G,C) = e •C C′.

By the result of Section 4.3, this is an unbounded statistical adaptive knowledge-extractable DVNIZK
of knowledge of an opening for C. Suppose now that we modify the above scheme as follow: we
let Xm be part of the word on which the proof is executed, rather than being computed as part of
the proof by the algorithm Π.Prove. That is, we consider words of the form (C,Xm) with witness
(m, r,æm) such that (C,Xm) = (C.Com(m; r), S.Encek(m,æm)). Let Π′ denote the modified proof,
in which Xm is part of the word and (X′m,Xr,X′r,C′) are computed as in Π. Observe that the
proof of security of our framework immediatly implies that Π′ is a secure DVNIZK for plaintext
equality between commitments with C and encryptions with S: our statistical argument shows
that a (possibly unbounded) adversary has negligible probability of outputting a word C together
with an accepting proof ß = (Xm,X′m,Xr,X′r,C′) where the plaintext extracted by the simulator
from Xm is not also the plaintext of C. Hence, it is trivial that the probability of outputting a
word (C,Xm) and an accepting proof ß′ = (X′m,Xr,X′r,C′) where the plaintext extracted by the
simulator from Xm is not also the plaintext of C is also negligible. Thus, we get:

Theorem 3. The proof system Π′ is an adaptive unbounded statistically sound proof for equality
between plaintexts of C and plaintexts of S, whose composable zero-knowledge property reduces to
the IND-CPA security of S.

Note that the proof Π′ is no longer a proof of knowledge: while the simulator can extract (m, r)
from the prover, he cannot necessarily extract the random coins æm of Xm, which are now part of
the witness. Therefore, for the protocol to make sense, it is important that C is perfectly binding .
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4.4.3 A Framework for Relations between Plaintexts of S

The observations of the above section suggest a very natural way for designing DVNIZKs for relations
between plaintexts m ∈ Z∗k of the encryption scheme S, which intuitively operates in two steps:
first, we create commitments to the plaintexts m over G using C and prove them consistent with
the encrypted values using the method described in the previous section. Then, we are able to
use the framework of Section 4.3 to demonstrate the desired relation holds between the commited
values (this is a statement naturally captured by the framework). More formally, on input a vector
of ciphertexts Xm encrypting plaintexts m with random coins æm,

• Pick r and compute C← C.Com(m, r).

• Construct a DVNIZK for the statement St′(G,C,Xm) with witness (m,æm, r), using the
method described in Section 4.4.2.

• Construct a DVNIZK for the statement StΓ(G,C) with witness (m, r), using the framework
of Section 4.3.

The correctness of this approach is immediate: the second DVNIZK guarantees that the appro-
priate relation is satisfied between the plaintexts of the commitments, while the first one guarantees
that the ciphertexts indeed encrypt the committed values. This leads to a DVNIZK proof of relation
between plaintexts of S, with unbounded adaptive statistical soundness. Regarding zero-knowledge,
as the proof starts by committing to m with C, we must in addition assume that the commitment
scheme is hiding (the security analysis is straightforward).

Theorem 4. The above system is an adaptive unbounded statistically sound proof for relations of
plaintexts of S, whose composable zero-knowledge reduces to the IND-CPA security of S and the
hiding property of C.

We note that we can also obtain a variant of Theorem 4, where zero-knowledge only relies on
the IND-CPA of S, and hiding of C implies the soundness property, using commitment schemes a la
Groth-Sahai where the crs can be generated in two indistinguishable ways, one leading to a perfectly
hiding scheme, and one leading to a perfectly binding scheme (such commitments are known, e.g.,
from the DDH assumption).

Example: Multiplicative Relationship Between Paillier Ciphertexts.

We focus now on the useful case of multiplicative relationship between plaintexts of Paillier ciphertexts.
We instantiate S with the Paillier encryption scheme over an RSA group Zn, with a public key
(n, h) (h = gn mod n2 for a generator g of Jn), and the commitment scheme C with the ElGamal
encryption scheme over a group G of order n, with public key (G,H). Let (P0, P1, P2) ∈ (Z∗n2)3

be three Paillier ciphertexts, and let (m0,m1,m2, ρ0, ρ1, ρ2) be such that m2 = m0m1 mod n, and
P0 = (1+n)m0hρ0 mod n2, P1 = (1+n)m1hρ1 mod n2, P2 = (1+n)m2hρ2 mod n2. Let E = he mod n2

denote the public key of the verifier. The designated-verifier NIZK for proving that P2 encrypts
m0m1 proceeds as follows:

• Committing over G: pick (r0, r1, r2) and send (Ui, Vi)0≤i≤2 ← (ri •G, ri •H mi •G)0≤i≤2
(which are commitments with ElGamal to (m0,m1,m2) over G).

• Proof of Plaintext Equality: pick (m′i, r′i, ρ′i)0≤i≤2
$← (Zn×Zn×Zn/2)3, and send for i = 0

to 2, Xi ← (1+n)rihρ′i mod n2, X ′i ← (1+n)r′iE−ρ′i mod n2, P ′i ← (1+n)m′iE−ρi mod n2, and
(U ′i , V ′i )← (r′i •G, r′i •H m′i •G).
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• Proof of Multiplicative Relationship Between the Committed Values: apply the
proof system of Example 2 from Section 4.3 to the word (Ui, Vi)0≤i≤2, with public parameters
(G,H), and the witness x = (m0, r0,m1, r1, r2 − r0m1) which satisfies (U0, V0) = (r0 •G, r0 •
H m0 •G), (U1, V1) = (r1 •G, r1 •H m1 •G), and (U2, V2) = ((r2− r0m1)•G m1 •U0, (r2−
r0m1) •H m1 • V0).

• Proof Verification: upon receving (Ui, Vi, Xi, X
′
i, P

′
i , U

′
i , V

′
i )0≤i≤2 together with the proof

of multiplicative relationship between the values committed with (Ui, Vi)i, the verifier with
verification key vk = e checks that e�Pi⊕P ′i and e�Xi⊕X ′i successfully decode (respectively)
to values pi, xi, and that e • Ui U ′i = xi • G and e • Vi V ′i = xi •H pi • G, for i = 0 to 2.
The verifier additionally checks the multiplicative proof, as in Example 4 from Section 4.3.
She accepts iff all checks succeed.

The proof for the multiplicative statement involves 10 Paillier ciphertexts and 3 ElGamal ciphertexts.
Overall, the total proof involves 20 Paillier ciphertexts, and 9 ElGamal ciphertexts. However, this
size is obtained by applying the framework naively; in this situation, it introduces a lot of redudancy.
For instance, instead of computing Paillier encryptions of (m0, r0,m1, r1) in the third phase, one
can simply reuse the word (P0, P1) and the ciphertexts (X0, X1), as well as reusing (P ′i , X ′i)i for the
corresponding masks (m′i, r′i)i, saving 8 Paillier ciphertexts; similar savings can be obtained for the
ElGamal ciphertexts, leading to a proof of total size 12 Paillier ciphertexts + 7 ElGamal ciphertexts.

Furthermore, if we eschew unbounded soundness and accept bounds on mi we are able to produce
a much shorter proof, comprising only two Paillier ciphertexts, outperforming even Fiat-Shamir.
We detail this in the full version [16].
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5. Multiparty Routing: Secure Rout-
ing for Mixnets

5.1 Introduction

Anonymous communication networks (ACNs) provide secure communication channels that hide not
only data contents but also the communications’ metadata, thus providing protection against traffic
analysis. By routing data through multiple proxies, ACNs prevent network eavesdroppers from
linking the source and destination of messages. Furthermore, ACNs enable senders to communicate
with potentially malicious destinations without revealing their identity or location.

ACNs are typically overlay networks consisting of a set of dedicated routers, also called relays,
that are connected via the Internet. The first ACN design in the early 1980s [11] introduced the
concept of mixes for implementing anonymous email. These mixes are relays that collect a batch of
N equal-size messages, cryptographically transform them, and output them in a re-shuffled form,
so that the output messages cannot be traced to their corresponding inputs based on message
content, size, timing or order. The best known ACN is Tor [32]. The Tor network is an ACN that
consists of about seven thousands relays run by volunteers, and provides service to an estimated
two million daily users who use it primarily to anonymously browse the web [1]. Other examples of
ACN networks include for example Mixminion [24] an anonymous re-mailer, Freenet [14, 13] used
for anonymous file-sharing, and DC-Nets [16] that can be deployed for broadcast applications such
as group messaging.

The goal of ACNs is to anonymize communications by relaying them over multiple routers.
There are three main types of anonymous routing in terms of how routers are chosen to form the
path.

First, in deterministic routing, the paths are predetermined by the system configuration. Chaum’s
original ACN proposal [11] considered a sequence of mixes organized in a cascade. Systems that
adopted the cascade network topology in their designs include JAP [8], and voting systems, such
as Helios [2]. An advantage of cascades is that routing headers are unnecessary, since the next
hop in the path is predetermined. Cascades however, are of limited practicality due to their poor
scalability, limited anonymity, and lack of resilience to router failures [42].

Second, in source routing, the full path is chosen by the initiator of the communication. This
is the routing used by Tor [32] and by anonymous remailers such as Mixmaster [44] and Mixmin-
ion [24]. In comparison to cascades, source routing is more resilient against failures of routers [57]; it
is more scalable, meaning that the network can grow to accommodate more users; and consequently,
can provide better anonymity to those users.

However, an important requirement in source routing is that the initiator must have a full view
of the network, since otherwise partial network knowledge can be exploited by an adversary to
fingerprint and identify users based on which relays they choose [26]. As a consequence, all users
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need to periodically download the full list of currently available routers, their addresses, public
keys, and other routing-relevant information. This is a major bottleneck for the scalability of the
network, particularly if the routers have a high churn – as is often the case in peer-to-peer networks.

Third, in hop-by-hop routing each router locally decides on the next router of the path. Hop-
by-hop routing is advantageous over source routing because it does not require entities to maintain
an up-to-date view of the full network, as well as allows for better load balancing. The main disad-
vantage of hop-by-hop routing is that it is vulnerable to route capture attacks, where a malicious
relay can gain full control over the route of a message, so that it is relayed through adversarial
relays [23]. The earliest ACN employing hop-by-hop routing is Crowds [52], and another example
is Morphmix [53], which uses witnesses to mitigate route capture attacks.

5.1.1 PANORAMIX Contributions

In this chapter we propose multiparty routing, a novel type of anonymous routing that broadens the
design space with a fourth kind of routing. Our solution comes with important advantages over the
previous routing approaches. Multiparty routing offers a scalability advantage over source routing:
in our proposal the communication initiators need to only know one (or a small number) of routers,
compared to the full view required in source routing. At the same time, we prevent the route
capture attacks of hop-by-hop routing by decentralizing the routing decision using a multiparty
computation technique. In addition to anonymity, our protocol guarantees the integrity of both
shuffles and routing, which is novel for ACNs.

Our main contribution is a concrete multiparty routing protocol that employs cryptographic
primitives, such as commitment schemes, signatures, and cryptographic hash functions. We com-
bine our routing protocol with a mix network that employs provable shuffles, threshold decryption,
and re-randomizable encryption to realize secure and verifiable anonymous communication, and
load balancing. Our solution achieves security against global active adversaries and offers improved
resilience and scalability against relay failures compared to deterministic and source routing. Com-
pared to mix cascades our solution increases the anonymity set without substantially affecting the
cost per mix. We achieve close to optimal load balancing by integrating relevant information about
the throughput of relays into the routing strategy. Our protocol is a mid-latency anonymous com-
munication network and thus can be deployed for applications that are more tolerant to latency
such as anonymous wiki, micro-blogging, voting, and auctions.

5.2 Goals, Assumptions, and System Architecture

In this section, we describe the security model, the goals of the system, the entities and their roles,
and the threat model.

5.2.1 Adversary Model

We assume a global adversary that can monitor all the communication links between entities in
the system, including channels from users to the system and vice versa. The adversary is active,
meaning that it can corrupt a subset of entities in the system, as well as submit messages herself.
We assume that all cryptographic primitives are secure and cannot be broken by the adversary.
Our protocol does not enforce restrictions on how many users need to be honest. However, a user
is anonymous only among honest users that submitted messages to the network during the same
time frame, and whose messages have traversed at least one honest relay.
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5.2.2 Goals of the System
The goal of our system are as follows:

• Anonymity: the adversary must not be able to link a message leaving the system to the user
who sent it, provided that the message has traversed at least one honest relay. This goal is
equivalent to sender anonymity that has been defined by Pfitzmann et al.[48].

• Routing Integrity: the adversary must not be able to influence the route followed by a message,
and consequently cannot bias the routing by forcing the data to only traverse adversarial
relays.

• Availability: the system must be robust to the adversarial removal of relays, and output all
messages even if some relays are taken down once the routing has started.

• Load-balancing: we aim at providing load balancing such that relays route an amount of
traffic that is proportional to their throughput.

5.2.3 Entities and Roles
We consider a broadcast channel that we call bulletin board. Although the bulletin board is readable
by all parties in the system: users and servers, users can not write into it.

Our system comprises a set of users and dedicated servers as depicted in Fig. 5.1. The users
in the system want to send messages anonymously, whereas the servers cooperate with each other
to achieve secure anonymous routing. We distinguish between three sets of servers: R - relays,
RE - routing entities, and AS- auditing servers. The relays R are mixes that relay messages via
publishing ciphertext messages on the bulletin board and fetching them. More precisely, the mixes
first collect from the bulletin board their set of input ciphertexts, then re-encrypt and shuffle those,
a process referred to as mixing, and then relay their outputs to the bulletin board, so that each of
them can be retrieved by the next mix in the path. The relays are organized in l sequential layers
formed by disjoint subsets of R.

The second set of servers are called routing entities RE . These are responsible for computing
the joint randomness that is used in the routing process.

The third set of servers are the auditors (auditing servers) AS. Auditors are responsible for:
1. generating and broadcasting the public encryption key; 2. verifying the correctness of message
shuffling and routing and 3. inal message decryption.

For clarity, we keep the roles of auditors and routing entities separate from mixes. However,
from a practical point of view all three roles can be carried out by the same set of servers.

Network Handler

We suggest to use an untrusted ”network handler” who arranges the mixes into layers based on
some predefined rules that strategically arranges mixes such that the probability that all mixes
in a route cooperate with each other is as low as possible, e.g., due to conflict of interest or high
expense. These rules can be for example such as follows:

• Mixes set up by an organization or institution or from a country cannot be placed in more
than one layer,

• One layer has to have mixes from at least three distinct countries (IP subnets), organization,
or institution
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Figure 5.1: This figure depicts the roles of all actors (user, mixes, routing entities, auditing servers)
as a message is relayed through the system.

• The network needs to have layers according to the number of incoming messages and the
number of mixes in one layer (see Section 5 for analysis for this)

Another responsibility of the network handler is to handle churn. Note, that RE and AS are not
managed by the network handler and are self-organized. This is important because otherwise the
network handler would have power to impact the anonymity of the system. The untrusted network
handler can not aid the adversary as long as the network management rules are respected. If the
network manager does not follow them his behavior will be visible to all participants in particular
AS who have the power to replace the misbehaving network handler. The network handler can be
only one server but ideally would be a set of servers similar to Tor’s directory servers [1].

Next, we briefly review the required cryptographic building blocks and proceed by describing
our protocol.

5.2.4 Cryptographic Building Blocks

Next, we review relevant cryptographic building blocks.
Public Key Encryption and Signing We assume the reader is familiar with the principles

of public key encryption and signature schemes. In our protocol, we employ a variant of public key
encryption, referred to as threshold decryption [28, 56], which allows for the decryption to be carried
out by a quorum of participants (the auditors in our scheme). More precisely, our scheme uses a
distributed key generation protocol KeyGen, such as the ones of [47, 35]. It generates a public key
which is made available to all users of the system, while the corresponding secret key is distributed
to all the auditors AS in a secret shared form. During the decryption protocol Dec a threshold of
the secret key share holders (auditors) jointly decrypt the input ciphertext. This process can be
realized either with a trusted dealer, such as in the work of [60], or without [46], [17].

To conceal how ciphertexts traverse a mix, we use re-randomizable encryption, such as ElGamal
[34]. This allows a mix to update the randomness of the traversing ciphertexts. We use standard
cryptographic signatures, such as [55], for the routing verification.

Shuffle and Correctness of Shuffling A shuffle algorithm Shuffle implements a permutation
on its inputs. In our protocol we use shuffles to permute the ciphertexts to conceal their ordering.
To guarantee the correct execution of the shuffling algorithm we apply a proof of correct shuffling
which is realized by a zero-knowledge (ZK) proof systems. In our scheme, given a set of pre-shuffling
and post-shuffling ciphertexts, a prover (the mix) needs to prove to a verifier (the auditors or, in
case the auditor role is carried out by mixes, other mixes) that the set of post-shuffling ciphertexts
is a re-randomization of the set of the pre-shuffling ciphertexts (without revealing the permutation
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and the re-randomization randomness used by Shuffle). Our protocol utilizes non-interactive
variants of ZK proofs, such as the ones proposed in [63][4].

Shuffle-friendly Encryption In addition to invalid shuffling, we use ZK proofs to prevent
the double submission of honestly encrypted messages. This is necessary because repetitions in
the output reveal the relationship between input and output messages. We follow [6, 43] and use
chosen-ciphertext attack (CCA) secure encryption with a homomorphic embeddings. This property
is satisfied by ElGamal encryption when combined with a non-interactive ZK proof of plaintext
knowledge. After verifying the proof, the non-malleability of CCA secure encryption allows to
weed out double submissions. The shuffle uses the re-randomizable ElGamal ciphertext without
the proof.

5.3 Multiparty Routing Protocol

5.3.1 System Overview

Messages are relayed by one mix from each layer of the system. Therefore, each message is relayed
by a set of mixes. Users send their messages to an arbitrary mix from the first layer of mixes R1.
Only messages that are submitted within the same time frame are mixed with each other. Hence, a
user is only anonymous among honest users that submitted their messages at the same time frame.

Each relay mixes all message it receives. The next mix is determined in a hop-by-hop fashion.
However, the mixes do not have freedom to choose to which mixes they send any given output
message. The routing entities, RE , determine how each message is routed by jointly producing the
randomness used for the routing; this process, called Multiparty Routing, can be summarized as
follows.

1. All routing entities choose privately a random number and use a commitment scheme to
commit to their random numbers on the bulletin board.

2. After all routing entities have committed to their random numbers, they all open their com-
mitments.

3. The random numbers are combined to produce a joint random number.

4. This random number is used to compute the routing assignment of the ciphertext messages
to the mixes in the next layer in proportion to their capacity/throughput.

This procedure is carried out for the output of each mix. In parallel to this, the auditing servers
need to verify the correctness of the shuffling and routing. After a message has been mixed by a
mix from each layer and the auditing servers successfully verify the correctness of all routing and
shuffling processes the message is delivered to the intended recipient of the message. If at least one
of the mixes that has relayed the message is honest, the adversary cannot trace back a message
leaving the network to any particular sender.

Figure 5.2 shows the topology for a network that has four layers (disjoint subset) of mixes.
After processing input messages, the MPR protocol assigns output messages to mixes in the next
layer; meaning that a portion of the output messages of each mix is assigned to mixes in the next
layer in proportion to the throughput of those mixes within their own layer. Hence, the routing
pattern between the mixes follows a stratified topology as investigated by Diaz et al. [30].
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Figure 5.2: In this figure we present an example of how mixes can be arranged for our protocol
when the protocol consists of 4 layers. The throughput of all layers needs to be equal, meaning
that the total throughput of mixes 1, 2, 3 needs to be equal to the total throughput of the mixes
4, 5, and the total throughput of the mixes 6, 7, 8, ad the total throughput of the mixes 9, 10. For
example, the output ciphertexts from mix 1 are either assigned to mixes 4 or mix 5.

5.3.2 Main Protocol
We denote the set of users by U . The set R of relays is divided into l layers formed by mutually
exclusive subsets Ri with the union ⋃l

i=1Ri = R. An individual mix is denoted by r.
The bulletin board contains lists of routing and verification information (input and output

ciphertexts, corresponding signatures, commitments and their corresponding openings), and NIZK
proofs of shuffles, grouped and indexed by ctr going from 1 to l).

Encryption The auditors (auditing servers) AS are responsible for the generation of the encryp-
tion key pke. Each auditing server has only a share of the private key {skdAS1 , ..., skdASd

} where
|AS| = d. Only qualified subsets of the auditing servers can jointly decrypt ciphertexts using their
private key shares.

The protocol starts with each user encrypting her message m together with its intended receiver
under the public key pke (known to all users) and sending the corresponding ciphertext made CCA
secure by the proof of knowledge (PoK) to the bulleting board.The set of ciphertexts that enter
the system in the same time (by all senders) is denoted by C0. Our system mixes ciphertexts in
multiple layers with layer Ri producing the ciphertext set Ci. After completing l layers the protocol
terminates with a verification step and the decryption of Cl.

Mixing Once a subset of the ciphertexts are assigned to a mix r themixing and routing take place.
Mixes in the first layer receive ciphertexts from users, while mixes for other layers take ciphertexts
from the bulletin board. The mixes in the first layer verify the PoK and after eliminating duplicates
remove these proofs. The mixing consists of the re-encryption of the ciphertext inputs and their
shuffling by a random permutation φ.

After the output ciphertexts have been submitted to the bulletin board, the next mix to shuffle
a ciphertext is determined by the following routing assignment procedure.

Routing Assignment We use a coin-tossing protocol such as [9] to obtain joint randomness. In
the coin-tossing protocol the routing entities commit to their randomness using a cryptographic
commitment schemes. Once the commitments are opened and the random strings are revealed on
the bulletin board, a simple function, e.g. bitwise XOR or modular addition, is applied to obtain
the joint randomness Rand.

Then we apply a function Assign on Rand. Assign then outputs the next layer mix index
assignment list L = (z1, . . . , zw) with k elements in correspondence with the capacity/throughput
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of these mixes.
We give an example instantiation of Assign via the two procedures H and Map in Appendix A

in Algorithms 2 and 3.
The example in Figure 5.3 to illustrates the routing assignment. Let us have a relay which out-

puts ciphertexts c1, c2, c3 and the next layer of relays consist of two relays r1, r2 with corresponding
capacities b1 = 1, b2 = 2. By applying Assign we want to determine which relays in the layer
receive which ciphertexts. Namely, for an output vector of indices (z1 = 2, z2 = 1, z3 = 2) output
by Assign the outgoing ciphertext is going to be fetched in the next step as follows. In our case,
r1 will then fetch the first 1

1+2 = 1
3 of the outgoing ciphertexts, namely cz1 = c2, and r2 fetches the

rest 2
1+2 = 2

3 ciphertexts, cz2 = c1 and cz3 = c3 respectively.

Figure 5.3: This figure depicts how the ciphertexts c1, c2, c3 from our example are assigned to the
mixes r1 and r2.

Proof of Mixing and Routing The correctness of the mixing process is accommodated by the
bulletin board. After mixing the set of input and corresponding set of output ciphertexts the mix
needs to sign input and output ciphertexts. For signing, both the routing and mixing, R use their
signing private key sks. The corresponding verifying public key pkv is available to all parties for
later verification purposes. These keys are used as long-term keys, unlike (pke, (skd1, . . . , skdd))
that are issued fresh for each time-frame.

Then, to prove correctness of protocol execution each mix needs to post on the bulletin board:
a) inputs and outputs and their corresponding signatures, and b) a non-interactive zero-knowledge
(NIZK) proof of correct shuffling. Also, the bulletin board maintains the commitments for the
randomness used for the MPR routing algorithm and their subsequent openings posted by the
routing entities.

Verification and Decryption Ciphertext which have passed through all layers are decrypted by
the auditing servers upon successful verification of the correctness of: 1) Submission 2) Mixing and
3) Routing. Even though the first layer eliminates duplicates, the auditing servers need to verify
that this was done correctly. After all mixes in a layer published their results on the bulletin board,
the auditing servers verify their mixing process by verifying all NIZK proofs on the bulletin board.
Moreover, the auditing servers carry out routing verification on the input/output ciphertext signed
on the bulletin board for each layer as soon as input ciphertexts for the next layer start being
published to the bulletin board. The routing verification takes the randomness (commitments
openings) and computes the assignment for the next mix layer. Then, correct routing is confirmed
by verifying that the computed assignment corresponds to the correct input and output ciphertexts
in the bulletin board. With Algorithm 4 we give an example instantiation of the routing verification
algorithm in Appendix B.

If routing or mixing verification fails, meaning that a mix has taken wrong ciphertext as input
or produced an invalid NIZK proof, the auditing servers record the verification failure of the cor-
responding mix on the bulletin board. If routing and mixing of a mix does not verify the routing
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entities generate a fresh Rand to assign the input ciphertexts from the mix that has performed
wrong routing to the remaining mixes in his layer. All remaining output ciphertexts in the layer
need to wait until this stage is carried out to be routed to next layers.

The integrity and authenticity of bulletin board submissions is verified by the use of the signa-
tures schemes. In our protocol we use randomized algorithms and with $← we denote the randomized
output generation, so $← Sw samples randomly from all permutations of size w and s refers to the
randomness used by the ciphertext re-randomization algorithms.

Our protocol is summarized in Algorithm 1.

5.3.3 Parameter Choices

Our protocol has similarities to parallel mixing in terms of distributing ciphertexts among a set of
mixes, hence, we revisit suggested parameters by the literature and adopt these parameters for our
system.

The number of mixes that relay the ciphertexts, or so-called path length, is an important aspect
of our system because it determines how many times a batch of ciphertexts C is re-arranged. The
path length has a direct effect on whether a ciphertext batch C entering the system is fully mixed
with the other batches entering at the same time. Our result confirms the intuition that a larger
number of layers leads to a better mixing.

For a passive adversary, Czumaj shows that the path length in any switching networks should
be logn, where n is the total number of mixes in the system [20] [19]. Similarly, Klonowski et
al. [41] have also shown that in parallel mixing the number of distribution steps should be logn.

For an active adversary, Klonowski [41] shows that the number of mixing layers must depend
on the number of messages that are relayed through the system. Similarly, Goodrich and Mitzen-
macher [38] have shown that if some mixes are controlled by an active adversary then the number
of layers needs to be logN where N is the number of input messages in a given time frame.

Since, we are considering an active adversary we set the number of layers to logN . For example,
if we assume the routing of 1000 messages our system needs at least 3 layers where each layer has the
throughput to relay 1000 messages. For relaying 100,000 messages the system needs to have at least
5 layers where each layer has the throughput to relay 100,000.messages. To improve availability
each layer should have at least two mixes.

Furthermore, to increase the cost of an adversary we assume that mixes are set up across distinct
IP subnets by multiple organizations or institutions. For example, an organization can offer more
than one mix for the network, however, all mixes of an organization need to be in the same layer.
This is important because otherwise a message can be effectively mixed by a single organization.

Another important parameter is the capacity or throughput of the mixes. From a load balancing
point of view the total throughput of mixes in each layer needs to be equal in order to prevent any
congestion in our system.

5.4 Related Work
In the last three decades there have been numerous ACNs proposed in the literature using random
walks, mixes and onion routing, dummy traffic, the dining cryptographer concept [12], multi-party
computations, and broadcasting. Often an ACN combines several of these techniques to achieve
anonymity and avoid de-anonymization attacks. Some examples of ACN are as follows. Random
walks are used by peer-to-peer systems such as Freenet [14] and Octpus [62] but also in onion routing
protocols such as Tor [33] and I2P [54]; dummy traffic [31] is used by system such as Loopix [49];
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Setup
Auditing servers AS generate encryption keys:

(pke, skdAS1 , ..., skdASd
) $← KeyGen

publish (pke) to BB

Encrypt
Each sender:
c

$← Encpke(receiver’s address,m; ρ)
Π′ ←ProvePoK(c, pke;m, ρ)
sends c and Π′ to BB
ctr ← 1

while ctr ≤ l do

Mixing and Prove Mixing
Mixes r ∈ R1 verify the PoKs, drop invalid
or duplicate ciphertext, and remove proofs
Each r ∈ Rctr, with inputs C = {c1, . . . , cw}
and φ $← Sw:
shuffles Cφ $← Shuffle(C, φ)
re-encrypts (C ′, s) $← ReEnc(Cφ)

Each r ∈ Rctr:
computes π $← ProveNIZK(C,C ′;φ, s)
publish π to bulletin board
publish (Signskvr (C ′), C ′)
to BB

Next hop and Prove Routing
For each r ∈ Rctr, all v routing entities RE :
publish Com(rand1), . . . , Com(randv) to BB
publish rand1, . . . , randv to BB

For each rout ∈ Rctr, each r ∈ Rctr+1 computes:
Rand← SUM(rand1, . . . , randv)
(z1, . . . , zw)←Assign(Rand)
For i = 1 to w rzi ∈ Rctr+1 fetch ci

Verify Mixing and Routing
For each r ∈ Rctr, a quorum of ASz ⊂ AS runs

VerifyNIZK(Cr, C ′
r, πr)

Verifypkvr
(Signsksr

(Cr),Cr)
Verifypkvr (Signsksr (C ′

r),C ′
r)

and computes
VerifyRouting(Randr, C ′

r,Rctr+1)

ctr ← ctr + 1
end while

Decrypt
Each r ∈ Rl:
sends all c′ to AS

For a threshold z of auditing servers AS:
if Verify Mixing and Routing is successful for
all layers

(receiver’s address,m)← Decskd1,...skdz
(c′)

otherwise returns an error
send m to receiver from U

Algorithm 1: Multiparty Routing
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dining cryptographers is used by Dissent [64] [16], multi-party computation is used by MCMix [3],
and broadcasting is used by Dissent and CAR [59] (see [58] for a survey on ACNs). We focus on
the closest related work.

Like Parallel Mixes [37] and Atom [42], a recent improvement on Parallel Mixes, our approach
addresses the scalability and robustness issues of mix cascades [11].

Golle and Juels introduced Parallel Mixes [37], an ACN that uses both deterministic and hop-
by-hop routing in two different phases that they call rotation and distribution phases, respectively.
Typical configurations start with a rotation phase, then go through a distribution phase, and finish
with a rotation phase. During a rotation phase, mixes exchange their entire output ciphertexts
with another mix in a rotating fashion (that is, the first mix passes its ciphertexts to the second,
and so on, and the last mix passes them to the first). In the distribution phase, each mix splits
output ciphertexts among other mixes. The main purpose of the distribution phase is to mix the
inputs with each other to achieve a bigger anonymity set. Our routing protocol has similarities with
the distribution phase of Parallel Mixes, but removes one primary requirement of Parallel Mixes:
The mixes in the distribution phase must not be aware of the sender of any of the ciphertexts.
Consequently, users must submit input ciphertexts uniformly to the system and ciphertexts must
be mixed by at least one honest mix during the rotation phase. This is necessary to prevent route-
capture attacks, because mixes in the distribution phase are free to choose how to distribute their
output ciphertexts to other mixes (contrary to our protocol, where this decision is made jointly
by multiple entities). These countermeasures are both costly and insufficient when the adversary
controls a fraction of messages as demonstrated by Borisov’s attack [10]. Kwon et al. [42] proposed
Atom a recent parallel mixing proposal that considers active adversaries and achieves random
permutation of messages using iterated butterfly networks.

Movahedi et al. [45] proposed a multiparty shuffling protocol that allows multiple parties to
jointly compute a private random permutation of input messages. The parties that perform the
multiparty shuffling protocol are split up into quorums that use a sorting scheme on inputs that have
been shared among the quorum to achieve random permutation. While the approach is resilient to
parties aborting the protocol or dropping out because of technical difficulties, there is no mechanism
for preventing traffic tampering before the shuffling starts. Therefore, parties who hold user inputs
at the beginning of the shuffling can replace them with arbitrary adversarial inputs. The approach
is therefore only suitable for passive adversary. Furthermore, this scheme requires that the links
between honest parties must be private and cannot be observed by the adversary; and the adversary
needs to be static, meaning it cannot corrupt alternative parties once the protocol is running.

5.5 Security Analysis

In this section we start by revisiting the security properties of interest and go on to analyze the
security of our protocol based on those security goals against a global, active adversary. We show
that an active adversary in our solution has no advantage over a passive one.

Security Properties

• Routing Integrity: guarantees that an active adversary is not able to influence the routing
decision to deanonymize messages by forcing them to route through adversarial mixes.

• Routing Correctness: guarantees the detection of malicious routing and subsequently only
correctly routed messages leaving the system.
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• Anonymity (routing confidentiality): guarantees that the adversary cannot find the rela-
tionship between messages leaving the system and a user sending a message to the system,
provided that the message has traversed at least some honest mixes.

• Availability: guarantees that the protocol is robust against removal of a subset of entities by
an adversary and that the messages entering the system will be output by the system in the
face of such attacks.

5.5.1 Routing Integrity

To address the integrity property we answer the following question: Can a malicious mix (or a
subset of mixes) influence the routing of a ciphertext c to a mix of his choice rA? We investigate
two ways of manipulating the routing decision. The first way deals with adversaries who try to
influence the shuffling procedure. This attack path is however not possible in our protocol because
all mixes publish their shuffled ciphertexts before the routing decision (Rand outcome) is revealed.
The second way to manipulate the routing decision is through adversarial bias in the computation
of the joint randomness Rand.

More concretely, we investigate the advantage of an active adversary A who gains control over
a subset of routing entities denoted as REA. In order to influence the routing decision A has
to be able to bias the computation of Rand where Rand = Randhonest + randA is the mod sum
addition of the random numbers from all honest entities Randhonest and the adversarial controlled
randomness randA. The goal of A is to produce a new rand′A, such that the updated sum Rand′ =
Randhonest + rand′A fits its routing purposes: the target ciphertext is routed to rA where A’s
capacity/throughput is b/B. In our protocol all routing entities RE first need to commit to their
random numbers and only then reveal the openings of their commitments. A has control only over
its own commitment T = Com(rand′A) and the corresponding opening rand′A. The best strategy
for A is to wait for the openings of all honest routing entities and then reveal his own rand′A.

SinceA does not know in advance the openings of the honest routing entities, A needs to ‘predict’
in advance a valid rand′A, such that T = Com(rand′A)). Our assumption here is that Com is a secure
scheme against collision, preimage and second preimage attacks. Under this assumption A’s best
strategy is to perform precomputation to find the largest set of preimages N with |N | = n mapping
to a commitment value T . Then, once A commits to T , he ‘hopes’ that the needed randomness for
his routing purposes rand′A belongs to the precomputed set N . Then, what is left to find is the size
of the set of valid randomness values V for the routing purposes of A. Since the adversary controls
b/B of the throughput w ciphertexts, then the set of valid values V amounts to 2|Rand|

w × b
B × w

where 2|Rand|
w is the fraction of random values resulting in a given router assignment as defined

by our routing algorithm. Finally, the probability that A’s set of precomputed values N ends up
intersecting with one of the valid random values rand′A is n

2|Rand|×b/B
. In other words, n

2|Rand|×b/B

amounts to the probability that Com−1(T ) = rand′A where rand′A = (Rand′−Randhonest) ∈ V ∩N .
Note that, as we assumed, if Com is collision secure, finding n = 2 values takes already precom-

putation time of birthday bound complexity 2|Rand|/2. This means that unless A has a precom-
putational power of order 2|Rand|/2 its success probability in biasing the joint randomness Rand is

1
2|Rand|×b/B

.
Furthermore, if the adversary removes the mix that c is assigned to to force a new routing

assignment his chances to be assigned to c are increasing only if he removes a large proportion of
throughput of the layer of rA.
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5.5.2 Routing Correctness

In this scenario we investigate if a mix can deviate from the routing assignment without being
noticed. The adversary goal (acting as one of the mixes R) is to get a ciphertext of his choice
regardless of the ciphertext’s next hop assignment. To achieve her goal the adversary here needs to
manipulate the routing verification. To do so the adversary needs to control a subset of the auditing
entities that read the routing information from the bulletin board and carry out the verification.
But this is impossible in our protocol because this adversarial behavior is going to be discovered
in the routing verification phase if at least one of the auditing servers is honest. Remember that
one of the tasks of the auditing servers is the verification of the correct input/output ciphertext
routing and their signatures.

5.5.3 Anonymity

We review our system for vulnerabilities that lead to weakened anonymity. As usual, our system
only provides anonymity if at least one honest mix has routed the message. Our system provides
anonymity by mixing a message with other messages, if a single message goes through our system we
provide no anonymity, therefore, another measure we use for evaluating anonymity is the anonymity
set size as discussed in [29]. There are, however, other means to deanonymize messages and we
review those attacks too.

Traffic Analysis

Traffic analysis [51] is one of the main attack methods against anonymous communication. The
adversary uses one or a combination of criteria to match incoming and outgoing traffic of an AC
system in order to correlate them. The common criteria used for traffic analysis are as follows:

• Timing: in MPR timing correlation are not possible, because all communication that is
sent through the system is accumulated periodically and sent in a synchronous manner that
eliminates timing signatures.

• Size: if MPR is used for applications other than voting or micro-blogging (e.g., twitter has
a limited message size 140 formerly and recently 280 characters) where only fixed sizes of
messages can be sent, the adversary cannot use the message sizes for deanonymization. If
MPR is used for applications that need more variation is message size, then a solution to avoid
traffic analysis would be to define a number of message sizes (e.g., 2 sizes, one for messages
and one for media) and design two MPR networks that each mix message of the same size.
Hence, message in different sizes are not mixed together.

• Statistical disclosure: If MPR is used for anonymous messaging the communication pattern,
the pattern of using the system or even just being online by two users can reveal they are
communicating together by statistical disclosure attacks [21]. The same holds for the number
of message that are sent by the sender and received by the receiver that can be used to
deanonymize users. However, if the application that uses MPR receives the communication to
only a certain platform then this attacks becomes harder. But if the outgoing communication
is sent to multiple destinations such as in email applications, our system is vulnerable to long-
term statistical disclosure attacks [8], and in such cases additional measures such as being
always online and sending dummy traffic needs to be used in combination with our system.
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• Appearance: since we are using re-encryption the incoming and outgoing traffic have a dif-
ferent appearance and can not be correlated as long as the cryptographic primitives remain
secure.

Replay and Tagging Attacks

Danezis discovered replay and tagging attacks against re-encryption mix networks[22]. In these
attacks, the attacker exploits the malleability of re-randomizable (and homomorphic) encryption
to either resend or tag a message observed while entering the system. While mix networks with a
proof of correct shuffle prevent the tampering of message that already entered the system, they are
defenseless against tampering (duplicating, replacing, or tagging) messages before entering the mix
network. In electronic voting, such as Civitas [15], this problem is sometimes solved using voting
credentials that are distributed when users register for voting. We opt for a solution (see 5.2.4)
introduced to prevent replay in the Helios voting system [6]. It relies on a ZK-proof that makes
the ElGamal ciphertext non-malleable during submission, so that replayed messages can be weeded
out. This proof is discarded once the message is mixed by the first layer of the system.

Tracing Messages

Here we assume the adversary’s goal is to trace the path of a ciphertext c until it leaves the
system. To link an input ciphertext to an output ciphertext the adversary needs to control all
mixes that have relayed the input ciphertext. Otherwise, if at least one mix on the ciphertext’s
route is honest, the adversary will not be able to trace this link. (Note that he may still be able to
reduce the anonymity set) Hence, our adversary needs to control at least one mix in each layer of
the system. To estimate the probability that a ciphertext follows a fixed path, denoted by c → p,
then we just need to multiply the probability of that ciphertext being routed by the individual
mixes in each layer of the path. Let us assume that a path p consists of an ordered list of mixes
p = {r1, r2, . . . , rl}, where l is the number of layers of the system.

Pr[c→ p] =
l∏

i=1

bi

B
.

Moreover, the probability of choosing each of the mixes in a path is computed as follows. where bi is
the relative throughput of the mix r compared to the total throughput B of all mixes (recall that it
is the same for all layers). If all mixes in the subset have the same capacity b, then Pr[c→ p] = ( b

B )l

Our decision to follow a stratified topology disallows the adversary to gain any advantage from
placing his efforts (i.e. throughput) unevenly as compared to balancing out its efforts for each layer.
Since the number of total messages that will be routed by adversarial mixes is the multiplicative
product (see above) of the throughput that the adversary is controlling at each layer, hence, he
gains ore success by distributing his resources evenly among layers. For example, if an adversary
controls 20% of the total throughput of the system, we assume that he is in fact controlling a 20%
of the throughput of the mixes in each layer.

We are interested in the probability that a ciphertext is routed only by adversarial mixes because
this leads to deanonymize the ciphertext leaving the system by the adversary. We compare the
probability that the ciphertext relayed by our MPR protocol is only routed through adversarial
mixes to to the probability that the ciphertext relayed by regular parallel mixing system is only
relayed by adversarial mixes. Figure 5.4 shows the probability that a ciphertext routed through
only adversarial mixes, for our MPR protocol and for parallel mixes system, when the adversary
is controlling 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, and 0.40% of the throughput in each layer
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of the system. For this figure we assume the system has 4 layers. When regular parallel mixing is
used the probability that a ciphertext is only routed along adversarial mixes is in proportion to the
resources of the adversary. While if our MPR protocol is used, this probability is increasing much
slower due to the fact that adversarial mixes cannot steer ciphertexts toward further adversarial
mixes.

Figure 5.4: This figure depicts the probability of a message being routed through mixes that are
all controlled by the adversary and shows that this probability increases for stronger adversaries in
MPR and in parallel mixing. For both MPR and regular parallel mixing the system has 4 layers.
The adversary is controlling mixes in each layer by a proportion of 0.1, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40.

Figure 5.5 shows the probability that a ciphertext is routed through only adversarial mixes, for
our MPR protocol and for regular parallel mixes system, when the system has 3, 4, 5, 6, or 7 layers.
We assume for this figure that the adversary is controlling 0.25% of the throughput of each layer
of the system. If regular parallel mixing is used, the probability that a ciphertext is only routed
along adversarial mixes is constant and equal to the proportion of adversarial mixes irrespective
of the number of layers. Wile when our MPR protocol is used, this probability is significantly
lower compared to parallel mixes even when the system consists of only 3 layers. This probability
decreases further as the number of layers in the system increases.

Figure 5.5: This figure depicts the probability of a message being routed through mixes that are
all controlled by the adversary and shows that this probability increases when the system has more
layers of mixing. In both MPR and regular parallel mixing, the adversary is controlling 0.25 of
mixes of each layer.
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5.5.4 Availability and Resilience
The goal of the adversary is to take out stakeholders of the protocol in order to obstruct the protocol
from running.

There is a restriction on how many mixes, routing entities, and auditors the adversary can
take out. Taking out auditors, AS is least beneficial, because the attack is not resulting in any
advantage for the adversary. While taking out routing entities, RE increases the adversary’s success
in biasing routing to a very small extent. Taking out mixes will not abrupt the protocol execution
but leads to traffic congestion. Below we investigate the effect of removing each type of entity from
the system.

Routing entities RE : If the routing entity fails before committing to a random number the
protocol continues to operate as long as it is assumed that at least one honest routing entity
has remained. If the routing entity fails after committing to a random number it is considered
an abortion, although it might have been a system failure. If this happens more than once, the
remaining routing entities vote the corresponding routing out.

Auditors AS: If a limited number of auditors fail to carry out the distributed decryption, then
the protocol is guaranteed to continue execution because we are using threshold cryptography. To
carry out the routing and mixing verification the only restriction is that at least one remaining
auditor is not controlled by the adversary.

Mixes R: Our protocol is resilient to the failure of a number of mixes and preserves load
balanced among the remaining mixes. We describe how the protocol recovers after the failure of a
mix or a number of mixes in different positions as follows.

1. If a mix fails at the first layer after the users have sent their ciphertexts the users machine
needs to notice in the bulletin board that her ciphertext is not in the input of any of the entry
mixes and send their ciphertext to another entry mix.

2. If the adversary takes out all mixes in the first layer the user’s machine will notice that the
ciphertext sent by her is not in the bulletin board and the auditors notice the absence of any
output from the first layer and introduce new entry points for the users.

3. If a mix fails at one of the layers except the first layer before generating the output ciphertext
and the corresponding routing information, the auditors notice this and inform the routing
entities to generate a new Rand that assigns the input ciphertext of the failed mix to the
remaining mixes in its layer. If the proof that the mix has produced cannot be verified, the
same happens. Note, that the ciphertexts shuffled by other mixes in the layer do not need to
be re-shuffled again.

4. If the adversary takes out all mixes in one layer except the first layer, the auditors inform the
next layer of mixes to take over with fresh random numbers.

Note that if the adversary takes out l honest mixes from each layer of the system he can increase
his success in tracing messages as follows. Assume the adversary initially controlling bA/B of the
throughput of all layers of the system where B is the throughput of the layers. Before the attack
the adversary is able to trace:

∏l
i=1

bA
i
B × |M |

messages, where bA
i is the throughput that the adversary is controlling in layer i and M is the total

number of distinct messages that were submitted to the system. After taking out a mix from each
layer he can trace:
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∏l
i=1

bA
i

B−bDoS
× |M |

messages, where bDoS is the throughput he has taken out of each layer.

5.5.5 Scalability
Our system provides scalability by allowing the users to only need to know the key of the correspond-
ing time-frame and connection details of one entry mix to the system opposed to source-routing
protocols where the users needs to be aware of the whole system such as Tor [32] and mixes for mix
networks such as Mixminion [24]. Moreover, the user is oblivious to the network changes that are
managed by the network handler, only other mixes need to be keeping track of this. In addition,
MPR is also more scalable compared to mix cascades, because increasing the anonymity set of the
system can be increased by adding throughput to each layer that can be added by adding even small
mixes to each layer while in mix cascades each mix of the cascade needs to increase its throughput
individually to result in an increase of the anonymity set. Adding an additional mix cascade while
is useful for reducing congestion and expanding the system but is not increasing the anonymity set.

5.5.6 Performance Evaluation
For a system with l layers and each layer having k mixes and R = l∗k total number of mixes, where
M distinct messages were submitted for a given time-frame and the proportion M/k messages are
sent to each mix. In a given time-frame each protocol participant has to perform the following
operations. For cryptographic operations we adopt implementation techniques from electronic
voting [27].

Lets assume our system is using the following cryptographic primitives. We suggest to im-
plement commitments using HMAC. This is a well known efficient technique justified under the
assumption that the hash function is collision resistant and, when keyed by the opening informa-
tion, pseudo-random [5]. For the NIZK we assume [4] is used. and for the PoK we assume [7]
is used. The signatures can be realized using [55] and the distributed decryption ([17] and the
distributed key generation [36]. Our system has roughly O(1) operations for the user. The mixes
carry out O(|R| ∗ |M |/|k| ∗ log(

√
( |M ||k| )) operations, the RE need to carry out O(|R|) operations

and the AS need to carry out O(|AS| ∗ |M | ∗ |R|) operations.

5.5.7 Comparing Topologies
We review the differences between stratified topology and mix cascades. We omit a comparison to
free-route topologies, because using them for verifiable mix networks is complicated by all mixes
needing to produce proofs of shuffling. As for many aspect of anonymous communication networks
topologies also present a trade-off between latency, anonymity, scalability and resilience.

On the one hand, if the adversarial mixes constitute a large proportion of all mixes, mix cascade
topology is the best choice because a mix cascade provides anonymity as long at least one mix is
honest. While a stratified topology (or a free-route topology) falls short on this scenario. On the
other hand, if the adversary is controlling only a proportion of the mixes it is worthwhile considering
stratified topology. We explain their advantages with the help of a simple example.

Let us assume the adversary is controlling 3 out of 9 mixes available for the system. In a mix
cascade setting we can either have a mix cascade with 9 mixes, which is going to be very slow or
two mix cascades one with 4 mixes and one with 5 mixes. In this latter case, we achieve better
latency, however, the anonymity set is split in to, meaning that messages of one cascade are not
mixed with the messages of the other. This is important because it becomes easier for the adversary
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for example to carry out a n− 1 attack. In terms if scalability, adding 3 mixes to the system does
not improve latency or throughput. However, if 4 mixes are added another mix cascade can be
built, where again the anonymity set becomes even more divided.

If we use a stratified topology we can use a network with 4-5 where each layer has 2 mixes.
In this setting, we do not gain any latency advantage over the mix cascade setting, however, the
network has a larger anonymity set. Let us assume we use a network with 3 layers where each layer
has 3 mixes. In such a setting, the adversary can deanonymize 1/27 of all messages that enter the
system but we are faster than the 3 previous settings because each message is going through fewer
mixes. In terms of scalability, if three mixes are added in the first setting (4-5 layers and two mixes
in each layer) the system can rearrange (4 layers and three mixes each).

5.5.8 Comparison to Parallel Mixes

Recall that in Parallel Mixes it is required to distribute the input messages uniformly before sub-
mitting them to the system to decrease the chances of carrying out attacks such as blending attacks.
However, permuting incoming messages before entering the system to obtain a uniform distribution
would need another random distribution mechanism and complicates the trust model. Furthermore,
Parallel Mixes require two rotating phases before and after a single re-distribution phase where the
input ciphertexts are rotated m+ 1 times, where m is the number of malicious mixes. Using MPR
there is no need to enter only uniformly distributed messages to the system and the rotating phases
of Parallel Mixes can be eliminated; this allows for multiple distribution phases instead of only one,
which contributes to obtaining a complete random permutation of all ciphertexts.

5.5.9 Comparison to Atom

Atom has many similarity to our system in terms of the cryptographic primitives and the lay-
ers/groups of servers/mixes.

Atom uses a square permutation suggested by Hastad []. Atom uses a stratified topology mix
network, where each mix is replaced by a sequence of servers (called a group) that has at least one
honest server among them. In this sense, Atom has similarity to Parallel Mixes by Juels and Golle
[], which used forwarding phases using cascades and a distribution phase to mix the input of the
cascades for the next forwarding phase.

Atom offers two variants for checking the correctness of shuffling. One option is similar to our
use of NIZKs and the second option is to use trap-based checking that is weaker in anonymity and
offers better efficiency. However, using trap-based checking has two main flaws. First, it increases
the input of the system significantly. In order to make the probability of hitting (eliminating or
replacing) a trap message compared to hitting (eliminating or replacing) a real message 50 % for
each message submitted to the system a trap message needs to be sent too. Second, it makes the
system vulnerable towards users and users can make system halt, which eliminates any resistance.
Atom suggests to identity malicious users, but users can join the system using another IP or alias,
hence, making this countermeasure ineffective.

In comparison to Atom, we have the same cryptographic primitives and we also use stratified
topology, with the difference that we are not replacing the mixes in the topology with cascades,
but instead the distribution phase in our protocol needs a randomness that needs to be produced
after a mix has mixed the input ciphertexts and the output ciphertext are distributed according to
this randomness.
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AC System Adversary1 Topology
Routing
Decision

Routing
Integrity Scalability Availability

MPR G/A/I Stratified Random Yes High High
Parallel Mixes G/A/E Stratified Mix decision No High Low
cMix G/A/I Cascade Fixed Yes Low Low
Loopix G/A/I Stratified User-decision Yes High Low
Atom G/A/I Stratified Mix decision No High Low

Table 5.1: Comparison with other mix-nets.

5.5.10 Comparison to cMix, Loopix, and Tor

Javani et al. designed in 2017 cMix which is an mix network consisting of a set of mixes organized in
a mix cascade, where expensive computation are precomputed to improve the online performance.

Loopix is a mix-based anonymous communication system that uses Poisson mixes which are a
simplification of [40], where the users choose the sequence of mixes based on the given stratified
topology and sets a delay for each mix routing their message. In Loopix, users and mixes monitor
whether the network is forwarding traffic correctly by loops, similar to RGB mixes [25].

In Table 5.1 we summarize the comparison of our system with the AC systems reviewed above.
Tor [32] is the most commonly used anonymous communication system with over 2 million

users per day [50]. In Tor, the communication sender initiates the anonymous route by randomly
selecting three Tor servers and encrypting the communication in a layered fashion. When the Tor
servers receive the communication it removes a layer of encryption and forward it to the next Tor
server. Tor provides low-latency service because the communication is immediately forwarded and
there is no delay in the routing phase. However, this makes Tor traffic vulnerable to timing attacks,
hence, Tor’s threat model is assuming an adversary that has only local reach. This is helpful in
many use cases such as anonymous web browsing, but is not strong enough if the user votes or
casts an opinion against a very powerful adversary. Hence, all the input doesn’t need to be shuffled
with each other and all outgoing connections are not roughly equally likely corresponding to a
given input. Local adversaries are reasonable if the system has a large user-base and many relays,
Tor has 7000 volunteer relays. The anonymity Tor provides relies on the fact that Tor servers are
wide-spread geographically and only a very strong adversary would be able to observe all Tor relays
(or at least the entry and exit relay) that are re-routing targeted communication. Hence, Tor does
not provide verifiable anonymity but rather provides good odds.

5.6 Discussion

Decentralization Advantages: MPR decentralizes the routing decision. Troncoso et al. [61]
present numerous advantages of decentralization in protocol design such as increasing the adver-
saries cost and facilitating public verifiability. Our MPR protocol also increases the cost of the
adversary for attacking the routing integrity and facilitates public verifiability.

Bulletin Broad The Bulletin Boards is the main communication channel that 1) guaran-
tees accessibility, 2) is append-only, and 3) keeps the memory of all communication until a given
time-frame ends. Bulletin boards are an essential component of many cryptographic designs, in
particular, when verifiability is needed such as electronic voting protocols [15]. The information of
the bulletin board needs to be there until the end of the time-frame, after that it needs to be erased.

1G=Global, A=Active, I=Internal, E=External
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Mixes, routing entities, and auditing servers can write on the bulletin board during the protocol
run of a time-frame and user can write on the bulletin board before a time-frame starts. Everyone
can read the information on the bulletin board. Since, our bulletin board is the main channel
of communication among the all the entities and since it contains all the messages that are sent
through the system it needs to be large in size. Since, broadcasting is easiest way to implement
bulletin boards, they are often referred to as Broadcast Channels with memory. The design of
our protocol also relies on the secure and robust implementation of the bulletin board. Literature
has suggested several methods for implementing bulletin boards. Examples of implementations of
bulleting board are [18] [39].

Latency Our protocol is a medium-latency anonymous communication network and thus can be
deployed for applications that are more tolerant to latency such as anonymous wiki, micro-blogging,
voting, and auctions. Note that for application such as voting with homomorphic tallying the
decryption phase of our protocol may not be necessary for all messages. We estimate for a system
with 9 mixes having equal throughput, arranged in 3 layers each layer having the throughput to
relay 900 messages, and where 1000 messages were sent to the system, messages takes about 20
seconds to traverse the system (before the decryption process starts). This is, however, only a
preliminary result tested on a Intel Xeon E5-2640 CPU, 2.50 GHz machine with 24 cores, where
all computation are performed online.

Load Balancing: Since our MPR protocol offers load balancing, the messages leaving the
system have anonymity sets with more uniform sizes compared to mixnets using source routing
where routes are selected without load balancing. This increases the anonymity a message can
achieve. Accommodating load balancing comes with the risk that an internal adversary can attract
more messages than other mixes. However, limiting load balancing would result in fixed size
mixes and this would lead to wasting otherwise available bandwidth. Considering that a system
providing service for a larger number of users also provides better anonymity this trade-off needs
to be considered. Another solution is to place mixes that have the same size in the same layer.
Since the total throughput of each layer has to be equal, layers with smaller mixes will have more
mixes than layers with big mixes.

Limitation of our System MPR addresses the scalability issue of source routing in terms of
not requiring a complete system view for users. Growing our system is, however, not as scalable as
growing a system with a free topology because the system’s throughput can be only expanded by
adding mixes to all layers. When there is no restrictions for selecting a relay, adding a single relay
increases the system’s overall throughput.

Appendices

In this section, we give instantiations of routing assignment and routing verification and a compar-
ison to other AC systems.

A. Routing Assignment

To route a ciphertext, at each layer, a relay is assigned to the ciphertext using a mapping function.
The mapping function is composed of a permutation function keyed by the jointly generated random
number Rand and a load-balancing function that distributes ciphertext based on the throughput
of relays in the next layer.

The permutation algorithm is the function H out of hash function h. H is applied iteratively on
the inputs: joint random number Rand and the ciphertext indexes 1, . . . , w and returns the per-
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H(Rand, 1, ..., w)
Z = ∅
i = 1
for i = 1 to w
j = 0
zi = h(Rand‖i‖j)
while zi ∈ Z
j = j + 1
zi = h(Rand‖i‖j)

end while
Z ← Z ∪ zi

end for
output(z1, . . . , zw)

Algorithm 2: Permuting with Jointly Obtained Rand

Map(z1, ..., zw, r1, ..., rk, b1, ..., bk)
B =SUM(b1, ..., bk)
for j = 1 to k
rj fetch w ∗ bj/B ciphertexts from bulletin board

end for
Assigns ciphertext to mixes in proportion to the mixes throughput.

Algorithm 3: Mapping ciphertexts

muted indexes z1, . . . , zw. To realize the permutation functionality we have to avoid hash function
collisions by performing a check of membership on a set Z of already computed index values.

We apply the mapping function Map, e.g., Algorithm 3 in appendices, to make the assignment
of the permuted ciphertext (indexed by H) to the relays in the next layer in proportion to their
throughput. We refer to the throughput of relays by b, where throughput refers to the number of
messages it can route in proportion to all the number of message that can be routed by a layer and
the throughput of a single layer is denoted B. For this purpose we use the function fetch, which
ciphertexts to mixes in the next layer. These relays fetch the ciphertext that is assigned to them
as their input from the bulletin board.

B. Routing Verification
Let Cr refer to the set of input ciphertext that relay r has submitted and signed and C ′r to the set
of output ciphertexts that relay r has submitted and signed. Moreover, let us denote the ctr-th
layer of routers in our system by Rctr.

Then all the auditors must carry out the routing verification as described below. Our algorithm
applies a Boolean VerifyRand function which simply verifies both the correctness of the opening
of the commitments Com(rand) with regard to the actual rand on the bulletin board and checks
that their sum equals Rand. Moreover, the algorithm verifies whether the input of all relays in
the ctr + 1 layer is correct according to the output ciphertexts of relays in layer ctr and their
corresponding Rands.
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VerifyRouting(Randr,C ′r, Rctr+1)
if VerifyRand returns 1

(c1, . . . , cw) =| C ′r |
(z1, . . . , zw) = H(Randr, 1, . . . , w)
(r1, . . . , rw) = Map(c1, . . . , cw, Rctr+1, Bctr+1)
for j = 1 to w
if relay rj signed cj

continue
else return (“Routing error”, rj)
end if

end for
else if return (“Commitment error”)
return (1)

Algorithm 4: Verify Routing
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6. Automated Website Fingerprinting
through Deep Learning

6.1 Introduction

The Onion Router (Tor) is a communication tool that provides anonymity to Internet users. It
is an actively developed and well-secured system that ensures the privacy of its users’ browsing
activities. For this purpose, Tor encrypts the contents and routing information of communications,
and relays the encrypted traffic through a randomly assigned route of nodes such that only a single
node knows its immediate peers, but never the origin and destination of a communication at the
same time. Tor’s architecture thus prevents ISPs and local network observers from identifying the
websites users visit.

As a result of previous research on Tor privacy, a serious side-channel of Tor network traffic
was revealed that allowed a local adversary to infer which websites were visited by a particular
user [14]. The identifying information leaks from the communication’s meta-data, more precisely,
from the directions and sizes of encrypted network packets. As this side-channel information is
often unique for a specific website, it can be leveraged to form a unique fingerprint, thus allowing
network eavesdroppers to reveal which website was visited based on the traffic that it generated.

The feasibility of Website Fingerprinting (WF) attacks on Tor was assessed in a series of stud-
ies [25, 31, 19, 24, 32]. In the related works, the attack is treated as a classification problem. This
problem is solved by, first, manually engineering features of traffic traces and then classifying these
features with state-of-practice machine learning algorithms. Proposed approaches have been shown
to achieve a classification accuracy of 91-96% correctly recognized websites [30, 24, 13] in a set
of 100 websites with 100 traces per website. Their works show that finding distinctive features is
essential for accurate recognition of websites. Moreover, this tasks can be costly for the adversary
as he has to keep up with changes introduced in the network protocol [4, 20, 9]. The WF research
community thus far has not investigated the success of an attacker who automates the feature
extraction step for classification. This is the key problem that we address in this work.

An essential step of traditional machine learning is feature engineering. Feature engineering is
a manual process, based on intuition and expert knowledge, to find a representation of raw data
that conveys characteristics that are most relevant to the learning problem. Feature engineering
proved to be even more important than the choice of the specific machine learning algorithm in
many applications, including WF [12, 19].

When developing a new WF attack, prior work on WF typically focuses on feature engineering
to compose and select the most salient features for website identification. Moreover, these attacks
are actually defined by a fixed set of features derived from this process. Thus, these attacks
are sensitive to changes in the traffic that would distort those features. In particular, deploying
countermeasures in the Tor network that conceal the features is sufficient to defend against such
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attacks. This enables an arms-race between attacks and defenses: new attacks defeat defenses
because they exploit features that had not been considered before and, conversely, new defenses
are designed to conceal the features that those attacks exploited.

In this chapter, we propose a novel WF attack based on deep learning. Our attack incorporates
automatic feature learning and, thus, it is not defined by a particular feature set. This may be a
game-changer in the arms-race between WF attacks and defenses, because the deep learning based
attack is designed to be adaptive to any perturbations in the features introduced by defenses. The
attack we present in this work is the first automated WF attack and it is at least as effective as
the state-of-the-art, manual approaches.

6.1.1 Key Contributions for PANORAMIX

• This study provides the first systematic exploration of state-of-the-art deep learning (DL)
algorithms applied to WF, namely feedforward, convolutional and recurrent deep neural net-
works. We design, tune and evaluate three models – Stacked Denoising Autoencoder (SDAE),
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Our DL mod-
els are capable of automatically learning traffic features for website recognition at the expense
of using more data. Moreover, we automate the model selection to find the best network hy-
perparameters. We demonstrate that our DL-based WF attack reaches a high success rate,
comparable to the state-of-the-art techniques.

• We reevaluate prior work on our dataset and reproduce their results. We find that state-of-
the-art WF approaches benefit from using more training data, similar to DL. As a result of
a systematic comparison of our novel DL-based methods to previous WF approaches for the
closed and open world settings, we demonstrate comparable recognition results with slight
improvements of up to 2%. Furthermore, we show that our DL attack reveals more general
and stable website features than the state-of-the-art methods, which makes them more robust
to concept drift caused by highly dynamic web content.

• The dataset collected for the evaluation is the largest WF dataset ever gathered to date. Our
closed-world dataset consists of 900 websites, with traffic traces generated by 2,500 visits each.
Our open-world dataset is based on 400,000 unknown websites and 200 monitored websites.
We made the generated dataset publicly available, allowing researchers to replicate our results
and systematically evaluate new (DL) approaches to WF1.

6.2 Background

This section reviews recent related work on Tor WF attacks relying on traditional machine learning
algorithms, and the application of deep learning.

Anonymous communications systems such as Tor [11] provide confidentiality of communications
and conceal the destination server’s address from network eavesdroppers. However, in the last
decade, several studies have shown that, under certain conditions, an attacker can identify the
destination website only from encrypted and anonymized traffic.

In WF, the adversary collects traffic from his own visits to a set of websites that he is interested
in monitoring, visiting each site multiple times. Next, the adversary builds a website template or
fingerprint from the traffic traces collected for that site. The fingerprints are built using a supervised

1The dataset and implementation can be found on the following URL: https://distrinet.cs.kuleuven.be/
software/tor-wf-dl/.
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learning method that takes the traffic traces labeled as their corresponding site, extracts a number
of features that identify the site and outputs a statistical model that can be used for classification
of new, unseen traffic traces. Finally, the attacker applies the classifier on unlabeled traffic traces
collected from communications initiated by the victim and makes a guess based on the output of
the classifier. To be able to deploy the attack, the adversary must be able to observe the traffic
generated by the victim and be able to identify the user (see Section 6.3 for more details on the
threat model).

The first WF studies evaluated the effectiveness of the attack against HTTPS [8], encrypted
web proxies [27, 16], OpenSSH [22] and VPNs [14] and it was not until 2009 that the first evaluation
of a WF attack was performed in Tor [14]. This first attack in Tor was based on a Naive Bayes
classifier and the features were the frequency distributions of packet lengths [14]. Even though their
evaluation showed the attack achieved an average accuracy of only 3%, the attack was improved by
Panchenko et al. using a Support Vector Machine (SVM) [25]. In addition, Panchenko et al. added
new features that were exploiting the distinctive burstiness of traffic and increased the accuracy of
the attack to more than 50%.

These works were succeeded by a series of studies that claimed to boost the attacks and presented
attacks with more than 90% success rates. First, Cai et al. [5] used an SVM with a custom kernel
based on an edit-distance and achieved more than 86% accuracy for 100 sites. The edit distance
allowed for delete and transpose operations, that are supposed to capture drop and retransmission
of packets respectively. Following a similar approach, Wang and Goldberg [31] experimented with
several custom edit distances and improved Cai et al.’s attack to 91% accuracy for the same dataset.

However, these evaluations have been criticized for making unrealistic assumptions on the exper-
imental settings that give an unfair advantage to the adversary compared to real attack settings [19].
For instance, they evaluated the attacks on small datasets and considered adversaries who can per-
fectly parse the traffic generated by a web-page visit from all the traffic that blends into the Tor
network. Furthermore, they assume users browse pages sequentially on one single browser tab and
never interrupt an ongoing page-load. Recent research has developed new techniques to overcome
some of these assumptions, suggesting that the attacks may be more practical than previously
expected [32].

The three most recent attacks in the literature outperform all the attacks described above and,
for this reason, we have selected them to compare with our DL-based attack. Each attack uses a
different classification model and feature sets and work as follows:

Wang-kNN [30]: this attack is based on a k-Nearest Neighbors (k-NN) classifier with more than
3,000 traffic features. This large amount of features is obtained by varying the parameters of set of
fewer feature families. For instance, the number of outgoing packets in spans of X packets and the
lengths of the Y packets in the same direction. In order to mitigate the curse of dimensionality,
they proposed to weigh the features of a custom distance metric, minimizing the distance among
traffic samples that belong to the same site. Their results show that this attack achieves 90% to
95% accuracy on 100 websites [30].

CUMUL [24]: CUMUL is based on an SVM with a Radial Basis Function (RBF) kernel. CUMUL
uses the cumulative sum of packet lengths to derive the features for the SVM. The cumulative sum
is computed by adding the lengths of outgoing packets and subtracting the lengths of incoming
packets. However, since the RBF kernel, in contrast to the aforementioned edit-distance based
SVM kernel, expects feature vectors to have the same dimension, they interpolated 100 points
from the cumulative sums. Furthermore, they prepend the total incoming and outgoing number of
packets and bytes. As a result, they ended with 104 features to represent a traffic instance. Their
evaluations demonstrate an attack success that ranges between 90% and 93% for 100 websites. It
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is worth mentioning that their dataset is the most realistic up to the date, including inner pages
of sites that have spikes of popularity such as Google searches or Twitter links. Despite the high
success rate of their attack, the authors conclude that the WF attack does not scale when applied
in a real-world setting, as an adversary would need to train the classifier on a large fraction of all
websites.

k-Fingerprinting (k-FP) [13]: Hayes and Danezis’s k-FP attack is based on Random Forests
(RF). Random Forests are ensembles of decision trees that are randomized and averaged so that they
can generalize better than simple decision trees. Their feature sets include 175 features developed
from features available in prior work, as well as timing features that had not been considered before,
such as the number of packets per second. The random forest is not used to classify but as a way
to transform these features into a different feature space: they use the leafs of the random forest
to encode a new representation of the sites they intent to detect that is relative to all the other
sites in their training set. Next, the new representation of the data is fed to a k-NN classifier for
the actual classification. Their results show that this attack is as effective as CUMUL and achieves
similar accuracy scores for the same number of sites.

All these attacks have selected their features mostly based on expertise and their technical
knowledge on how Tor and the HTTP protocol work and interact with each other. As a result of
manual feature engineering and standard feature selection, each proposed attack can be represented
by a set of fingerprinting features. It is still unknown whether WF can be successfully deployed
through automatic feature engineering based on implicit uninterpretable traffic features.

To the best of our knowledge, the only research that successfully applies deep learning to a
similar problem is the network protocol recognition on encrypted traffic with a Stacked Denoising
Autoencoder (SDAE) done by Wang [34]. His approach achieves a 90% recognition rate, which is
a promising indicator for deep learning application to anonymized traffic.

The first effort to apply a DL-based approach to WF was made by Abe and Goto [1], where
they evaluated a SDAE on the Wang-kNN’s dataset. Their classifiers do not outperform the state-
of-the-art, but nevertheless achieve a convincing 88% on a closed world of 100 classes. It is fair to
assume that the lower performance is due to the lack of a sufficient amount of training data for
a deep neural network, which, as we confirm later in our paper, is essential for the deep learning
performance. Moreover, the work does not assess applicability of other deep learning algorithms to
the problem. In this chapter we explore three deep learning methods when applied to a significantly
larger closed world of varying sizes, trained on sufficient amounts of data and evaluated in context
of dynamic changes of web content over time. We provide a more extensive tuning of the DL-based
attacks and finally achieve a similar accuracy to the state-of-the-art WF attacks.

6.3 Threat model

In this chapter we consider an adversary similar to the one considered in prior work in WF, namely
a passive and local network-level adversary. Figure 6.1 shows an overview of this WF scenario. A
passive adversary only records network packets transmitted during the communication and may not
modify them or cause them to drop, and may not insert new packets into the stream of packets. A
local adversary has a limited view of the network. In particular, in Tor, such an adversary typically
owns the entry node to the Tor network (also known as entry guard), or has access to the link
between the client and the entry. Examples of entities that have this level of visibility range from
Internet Service Providers (ISP), Autonomous Systems (AS) or even local network administrators.
Note that an adversary that owns the entry guard can decrypt the first layer of encryption and
access Tor protocol messages. In this work, we assume an ISP-level adversary that collects traffic at
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the TCP layer and infers the cells from TCP packets [31]. Obviously, all work on WF assumes the
adversary cannot decrypt the encryption provided by Tor, as message contents would immediately
reveal the identity of the website.

In the WF literature, it is common for the evaluation of the attack to assume a closed world
of websites. This means that the user can only visit pages that the adversary has been able to
train on. This assumption, commonly known as the closed-world assumption, has been deemed
unrealistic [25] as the size of the Web is so large that an adversary can only train on a tiny fraction
of the Web. For this reason, many studies have also evaluated the more realistic open world, where
the user is allowed to visit pages that the adversary has not trained on. The closed world is still
useful to compare existing attacks and defenses. In this study, we evaluated both the closed world
and the open world.

6.4 Data collection

One of the prerequisites for deep learning is an abundance of training data required to learn the
underlying patterns. Processing sufficient amounts of representative data enables the deep neural
network to not only precisely reveal the identifying features but also generalize better to unseen
test instances. In prior work on WF in the context of Tor, the datasets that were collected are
relatively limited in size, both in terms of classes (i.e. the number of unique websites) as well as
instances (i.e. the number of traffic traces per website). To properly evaluate our proposed deep
learning approach and explore how existing models can benefit from extra training data, we used
a distributed setup to collect various new datasets that accommodate these requirements.

6.4.1 Data collection methodology

For the data collection process, we used 15 virtual machines on our OpenStack-based private cloud
environment. Each VM was provisioned with 4 CPUs and 4GB of RAM. To each VM, 16 worker
threads were assigned, which each had their separate tor process (version 0.2.8.11). Page-visit
tasks, consisting of starting the Tor browser (version 6.5) and loading the target web page, were
then distributed among the 240 concurrent worker threads. Web pages were given 285 seconds
to load, before the browser was killed and the visit marked as invalid. Upon loading the page,
it was left open for an additional 10 seconds, after which the browser was closed and any profile
information was removed.

By leveraging network namespaces and tcpdump, we isolated and captured the traffic of each
tor process. Due to storage constraints, and since the packet payloads are encrypted and thus
do not have value for the adversary, we extract meta-data from the traffic trace and discard the
encrypted payload. More precisely, we capture (1) the timing information, (2) the direction and

Figure 6.1: The client visits a website over the Tor network. The adversary can observe the
(encrypted) traffic between the client and the entry to the Tor network.
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(3) the size of the TCP packet. We follow the approach proposed by Wang and Goldberg [31] to
extract Tor cells from the captured TCP packets. Our final representation of the traffic trace is a
sequence of cells, where each cell is encoded as 1 when transmitted from the client to the website
and as −1 when captured in the opposite direction. For the purpose of sanity checks and validation,
information on the Tor circuit that was used for the page visit is also recorded.

It should be noted that, in contrast to prior work [31], the Tor entry guard node was not pinned
over the course of our experiments. The reason for this is twofold. First, compared to prior data
collection, we use significantly more concurrent processes. If the same entry guard would be used
by the 240 browser instances, this could overload the entry guard, possibly affecting the network
traces. Second, by using a variety of entry guards, the trained models are agnostic to the intrinsics
of a specific entry guard. This means that the model of the adversary is not only applicable in a
targeted attack on a single victim, but can be launched against any Tor user.

6.4.2 Datasets

Since the WF adversary’s goals might vary widely and as there are no statistics about which pages
Tor users browse to, there can be no definitive set of sensitive websites for WF research. Moreover,
since we aim to compare various approaches with each other, the actual choice of websites is not
essential as long as it is consistent. The list of websites we chose for our evaluation comes from the
Alexa Top Sites service, the source widely used in prior research on Tor.

In total, we evaluate our deep learning approach in comparison with traditional methods on
three different datasets. This section details how these datasets were chosen and obtained.

Closed world

For the dataset under the closed world assumption, we collected up to 3,000 network traces for
visits to the homepage of the 1,200 most popular websites according to Alexa. The list of popular
websites was first filtered to remove duplicate entries that only differ in the TLD, e.g. in the case of
google.com and google.de, only the former was included in the list. Data for these 1,200 websites
was collected in four iterations, consisting of 300 websites each. An iteration was again split up
into 30 batches, with each batch performing 100 network traces per websites. After each batch,
the 240 tor processes were restarted and data directories were removed, forcing new circuits to be
built with (new) randomly selected entry guards. Network traces for each of the four iterations
were collected over approximately 14 days per group, starting from January 2017.

After collecting data on the 3.6 million page visits, we filtered out invalid entries, which were
due to a timeout, or a crash of the browser or Selenium driver. Websites with a high amount
of invalid page visits were removed from our dataset. Additionally, using the similarity hash of
the web page’s HTML content [7] and the perceptual hash of the screenshot [3], we detected and
excluded websites with exactly the same content. Moreover, we filtered out websites that had no
content, denied all requests coming from Tor, or showed a CAPTCHA for every visit. Finally, we
balanced the dataset to ensure the uniform distribution of instances across different sites by fixing
the same number of traces for every site. After this filtering process, our biggest closed world
dataset consists of 900 websites, with 2,500 valid network traces each. In the remainder of the text,
we refer to this dataset as CW900. Similarly, for datasets that are composed of a subset of this
one we use a corresponding representation: the datasets for the top 100, 200 and 500 websites are
referred to as CW100, CW200 and CW500 accordingly.
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Revisit over time

For the top 200 websites, we obtained additional periodic measurements. More precisely, for these
websites we collected 100 test network traces per website 3 days, 10 days, 4 weeks, 6 weeks and 8
weeks after the end of the initial data collection for these 200 websites. Each test set is collected
within one day. As a result, our revisit-over-time dataset provides 500 network traces for each of
the top 200 websites collected over a 2-month period (CW200 was collected over 2 weeks).

Open world

Since the open world data is only used for testing purposes (which differs from some of the open
world evaluations), we collected only a single instance for each page in the open world. In total,
we collected network traces for the top 400,000 of Alexa websites.

We collected additional 2,000 test traces for each website of the monitored closed world CW200

(400,000 instances in total). As a result, we conduct the open world evaluation on 800,000 test traffic
traces, half from the closed world and half from the open world (a 4-fold increase compared to the
largest dataset considered in prior work [13, 24]). We provide the motivation for this experimental
setting in Section 6.5.2.

6.4.3 Ethical considerations & data access

For our data collection experiments, we performed around 4 million page visits over Tor. It is
highly unlikely that this had any impact on the top websites, which each receive multiple millions
of requests every day. We consider the impact on the Tor network to be limited as well: The Tor
Project estimates that during the time we performed our experiments, approximately 2 million
clients were concurrently connected to the Tor network. As such, the 240 clients we used are only
a minor fraction of the total number of active clients. Furthermore, we made the data publicly
available, allowing other researchers to evaluate other approaches without having to collect new
data samples.

6.5 Evaluation

In this section, we conduct a reevaluation of the state-of-the-art WF methods discussed in the
related work of Section 6.2 to confirm their reproducibility on our dataset. We then evaluate the
proposed attacks based on the three chosen deep learning (DL) algorithms and compare them to
the previously known techniques.

6.5.1 Reevaluation of state-of-the-art

We aim to enable a systematic comparison between our work and that of Wang et al. [30], Panchenko
et al. [24] and Hayes et al. [13], not only to guarantee a fair assessment by evaluating on new data,
but also to analyze (1) the practical feasibility of the attack on a significantly larger set of websites,
(2) the impact of collecting more instances or traces per website on the classification accuracy, and
(3) the resilience of trained models to concept drift with a growing time gap between training and
testing.

The goal of the first closed world experiment is to confirm whether we can reproduce the three
WF attacks of prior work [30, 24, 13] and to assert whether we obtain similar classification results
as those reported by the respective authors, but on a different training and testing dataset similar
in size. We reuse the original implementation of the authors to carry out the feature extraction
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and subsequently execute the training and testing steps. All results reported in this section are
computed via 10-fold cross-validation.

The following results were obtained on a Dell PowerEdge R620 server with 2x Intel Xeon E5-
2650 CPUs, 64GB of memory and 8 cores on each CPU with hyperthreading, resulting in 32 cores
in total each running at 2GHz. Wang’s k-NN based attack ran on a single core as the stochastic
gradient descent method to find the best weights for k-NN classification could not be parallelized
without sacrificing some classification accuracy. Panchenko’s CUMUL attack trains an SVM model
which requires a grid search to find the best C and γ parameter combination for the RBF kernel.
As the native libSVM library is not multi-core enabled, the parameter combination tests ran as
parallel processes each on a single core, with the time reported being the one of the slowest C and
γ parameter combination test.
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Figure 6.2: Re-evaluation of traditional WF attacks on new data

Figure 6.2 shows the closed world classification accuracy obtained through cross-fold validation
for the three traditional WF attacks on a CW100 dataset with 100 traces per website. For the
same set of website instances, the k-NN algorithm of Wang et al. reports a classification accuracy
of 92.87% on our new data set, whereas the CUMUL algorithm of Panchenko et al. and the k-FP
attack by Hayes et al. respectively report accuracy results of 95.43% and 92.47%. The obtained
results are in line with those originally reported by the authors themselves albeit on other data
sets. For this particular setup, the CUMUL WF attack turned out to be the most accurate.

In the second experiment, we evaluate the same traditional methods on 100 websites, but
with a growing number of traces per website, to investigate whether the classification accuracy
improves significantly when provided with more training data and whether one WF attack method
is consistently better than another.
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Figure 6.3: Impact on the classification accuracy for a growing number of website traces

In Figure 6.3, we depict the classification accuracy in a closed world experiment where the
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number of website instances grows from 100 to 1,000 traces. Our results show that the CUMUL
attack consistently outperforms the two other methods. For all methods, the improvement becomes
less evident after about 300 website traces. Another interesting observation is that each WF attack
− when given sufficient training data − converges to a classification accuracy of approximately
96-97%. However, we experienced scalability issues with the k-NN based attack by Wang et al.,
given that the classification running times were at least an order of magnitude higher than those
of the CUMUL and k-FP attacks.

In a third experiment, we assess how the classification accuracy drops when the number of web-
sites increases for a fixed amount of training instances. Given that the CUMUL attack consistently
outperformed the other two methods on our dataset, and was superior in resource consumption,
we only report the results for CUMUL. We reevaluate the CUMUL classifier on our closed worlds
CW100, CW200, CW500 and CW900 with a fixed number of traffic traces: 300 per website.

Table 6.1 illustrates that the CUMUL attack obtains a reasonable 92.73% 10-fold cross-validation
accuracy for 900 websites using 300 instances each, and a parameter combination of log2(C) = 21
and log2(γ) = 5. In general, we observe that the performance degrades gradually with a growing
size of the closed world. Moreover, doubling the initial amount of instances gives an advantage of
up to 2%, while the amounts higher than 300 stop providing any significant improvement. The
biggest weakness is that for each experiment one must execute the grid search to ensure the best
classification results, and certain parameter combination tests take a long time to converge with
no guarantee of a gain in accuracy.

Table 6.1: CUMUL accuracy for a growing closed world (with 100 traces per website, 300 traces,
and the best achieved accuracy for a varying number of traces).

Dataset CUMUL
(100tr)

CUMUL
(300tr)

CUMUL
(best)

CW100 95.43% 96.85% 97.68%
(2000tr)

CW200 93.58% 95.93% 97.07%
(2000tr)

CW500 92.30% 94.22% 95.73%
(1000tr)

CW900 89.82% 92.73% 92.73%
(300tr)

Table 6.2 gives an overview of the running times (in minutes) to find the best C and γ parameter
values for the RBF kernel. We aborted those experiments where the grid search took more than
four days to complete. While there is a trend of increasing values for these parameters with a
growing number of websites and instances, we could not find a strong correlation that would enable
us to eliminate the grid search altogether.

As a result, we choose CUMUL as the reference point for comparing our proposed method with
the state-of-the art. This decision is driven by the fact that CUMUL performed the best on our
closed worlds, and proved to be more practically feasible. We acknowledge that the k-FP attack
has the potential to work better in our open world evaluation. However, over the course of our
scalability experiments, k-FP did not scale to 50,000 training instances. The experiment consumed
more than 64GB memory and took longer than the allocated 4 days, and thus was aborted.With
our open world datasets consisting of 800,000 instances (and 400,000 training instances), such high
resource consumption demands strongly limit large scale evaluation. CUMUL on the other hand
scales up to 400,000 training instances. Therefore, we further evaluate our DL-based approach in
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Table 6.2: Time required to find optimal RBF parameter values for C and γ for SVM based
classification.

Traces CW100 CW200 CW500 CW900

100 3 min 8 min 139 min 771 min

200 10 min 48 min 684 min 3027 min

300 19 min 99 min 1230 min 4031 min

400 29 min 134 min 1490 min > 6000†

min

500 34 min 169 min 1541 min > 6000†

min

1000 41 min 844 min 5016 min > 6000†

min

2000 41 min 844 min 5016 min > 6000†

min

†Aborted experiments.

comparison to CUMUL, which outperformed the other traditional WF techniques and which was
practically feasible on a larger scale.

6.5.2 Deep Learning for Website Fingerprinting

Here we provide a detailed outline of our DL-based methodology. DL provides a broad set of
powerful machine learning techniques with deep architectures. Deep neural networks (DNN), which
underlie DL, exploit many layers of non-linear mathematical data transformations for automatic
hierarchical feature extraction and selection. DNN demonstrate a superior ability of feature learning
for solving a wide variety of tasks. In this study we apply three major types of DNNs to WF: a
feedforward SDAE, a convolutional CNN and a recurrent LSTM.

Problem definition

In our proposed method, we follow prior work and formulate WF as a classification problem.
Namely, we perform a supervised multinomial classification, where we train a classifier on a set of
labeled instances and test the classifier by assigning a label out of a set of multiple possible labels
to each unlabeled instance. In WF, a traffic trace t captured from a single visit to a website is an
instance of the form (ft, ct), where ft is the feature vector of the traffic trace and ct is the class
label that corresponds to the website that generated this traffic. Assuming a closed world of N
possible websites, label ct belongs to the set {0, 1, . . . , N − 1}. As such, we state the WF problem
as follows: assign a class label to each anonymous traffic trace in a dataset based on its features.

The classifiers used in related work successfully solved this problem by carefully constructing
feature vectors, as described in Section 6.2. Our proposed classifier, based on a DNN, integrates
feature learning within the training process, enabling it to classify traffic traces simply based on
their initial representation. Thus, for a DL classifier, the form of the input instance changes to (rt,
ct), where rt is a raw representation of a traffic trace that can be interpreted by a neural network.

In essence, we represent a traffic trace as a sequence of successive Tor cells that form the
communication between the target user and the visited website. As a result, an input instance of
our DNN-based classifier is a series of 1 and −1 of variable length, based on which model performs
feature learning and website recognition. Our choice of this format is also supported by the fact
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that neural networks generally work with real numbers from the compact interval [−1, 1] due to
the nature of the mathematical operations they perform. Moreover, by providing the input data in
such a format, we avoid having to rescale and/or normalize the values and thus mitigate a possible
information loss coupled with the preprocessing step.

Out of all existing types of DNNs and corresponding DL algorithms, we evaluate three major
types of neural networks: feedforward, convolutional and recurrent. We choose to apply the models
that provide the capabilities and architectural characteristics to perform the task of automated
feature extraction and to benefit from the nature of our input data. We refer to the Appendix for a
more elaborate and in-depth discussion on the DL algorithms, which we consider to be conceptually
the most well-suited for the WF task at hand.

The first DNN we apply is a classifier called Stacked Denoising Autoencoder (SDAE) – a deep
feedforward neural network composed of Denoising Autoencoders (DAE). An Autoencoder (AE) is
a feedforward network specifically designed for feature learning through dimensionality reduction.
Stacking multiple AEs as building blocks to form a deep model allows for hierarchical extraction
of the most salient features of the input data and performing classification based on the derived
features, which makes SDAE a promising model for our WF problem.

The next proposed DNN is a Convolutional Neural Network (CNN) – a classifier built on a
series of convolutional layers. Convolutional layers are also used for feature extraction, starting
with low-level features at the first layer and building up to more abstract concepts going deeper
in the network. CNN’s methodology for achieving that differs from that of SDAE. Convolutional
layers learn numerous filters that reveal regions in the input data containing specific characteristics.
These input instances are then downsampled with the special regions preserved. In such a way the
CNN searches for the most important features to base the classification on. Furthermore, while
SDAE has to be pretrained block by block, CNN requires minimum preprocessing.

The final chosen DNN is yet another type of a neural network, very different in its fundamental
properties from the first two. A classifier called Long-Short Term Memory network (LSTM) is a
special type of a recurrent neural network that has enhanced memorization capabilities. Its design
allows for learning long-term dependencies in data, enabling the classifier to interpret time series.
Our input traffic traces are essentially time series of Tor cells, and temporal dynamics in these
series are expected to be highly revealing of the contained website fingerprint, thus the choice of
the model.

We used Keras[10] with Theano[28] backend for the implementation of the DNN classifiers. The
source code is publicly available on the following webpage: https://distrinet.cs.kuleuven.be/
software/tor-wf-dl/.

Hyperparameter tuning and model selection

The adversary has to empirically select a DNN model to apply for WF. For that, the adversary
should tune the hyperparameters of the DNN to achieve the best classification performance and,
at the same time, enhance its capabilities to generalize well to unseen traffic traces.

Performing an automatic search of the best hyperparameters – be that an exhaustive grid search,
a random search or another search algorithm – is highly effective but computationally expensive
at the same time. In our work, we evaluate the DL algorithms applied to WF by performing
semi-automatic hyperparameter tuning, where we exploit the knowledge of each hyperparameter’s
impact. Namely, the main strategy is as follows:

• The adversary chooses a representative subsample of the given dataset and splits it randomly
into training set, validation set and test set in the following proportion: 90% - 5% - 5%
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• Next, the adversary defines the limits of the model capacity based on the amount of available
training data. On the one hand, the model has to be expressed with a sufficient amount of
parameters in order to be able to learn the problem. On the other hand, there has to be much
fewer trainable parameters than available training instances in order to avoid overfitting. The
model’s capacity is defined through its structure and hyperparameters, different for each DNN.
The adversary has to define the search spaces for each hyperparameter.

• In our evaluation a special form of Bayesian optimization is applied for hyperparameter
tuning, specifically a Tree of Parzen Estimators (TPE)[2] implemented in hyperopt library.
Through this algorithm the adversary automates the tuning process within previously defined
search spaces.

• The optimization algorithm returns the best combination of values and the network structure
based on the test results. If the adversary finds the model’s test performance satisfactory, he
selects this model. Otherwise, he adjusts the search spaces and repeats the tuning procedure.

• Finally, the adversary builds and initializes the selected learning model and applies it to the
whole dataset to deploy the actual WF attack.

Traditional machine learning methods used for WF in the related work (such as SVM, k-NN and
RF, as presented in Section 6.2) also require hyperparameter tuning, but on a smaller scale than
DL. Nevertheless, tuning the parameters of the DL model becomes even more feasible in comparison
to traditional models due to the parallelism of DL algorithms. As learning algorithms of neural
networks are inherently parallel, graphical processing units (GPUs) can take advantage of this
characteristic. Performing hyperparameter tuning on GPUs compromises for intense computational
requirements allows for rapid feedback of the model. For our DL experiments we use two Nvidia
GeForce GTX 1080 GPUs with 8GB memory and 2560 cores each and one TITAN Xp with 12GB
memory and 3840 cores to accommodate parallelized training of the DNNs. The training runtime
reported in this chapter should therefore be interpreted in association with said platforms.

Table 6.3 includes the list and the values of the hyperparameters we tuned, together with the
corresponding intervals within which we vary the values. Each hyperparameter controls a certain
aspect of the DL algorithm: architecture (structural complexity of the network), learning (the
training process) and regularization (constraint of the learning capabilities applied order to avoid
overfitting, which occurs when the model memorizes the training data instead of learning from it).
Note that in order to reduce the search space, we limited our models to the same learning and
regularization parameters for each network layer.

The adversary is supposed to select the DL-based model once given a sample crawled for a
desired closed world of websites. Similarly, we perform the model selection on the CW100 dataset,
as defined in Section 6.4, in order to limit the computational requirements. Given a proper tuning
procedure and a sufficiently large amount of training instances for each class, the chosen model is
expected to learn the problem (learn to extract the fingerprints), and at the same time generalize
well to the other closed world datasets. In fact, the adversary capable of crawling large amounts
of data can compensate on hyperparameter tuning.

The final selected models of SDAE, CNN and LSTM used for evaluation are described in
Table 6.3. The amount of LSTM units has to be adjusted for the bigger closed worlds to increase
expressive capacity. Note that due to the LSTM’s backpropagation through time constraints, we
have to trim the traffic traces to the first 150 Tor cells (we elaborate on the reason for that in
Appendix).

Further in this subsection we present the experimental results of the DL-based WF attack on the
crawled dataset. Namely, we evaluate the three chosen DNNs on the closed worlds of various sizes

– 110 of 210 –



D3.3 - Final Report

Table 6.3: Tuned hyperparameters of the selected DL models.

SDAE CNN LSTM

Hyperparameter Value Space Value Space Value Space

optimizer SGD SGD, Adam RMSProp SGD, Adam RMSProp SGD, Adam

RMSProp RMSProp RMSProp

learning rate 0.001 0.0001 .. 0.1 0.0011 0.0009 .. 0.0025 0.001 0.0001 .. 0.1

decay 0.0 0.0 .. 0.9 0.0 0.0 .. 0.9 0.0 0.0 .. 0.9

batch size 32 8 .. 256 256 8 .. 256 128 32 .. 256

training epochs ≤30 1 .. 100 3-6 1 .. 20 ≤50 1 .. 100

number of layers 5 3 .. 7 8 6 .. 10 4 3 .. 6

input units 5000 200 .. 5000 3000 200 .. 5000 150 70 .. 1000

hidden layers units 1000, 500, 300 200 .. 3000 — — 64, 64 / 128, 128 64 .. 256

dropout 0.1 0.0 .. 0.5 0.1 0.0 .. 0.5 0.22 0.0 .. 0.5

activation tanh tanh, sigmoid, relu relu tanh, relu tanh tanh, sigmoid, relu

pretraining optimizer SGD SGD, Adam — — — —

pretraining learning rate 0.1 0.01 .. 0.1 — — — —

kernels — — 32 4 .. 128 — —

kernel size — — 5 2 .. 50 — —

pool size — — 4 2 .. 16 — —

and on the open world. We also assess their generalization capabilities by testing their resilience
to concept drift on data periodically collected over 2 months. Furthermore, we compare results to
CUMUL, being the most accurate traditional WF method.

Closed world evaluation

In this study, we evaluate the SDAE, CNN and LSTM networks on four closed worlds of different
sizes, namely CW100, CW200, CW500 and CW900. We use the models selected by performing
hyperparameter tuning on the CW100 dataset, according to the aforementioned methodology. To
ensure the reliability of our experiments, we estimate the models’ performance by conducting a 10-
fold cross-validation on each dataset. We use two performance metrics to evaluate and compare the
models with each other: the test accuracy (classification success rate, which needs to be maximized)
and the test loss (a cost function that reflects the significance of classification errors made by
the model, namely the categorical cross-entropy, that needs to be minimized, as explained in the
Appendix).

The aspect that had the greatest impact on the performance over the course of our experiments
was the amount of training data (i.e. the amount of traffic traces for each website), which is in
line with our expectations and justifies the extensive data collection. Indeed, for every closed world
experiment, we observed significant improvements for a growing amount of traces. One example
of this trend is given in Figure 6.4 for the CW100 dataset, where we vary the amount of instances
from 100 to all available 2,500 per class. The Table 6.4 reports on the actual metrics’ values and
the corresponding runtimes.

First and foremost, from these results we can confirm the feasibility of the WF attack based
on a DL approach with automatic feature learning. We observe how classification accuracy and
loss function gradually improve for all models, in the end reaching the 95.46, 96.66 and 94.02%
success rate for SDAE, CNN and LSTM model accordingly. These results are comparable to the
ones achieved by traditional approaches in Section 6.5.1.

If we compare the three DNNs with each other, we observe that the SDAE and CNN networks
consistently perform better than the LSTM in terms of classification accuracy, with CNN being
the most performant. Nevertheless, knowing that the LSTM classifies traffic traces based solely
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Table 6.4: Accuracy, loss and runtime of the DL models (SDAE, CNN, LSTM) for CW100 and a
growing number of traces.

SDAE CNN LSTM

Traces AccuracyLoss RuntimeAccuracyLoss RuntimeAccuracyLoss Runtime

100 85.00% 0.5902 0 min 81.25% 0.8276 0 min 40.60% 2.2132 9 min

200 87.30% 0.5252 1 min 86.63% 0.5793 0.5
min

57.30% 1.5471 17 min

500 91.34% 0.3576 1 min 91.43% 0.3877 1 min 79.54% 0.7848 40 min

1000 92.64% 0.2950 2 min 94.72% 0.2545 1.5
min

91.63% 0.3555 63 min

1500 94.49% 0.2314 4 min 95.95% 0.1855 2 min 91.93% 0.3055 66 min

2000 95.17% 0.1955 6 min 96.14% 0.1699 3 min 93.98% 0.3277 67 min

2500 95.46% 0.1968 7 min 96.26% 0.1784 5 min 94.02% 0.3204 76 min
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Figure 6.4: Accuracy, loss and evaluation time of the DL models (SDAE, CNN, LSTM) for CW100

and a growing number of traces

on their first 150 Tor cells (compared to the SDAE and CNN that use up to 5,000 and 3,000 cells
from each trace), the achieved performance still appears promising. Our interpretation is that
even a small part of the traffic trace is sufficient for website recognition up to 94% accuracy when
deploying a model that is able to exploit temporal dependencies of the input sequence. Notably,
LSTM performs much poorer when trained on fewer traffic traces than SDAE and CNN, but later
gains comparable recognition rate at 1000 training instances per class.

Next, we assess whether the selected DL models tuned on CW100 perform similarly when applied
to the larger datasets: CW200, CW500 and CW900. The results of the DL-based WF for all closed
world datasets are presented in Table 6.5, expressed in classification accuracy, loss function and
runtime. The time reported in the table is the average time required to build, train and evaluate a
model. We observe that for larger closed worlds the performance of the three DL models gradually
decreases following a similar trend. The closed world evaluation results remain comparable to
CUMUL’s results presented in Table 6.1 in the previous subsection. Figure 6.5 compares the
DL-based methods to CUMUL. This comparison illustrates that our DL-based attack can indeed
successfully learn the fingerprinting features in an automated manner. Furthermore, the training
method itself is highly parallelizable on GPU hardware resulting in a faster and therefore more
practical closed world WF attack.

The presented experiments on the closed world reflect the model’s ability to classify traffic traces
that are collected at the same moment as the training data. Even though we prove that such a
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Table 6.5: Accuracy, loss and runtime of the DL models (SDAE, CNN, LSTM) for each closed
world and 2,500 traces.

SDAE CNN LSTM

Dataset AccuracyLoss RuntimeAccuracyLoss RuntimeAccuracyLoss Runtime

CW100 95.46% 0.1968 7 min 96.66%0.1699 5 min 94.02% 0.3204 76
min.

CW200 95.76% 0.1822 14
min

96.52%0.1774 8 min 93.10% 0.3292 91
min

CW500 95.04%0.2243 34
min

92.31% 0.3732 12 min 90.80% 0.3163 257
min

CW900 94.25%0.2530 52
min

91.79% 0.4278 20 min 88.04% 0.3601 276
min
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Figure 6.5: DL (SDAE, CNN, LSTM) vs. CUMUL for a growing size of the closed world from 100
to 900 websites.

WF attack is possible, we do not address the question of eliciting the concrete data features that
the models take decisions upon. In other words, just based on this experiment, we cannot certainly
infer if the DNN reveals the actual website fingerprint for deanonymization, or also learns occasional
dynamics in the traffic data instead that just happens to enable recognition. The next experiment
is intended to reveal how well our DNNs are able to extract the fingerprint and generalize to new
data.

Concept drift evaluation

The challenge of recognizing traffic traces collected over time was first addressed by Juarez et
al. [19]. They showed that classification accuracy drops drastically when testing the model on
traffic captured 10 days after training. This time effect is explained by constant content changes of
the websites, which of course may affect the identifying fingerprints. Another possible reason for the
performance drop is that the classifier trained and evaluated at one moment in time might overlook
the stable fingerprint and learn the temporary features instead. In general such an occurrence
is known as concept drift – a change over time in the statistical properties of the class that the
model is trying to predict. Therefore, the recognition might become less accurate over time. A
model resilient against concept drift is the one that manages to capture the salient traffic features
maximally correlated with the website fingerprint and thus remains performant over time. To
reveal if our DNNs detect the actual website fingerprints and assess how well they perform in case
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Figure 6.6: DL (SDAE, CNN, LSTM) vs. CUMUL resilience to concept drift: evaluation of CW200

over time.

of traffic changes, we train the models on a closed world and test them on data collected from
visiting websites of the same closed world periodically over 2 months. In order to fairly compare
DL-based methods to CUMUL, we have to evaluate them on the same dataset with the same
amount of traces. Due to CUMUL’s scalability issue, the biggest dataset possible to use for this
evaluation is CW200 with 2,000 training instances. Even though this is not the largest dataset
we collected, it is still twice bigger than the closed worlds normally used in prior works. Thus
we train models on the whole CW200 dataset (with 2,000 training traces) and test them on the
revisit-over-time dataset (as defined in Section 6.4).

The results are depicted in Figure 6.6 for DL and traditional CUMUL. The plot indicates the
WF performance of various models trained on CW200 and evaluated on traffic re-collected 3 days,
10 days, 4 weeks, 6 weeks and 8 weeks after training.

The figure demonstrates how the classification accuracy decreases and the classification loss
increases gradually and drastically over time. These results illustrate the high generalizing abilities
of both the evaluated models. Despite a significant 2-month time gap between the moment of
training and the last evaluation, the DL algorithms are still capable to correctly deanonymize at
least 66% out of 2,000 website visits. We witness a rather small accuracy drop in the first 3 and 10
days for all three DL models, which may be acceptable for an adversary who would prefer to use
the built WF classifier for several more days rather than repeat the data collection and training
process every day. In total, SDAE loses 22% of accuracy over 2 months, CNN loses 29%, while
LSTM only loses 17%. Notably, being the most performant DL model on the day of training, CNN
generalized worse than SDAE or LSTM. Despite the fact that the LSTM model (which still makes
decision just based on the first 150 cells in the input sequence) is initially outperformed by both
SDAE and CNN, after one month its accuracy catches up with that of the SDAE. Moreover, after 1
month the LSTM loss values are lower than those of the SDAE, which means that even though the
LSTM outputs less correct predictions, it is overall more certain of these predictions. This obviously
speaks in favor of LSTM’s high generalization abilities, in line with our best expectations.

Our SDAE and CNN approaches outperform CUMUL with up to 7% over the course of 2 months.
In total CUMUL loses 31%. LSTM network starts outperforming CUMUL after approximately 2
weeks. As such, this comparison not only shows that our approach indeed automates the feature
engineering, but also that the learned implicit features (hidden in the neural network) are more
robust against website changes over time. Notably, CUMUL is found to significantly improve its
generalization abilities when trained on larger amounts of traffic traces per website, which proves
that DL-based classifiers are not alone in their requirement for a bigger training data for the highest
performance.
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The main conclusion here is that the DL-based classifiers are capable of extracting stable iden-
tifying information from the closed world traffic which allows for its deanonymization with a high
success rate, even several days after training.

Open world evaluation

This study compares DL-based WF attacks and CUMUL for the open world evaluation. The goal
is to assess the classifier’s ability to distinguish a traffic trace generated by a visit to one of the
monitored websites from a traffic trace generated by a visit to any other unknown website. Our
methodology for the open world evaluation differs from prior work in several aspects. We aim to
provide a fair comparison of the classifiers by reducing possible bias. To this purpose we have to
depart from the realistic WF setting and adapt the following assumptions:

• We model the monitored websites by training the classifier solely on the traffic traces of the
websites an adversary is aiming to detect. By doing so, we assess the abilities of the learning
algorithms to distinguish seen and unseen websites. In previous studies on WF, it has been
argued that an adversary may improve the attack by additionally collecting and training on
traffic of known websites that he is not interested in identifying, which is of course a possibility
given sufficient resources. But here we do not provide any helping patterns of the open Web
to the classifiers to not distort their actual performance.

• We test the classifiers on balanced datasets: monitored and unknown websites in proportion
50%-50% (meaning that random classification would be accurate on average 50% of a time).
Thus, we do not attempt to infer the realistic ratio, especially knowing that modeling an open
world of a realistic scale poses large issues: (1) the effect of the hypothesis space complexity,
as shown by Panchenko et al. [24], and (2) the base rate fallacy, demonstrated by Juarez et
al. [19]: even a highly accurate classifier trained on the monitored websites with a very low
prior probabilities of visit cannot be fully confident of its predictions. Instead we assume a
standard uniform probability distribution of visits to the monitored and unknown sets. With
such evaluation the classifier’s errors are more prominent and allow for a clearer comparison.

• Following the earlier reasoning, we use Alexa websites for both, monitored and unknown
sets. Choosing a particular set of monitored websites characterized by patterns that are not
common to the whole Web would introduce classification bias with unpredictable impact on
comparison. In order to objectively compare the studied classifiers, we demonstrate their
abilities to distinguish seen and unseen fingerprints belonging to the websites of the same
category (in our case, most popular websites).

We evaluate the open world WF attack for an adversary who monitors a set of 200 websites, while
the target user may visit 400,000 more unknown websites. As a result, our open world dataset
consists of 800,000 visits through Tor: one-time visits to 400,000 various websites in the Web and
400,000 visits to the monitored CW200. We train the models solely on 2,000 instances of CW200

(thus obtaining the classifiers identical to those used for the closed world evaluation). Recall that
earlier in the closed world evaluation section we already assessed their multinomial classification
performance; the reported success rates indicate the ability of the classifiers to identify the exact
visited monitored website. In this section we perform binary classification by testing the same
models on our open world dataset. With this experiment we assess the classifiers’ ability to recognize
the input instance as a visit to a monitored or an unknown, earlier unseen website. The classifier
makes decisions based on the cross-entropy loss function, which reflects its confidence in made
predictions (Appendix elaborates on the cross-entropy as a measure of classification confidence). If
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Figure 6.7: DL (SDAE, CNN and LSTM) vs. CUMUL in the open world setting for a monitored
set of CW200.

the loss value is low enough, the adversary assumes that the classified website visit belongs to a set
of monitored websites. If the entropy is bigger than a certain confidence threshold, the adversary
decides to not trust the classifier’s class prediction and concludes that the tested traffic trace
was generated by an unknown website, thus causing the prediction uncertainty. By varying the
confidence threshold, the adversary balances the True Positive and False Positive Rate according
to their priorities.

In our evaluation, we plot the ROC curve for the three DL classifiers in order to define the
optimal confidence threshold which separates the monitored websites traffic from unknown websites
traffic. Both CNN and SDAE again outperform CUMUL, if only slightly, as demonstrated by Area
Under Curve values in the same figure. The ROC curves for SDAE, CNN and LSTM are depicted
in Figure 6.7 and demonstrate the relative performance of the suggested open world WF DL-
based attacks within 200 monitored and 400,000 unknown websites. We observe that the CNN
model performs better than SDAE, and both perform significantly better than the LSTM model.
However, the adversary may improve the models by using the open world traces for validation
during hyperparameter tuning . LSTM classifier is outperformed by two other DL models because
it only processes the first 150 Tor cells, opposed to 5,000 by SDAE and 3,000 by CNN.

According to the ROC curves, an adversary may optimize the confidence threshold depending on
their priority. For 200 classes, the categorical cross-entropy E varies between 0 (absolute confidence
of the classifier’s prediction) to 5.3 (absolute uncertainty). The optimization examples are given in
Table 6.6, where reduced thresholds allow to decrease FPR.

Table 6.6: DL vs. CUMUL in the open world setting.

Optimized for TPR Optimized for FPR

Model E TPR FPR E TPR FPR

SDAE 0.005 80.25%9.11% 0.001 71.30%3.40%

CNN 0.033 80.11%10.53% 0.013 70.94%3.82%

LSTM 0.062 76.19%19.78% 0.010 53.39%3.67%

CUMUL 0.048 78.00%9.89% 0.018 62.57%3.58%

Our open world evaluation considers a large set of unknown sites in which the adversary cannot
train, allowing us to test the generalization of our models in a large sample of the Web. Similarly to
the state-of-the-art, we observe how our DL-based approach withstands a challenging open world
scenario, providing high accuracy on the largest set of unknown sites.

– 116 of 210 –



D3.3 - Final Report

In the previous subsections, we have shown the relative performance of various DL models in
comparison with each other and with the traditional CUMUL classifier. In certain experimental
settings we improved beyond the state-of-the-art, e.g. in resilience to content changes and in success
rate on the largest closed world. The success rates of WF attacks proved to depend on the closed
world size, the amount of training data available to the adversary and the computational resources
that can be used to train the classifier. For the evaluations performed in this chapter, we used
the resources available at our institution, but we acknowledge that a more powerful attacker could
most likely further improve the attack by using more resources for data collection, model selection
and training.

6.6 Discussion

In this section, we enumerate the limitations of this work and discuss remaining open challenges
with regard to both the threat model and the deep learning methods we presented.

As in virtually all prior work on WF, we analyzed the attacks only on visits to homepages
and omitted other pages within the considered websites. We acknowledge this is an unrealistic
assumption. However, as our main goal was to perform a fair comparison with existing attacks, we
used the same experimental settings. As the models developed in prior work were tailored to these
particular settings, the evaluation of techniques that consider inner web pages was deemed out of
scope for this chapter. Nevertheless, we find automatic feature learning a promising approach to
this problem.

We do not try to approximate the probability of visiting a closed world site vs. a site from the
open world in our experiments. We assume that all open world sites have the same prior probability
and all closed world sites have the same prior probability. We acknowledge this does not reflect
reality but one can only hypothesize on the actual popularity distribution of websites over Tor
without risking the privacy of Tor users. It is a limitation of our study and previous work.

Deep learning allows us to replace manual feature engineering with automatic feature learning.
Therefore, the resulting attack is not defined by an explicit set of features that would be easily
interpretable by a human analyst, but is instead based on abstract implicit non-interpretable fea-
tures, being learnable parameters of the neural network. Moreover, these features have proven
to be more robust to web content changes in comparison to those suggested in prior literature.
Consequentially, the corresponding countermeasure cannot focus on concealing specific features as
it was done earlier, but in order to defend against the DL-based attack we have to challenge the
DL algorithm itself. Therefore, future work should focus on defending against the automated WF
attacks, such as deep neural networks presented in this study.

One line of research for future work could be to investigate whether it is possible to mislead
the deep neural network predictions. For instance, such research could base on the latest work on
adversarial examples [6]. These are inputs to the learning model specifically crafted to fool the
neural network into classifying them into a wrong class. Adversarial examples can be explored as
a defense strategy against DL-based WF in order to protect Tor user’s privacy.

In the very recent work by Wang and Goldberg [33], a defense technique based on half-duplex
communication and burst molding is proposed. The authors claim that this defense defeats all WF
attack techniques known to date. It would be interesting to validate whether the author’s claims
still hold in the presence of automatic feature learners such as DL.
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A. Appendix

This section elaborates further on the DNN models and learning algorithms we used in our WF
attack.

A.1 Stacked Denoising Autoencoder

Autoencoder (AE) is a shallow feedforward neural network designed for learning meaningful data
representations [29]. It is composed of an input layer, one hidden layer and an output layer, as
shown in FigureA.1a. The input layer acts as an encoder that transforms data and passes it to the
hidden layer h = f(x), and the output layer of the same size acts as a decoder that reconstructs
the data back from the hidden layer r = g(h), intending to produce maximally similar values.

(a) Autoencoder (b) SDAE from two autoencoders

Figure A.1: Stacked Denoising Autoencoder

The size of the hidden layer plays a crucial role in the AE’s working algorithm: it defines the
representation of the input used for reconstructing the data. The hidden layer h is constrained to
have fewer neurons than the input x. Then such an undercomplete AE is forced to compress the
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Figure A.2: Convolutional Neural Network.

input and can only output its approximation rather than the identity. In order to reconstruct the
data from a compressed representation with a minimal loss, the network has to prioritize between
properties of the data during compression.

In case of a traffic trace as an input, AE will learn certain combinations and transformations of
the input values that allow to reconstruct the same trace with the highest accuracy. As a result, the
hidden layer will contain the most salient features of the traffic trace. The training is performed by
backpropagating the reconstruction errors expressed via the loss function that has to be optimized
by the network. The loss function L(x, g(f(x))), such as mean squared error, reflects the difference
between the input x and its reconstruction g(f(x)), and reaches its minimum value in case of a
total similarity between the two. We use a mean squared error for this purpose, which measures
the average of the squares of the deviations: L(x, g(f(x))) = 1

N

∑N
i=1(g(f(xi)) − xi)2, where N is

the number of neurons of the input (and the output) layer.

Since the undercomplete AE cannot learn a total identity function but only an approximation,
its training stops once having minimized the loss function, and thus ensures a good learned repre-
sentation of data. The AE, as a building block of our future classifier, has to learn representations
which reflect statistical properties of the whole data distribution beyond the training examples.
This is necessary to achieve a high performance of the model on unseen data, a property of the ma-
chine learning models known as a generalization capability. The AE that performs during training
much better than on traffic unseen before, has overfitted to the training data, and thus shows poor
generalization capabilities.

To ensure generalization, we apply regularization by using dropout, when a randomly chosen
fraction of input values is set to 0 at each training iteration. AE with dropout is a Denoising
Autoencoder (DAE) which is more robust to overfitting [26].

Stacked Denoising Autoencoder is a deep feedforward neural network built from multiple DAEs
by stacking them together, in a manner depicted in Figure A.1b. SDAE stacks the DAEs represen-
tation layers: the hidden layer of the first DAE is used as the input layer of the successive DAE, and
so forth. Chaining several DAEs enables the model to hierarchically extract data from the input to
learn features of different levels of abstraction. We chain 3 DAEs to form a 5-layered SDAE. Deeper
models produce final features of higher abstraction, which are meant to be used for classification
on the concluding layer. The classification layer has one neuron for each possible class, or in our
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case for each website. Output neurons compute the probability of the input instance to belong to a
class. The neuron that produced a maximum probability assigns its label to the training instance.

It was discovered by Hinton et al.[15] that in order to achieve a better performing DNN, it has
to first be pretrained in an unsupervised fashion, that is without using the knowledge of labels
of the training data. This strategy is known as the greedy layer-wise unsupervised pretraining
that initializes the SDAE. This stage is followed by a supervised fine-tuning of the whole model,
that learns to classify the input by backpropagating the classification errors. The loss function
that expresses the errors is a categorical entropy E = − 1

N

∑N
i (pilog2pi), where pi is a returned

probability for the predicted class with N websites in total. A classifier confident of its decisions
gives a high probability for each predicted class which results into a minimized entropy.

A.2 Convolutional Neural Network

A deep network called Convolutional Neural Network (CNN) is another feedforward network trained
with backpropagation similarly to SDAE, but has a different structure, designed for minimal prepro-
cessing [21]. CNN’s main building block is a convolutional layer, which performs a linear convolution
operation instead of a regular matrix multiplication. The learnable parameters of the convolutional
layers are kernels or filters – multidimensional arrays that are convolved with the input data to
create feature maps, as depicted in Figure A.2. The kernel is applied spatially to small regions of the
input, thus enabling sparse connectivity and reducing the actual parameter learning in comparison
to fully-connected layers. The kernel aims to learn an individual part of an underlying feature set,
e.g. the website fingerprint in a traffic trace. The convolution function is followed by a non-linear
activation, typically a rectifier [23]. The rectified feature maps are stacked together along the depth
dimension to produce the output.

The next operation of the CNN is typically a pooling layer that performs a subsampling op-
eration by replacing the output of the convolution layer with a summary statistics of the nearby
outputs. We use a max pooling layer that reports the maximum outputs within regions of the fea-
ture maps. Pooling helps the representation become invariant to minor changes of the input. For
instance, such subsampling allows to find the prominent identifying parts of the website fingerprint
within the traffic trace, despite its slight shifts in location and ignoring the surrounding traffic.

The network can include a whole series of convolution and pooling layers in order to extract more
abstract features. We use two sets of such layers. The resulting feature maps need to be flattened
and concluded by at least one regular fully-connected layer prior to classification. Because of the
risk of overfitting, we apply dropout and limit the amount of learnable parameters of the network
by using only two fully-connected hidden layers. The final layer outputs the predictions.

A.3 Long Short Term Memory

Recurrent neural network (RNN) is a network with feedback connections, which enable it to learn
temporal dependencies [17]. RNN can interpret the input as a sequence, taking into account its
temporal properties.

Long short term memory network (LSTM) [18] shown in Figure A.3a is a special type of a RNN
that accommodates so-called LSTM building block to model long-term memory, which allows the
network to learn longer input sequences.

The LSTM block processes sequences time step by time step, passing the data through its
memory cells, and input, output and forget gates, as depicted in Figure A.3b.
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(a) LSTM (b) LSTM block

Figure A.3: Long Short Term Memory

The memory cell represents the so-called internal state of the network. LSTM is able to remove
or add information to the cell, regulating these operations by gates. Gates are composed of a
sigmoid neural network layer and a pointwise product, and are parameterized by a set of learnable
weights. Gates learn to carefully choose whether to let the information through them in order to
modify the internal state, to forget information or to produce the output when deemed necessary.
The output of an LSTM block is formed by the number of memory units.

LSTM layer’s depth depends on the length of processed sequences: due to the feedback con-
nection, they basically have one layer for every processed time step of a sequence. Such structure
can be obtained by unrolling the loop in Figure A.3a. Classification errors are backpropagated
through many layers ”through time”, which limits the training process: first it significantly slows
down training in compare to the feedforward networks, and secondly, in practice it only allows to
backpropagate up to 100-200 layers.

LSTM layers can be stacked to form deeper networks. The intuition is the same that higher
LSTM layers can capture more abstract concepts. We chain two hidden LSTM layers and form a
4-layered LSTM network (with each layer ”unrolled” to as many layers as there are time steps in
the processed sequence), which allowed to obtain the best performance.
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7. Website Fingerprinting Defenses at the Ap-

plication Layer

7.1 Introduction

Website Fingerprinting (WF) attacks allow a passive local adversary to infer which webpage a
client is viewing by identifying patterns in network traffic that are unique to the webpage. These
attacks are possible even if the client is browsing through anonymity networks such as Tor and the
communication is encrypted [12]. Tor routes a client’s traffic through volunteer relays before con-
necting to the communication’s destination, so that local eavesdroppers cannot link both sender and
receiver of the communication [8]. However, the WF attack, if successful, breaks the unlinkability
property that Tor aims to provide to its users.

Moreover, a 2015 study has shown that .onion sites can be distinguished from regular sites
with more than 90% accuracy [16]. This substantially narrows down the classification space in Tor
and suggests the attack is potentially more effective at identifying .onion sites than regular pages.
Onion services are websites with the .onion domain hosted over Tor, allowing a client to visit a
website without requiring it to publicly announce its IP address. These sites tend to host sensitive
content and may be more interesting for an adversary, turning the WF attack into a major threat
for connecting users. In this chapter, we propose the first set of defenses specifically designed and
evaluated for Tor .onion sites.

WF defenses are often theorized at the network level, and try to disrupt statistical patterns via
inserting dummy messages in to the packet stream [9, 2, 4]. Some defenses try to alter the network
traffic of a webpage to mimic that of another webpage that is not interesting to the attacker [32].
However, a defense at the network level may require substantial changes of Tor or even the TCP
stack, which would make its deployment unrealistic. Furthermore, there is no need to hide patterns
at the network layer because few webpage-identifying features, if any, are introduced by low layers
of the stack (e.g., TCP, IP). In this work, we consider application-layer defenses, arguing that this
approach is more natural for WF defenses and facilitates their development.

Existing WF defenses have been engineered to protect the link between the client and the entry
to the Tor network, assuming this is the only part of the network observable by the adversary. We
propose both WF defenses at the client- and server-side. A server-side defense is more usable as
it does not require any action from the user. More and more, certain types of websites, such as
human rights advocacy websites, have the motivation to provide WF defenses as a service to its
user base, who may be of particular interest to an adversary. For this reason, we believe that, in
contrast to normal websites, .onion site operators not only have the incentive to provide defenses
against WF attacks, but can also achieve a competitive advantage with respect to other .onion

sites by doing so.
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As a real life motivating example, we were contacted by SecureDrop [27], an organization that
provides onion services for the anonymous communication between journalists and whistleblowers.
They are concerned that sources wishing to use their service can be de-anonymized through WF.
As a consequence, they are interested in using a server-side WF defense. We have included a
SecureDrop website in all the datasets used for the evaluation of defenses.

We introduce two variants of a server-side defense operating at the application layer, which
we call Application Layer Padding Concerns Adversaries (ALPaCA). We evaluate it via a live
implementation on the Tor network. We first crawl over a significant fraction of the total Tor .onion
site space, retrieving not only the network level traffic information – as is standard in WF research
– but also the index.html page and HTTP requests and responses. We then analyze the size
distribution for each content type, e.g. PNG, HTML, CSS. Using this information, ALPaCA alters
the index.html of a page to conform to an “average” .onion site page. ALPaCA runs periodically,
changing the page fingerprint on every user request.

Due to the expected slow adoption of server-side WF defenses, client-side defenses must still
be used. We therefore implement a simple client-side WF defense, dubbed Lightweight application-
Layer Masquerading Add-on (LLaMA), that works at the application layer by adding extra delays
to the HTTP requests. These delays alter the order of the requests in a similar way to randomized
pipelining (RP) [23], a WF countermeasure implemented in the Tor browser that has been shown to
fail in several evaluations [5, 31, 14]. Besides delaying HTTP requests, our defense sends redundant
requests to the server. We show most of the protection provided by this defense stems from the
extra requests and not from the randomization of legitimate requests.

7.1.1 Contributions to PANORAMIX

Our contributions are, as a result of a real life demand, the first implementation of a server-side
WF defense and a simple yet effective lightweight client-side defense. With these two approaches
we explore the space of application-layer defenses specifically designed to counter WF in .onion

sites. In addition, we have collected the largest – to the best of our knowledge – dataset of sizes
and types of content hosted by Tor .onion sites. We provide an evaluation of the overhead and
efficacy of our defenses and compare it to some of the most practicable existing WF defenses.

The source code and datasets of both ALPaCA and LLaMA have been made publicly available
on GitHub1. The original code is also available on an .onion site2, which is protected using our
defense.

7.2 Threat Model

As depicted in Figure 7.1, we consider an adversary who has access to the communication
between the client and the entry point to the Tor network, known as entry guard. A wide range
of actors could have access to such communications, ranging from malicious or corrupted relay
operators, who can target all clients connecting to the guards they control; to ASes, ISPs and local
network administrators, who can eavesdrop on Tor clients located within their infrastructure.

The adversary eavesdrops the communication to obtain a trace or sample instance of the en-
crypted network packets. He can observe and record these packets, but he cannot decrypt them.

1http://github.com/camelids/
2http://3tmaadslguc72xc2.onion
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Figure 7.1: A client visits an .onion site over Tor. The attacker eavesdrops the encrypted link
between the Tor client and the entry guard to the Tor network. Between the client and the
destination onion service there is a six-hop Tor circuit that we have omitted to simplify the figure.

Furthermore, we will assume a passive adversary: he cannot remove or modify the packets, nor
drop or add new packets to the stream.

The objective of the adversary is to infer the websites that were visited by the client from the
traffic samples. The adversary can build a template for a number of websites with his own visits
and then match the traffic generated by the client. It has been shown that, for a small set of
websites, such an attacker can achieve high success rates achieving over 90% accuracy [5].

These attacks have however been criticized for making a number of unrealistic assumptions
that favor the adversary [14]. For instance, they assume webpages are static, although some pages
have frequent content updates; the client only visits pages that the attacker has trained on, also
known as the closed-world assumption; and the attacker is able to perfectly parse the fraction of
the continuous stream of traffic corresponding to a specific page download, assuming there is a gap
between one visit and the next one.

In 2015, Kwon et al. showed that an attacker falling within this threat model can effectively
distinguish visits to .onion sites from regular websites [16]. They also revisited the assumptions
for which prior work on WF had been criticized [14] and found that many of these assumptions
hold when considering only .onion sites. In contrast to the open Web, the world of .onion sites is
small and comparable to a closed world, they are also more static than regular websites and their
streams are isolated by domain [16]. As in virtually all prior work on WF, they still assumed the
client visits only home pages, ignoring other pages in the website such as inner pages and logged-in
or personalized pages that are not available to the attacker. In our evaluation, we follow them and
only collect data for the home page of the .onion sites we have crawled.

We assume an adversary is only interested in fingerprinting .onion sites, and already has a
classifier to tell .onion traffic apart from the bulk of client traffic. We focus on defenses that
protect against the WF attack in the “onion world” because it is a more threatening setting than
the one studied in most prior WF work on Tor; visits to .onion sites tend to be more sensitive
than to pages whose IP address is visible to clients. Luo et al. argue that a WF defense must be
implemented at the client-side because web servers have no incentive to offer such a service [19].
However, we believe .onion site operators are aware of the privacy concerns that Tor clients have
and would make the necessary (minor) modifications in the server to implement our defense.

For the design of ALPaCA, we will assume there is no dynamic content. This includes content
generated at the client-side (e.g., AJAX) as well as the server-side (e.g., a PHP script polling a
database). This assumption simplifies the design of the server-side defense: ALPaCA requires the
size of the web resources being loaded and it is hard to estimate the size of dynamic content a
priori.

To assume that no JavaScript will run in the browser is not as unrealistic as it may seem given
the high prevalence of JavaScript in the modern Web. The Tor Browser’s security slider allows
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users to select different levels of security, disabling partially or totally JavaScript. Furthermore,
SecureDrop pages already ask their clients to disable JavaScript to prevent attacks such as cross-
site scripting. It is reasonable to think that clients who protect themselves against WF will first
disable JavaScript to prevent these other attacks.

7.3 Related Work

WF is typically modeled as a supervised learning problem. The attacker collects traffic traces
for a large sample of websites that aims to identify and builds a classifier that outputs a label, with
a certain level of confidence. Since the first WF classifiers were proposed in the late nineties [7], the
attacks have been developed with improved classification models to defeat a wide variety of privacy
enhancing technologies such as encrypting web proxies [28, 13], SSH tunnels[17], VPNs, and even
anonymity systems such as Tor and JAP [12].

7.3.1 Attacks

The latest attacks against Tor achieve more than 90% accuracy in a closed-world of websites, where
the attacker is assumed to have samples for all the websites a target user may visit [5, 31, 30, 11, 20].
This assumption is unrealistically advantageous for the attacker [14] and a recent study has shown
that the attack does not scale to large open-worlds [20]. However, the .onion space is significantly
smaller than the Web and may be feasible for an adversary to train on a substantial fraction of all
.onion websites. Furthermore, the closed-world evaluation provides a lower bound for the efficacy
of the defense. For a complete evaluation of the performance of our defenses, in this chapter we
will provide results for both open and closed-world scenarios.

We have selected the most relevant attacks in the literature to evaluate our defenses:

k-NN [30]: Wang et al. proposed a feature set of more than 3,000 traffic features and defined
an adaptive distance that gives more weight to those features that provide more information. To
classify a new instance, the attack takes the label of the k Nearest Neighbors (k-NN) and only
makes a guess if all the neighbors agree, minimizing the number of false positives.

CUMUL [20]: The features of this attack are based on the cumulative sums of packet sizes. The
authors interpolated a fixed number of points from this cumulative sum to build the feature vectors
that they use to feed a Support Vector Machine (SVM).

k-FP [11]: Hayes and Danezis used Random Forests (RF) to transform, based on the leafs of the
trees, an initial feature set to another feature set that encodes the similarity of an instance with
respect to its neighbors. Then, they also used a k-NN for final classification.

7.3.2 Defenses

Most WF defenses in the literature are based on link-padding. The traffic morphing approach
attempts to transform the traffic of a page to resemble that of another page [32, 18, 21], or to
generalize groups of traffic traces in to anonymity sets [30, 3]. The main downside of this type of
defenses is that they require a large database of traffic traces that would be costly to maintain [14].

Link-padding aims to conceal patterns in web traffic by adding varying amounts of dummy
messages and delays in flows. Link-padding has been used for traffic morphing to cause confusion
in the classifier by disguising the target page fingerprint as that of another page [32]. However, as
Dyer et al. note [9], traffic morphing techniques produce high bandwidth overheads as some packets
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must be buffered for a long period. The strategy we follow in ALPaCA is different from traffic
morphing in that page contents are not disguised as other pages’, but rather the content is modified
to become less fingerprintable. The intuition behind ALPaCA is to make each resource look like an
“average” resource, according to the distribution of resources in the world of pages. This approach
reduces the overheads with respect to morphing, as resizing an object to an average size will tend
to require less amount of padding than to an object of a specific page. We have experimented
with morphing the contents in a page to make it look like another page. This can be seen as the
application-level counterpart of traffic morphing and the results can be found in chapter 7.7.

In 2012, Dyer et al. presented BuFLO [9], a defense based on constant-rate link-padding. Al-
though BuFLO is a proof-of-concept defense and has high bandwidth overheads, other defenses
have been developed from the original BuFLO design. Tamaraw [4] and CS-BuFLO [2] optimize
BuFLO ’s bandwidth and latency overheads to make its deployment feasible. Both of these defenses
address the issue of padding the page’s tail. BuFLO padded all pages up to a certain maximum
number of bytes producing the high bandwidth overheads. CS-BuFLO and Tamaraw proposed a
strategy to pad pages to multiples of a certain parameter, which groups pages in anonymity sets by
size and significantly reduces the bandwidth overhead over BuFLO. We follow a similar strategy
for one of the modes of ALPaCA.

Recently, a lightweight defense based on Adaptive Padding has also been proposed to counter
WF [15]. In order to offer low latency overheads, this defense only pads time gaps in traffic that
are statistically unlikely to happen. To empirically determine the likelihood of a gap they sampled
a large number of pages over Tor and built a distribution of inter-arrival times used to sample the
delays for the dummy messages.

Our main concern with these designs is that padding is applied at the network layer. There
is no need to apply the defense at the network layer because layers below HTTP do not carry
identifying information about the webpage. One could argue that latency and bandwidth identify
the web server. However, these features vary depending on network conditions and are shared by
all pages hosted in the same server or behind the same CDN. Moreover, the implementation of such
defenses may require modifications in the Tor protocol and even the TCP stack, as they generate
Tor cells that are sent over Tor’s TLS connections.

Application layer defenses act directly on the objects that are fingerprinted at the network layer.
The padding is also added directly to these objects. As opposed to network-layer defenses that
must model legitimate traffic to generate padding, application-layer defenses inject the padding
inside the encrypted payload and is, consequently, already indistinguishable from legitimate traffic
at the network layer. In addition, defenses at the application layer do not require modifications in
the source code of the Tor protocol, which make them more suitable for deployment.

In this chapter we present and explore two novel approaches for application layer defenses at
both client and server-side. In the rest of this section we describe the state of the art on application-
layer defenses.

Server-side

To the best of our knowledge, there is only a prototype of a server-side defense that was drafted
by Chen et al. and it was designed for a slightly different although related problem [6]. They
studied WF in the context of SSL web applications, where the attacker is not trying to fingerprint
websites, but specific pages within one single website. Their main contribution was to show that a
local passive adversary can identify fine-grained user interactions within the website. The authors
devise a defense that requires modifications at both client and server sides, which allows padding
to be added to individual HTTP requests and responses.
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Client-side

There are only two application-layer defenses proposed in the WF literature: HTTPOS [19] and
Randomized Pipelining (RP) [23]. Luo et al. proposed HTTPOS as a client-side defense arguing
that server-side or hybrid defenses would see little adoption in the wild due to lack of incentives [19].
In that study, the authors pinpoint a number of high-level techniques that alter the traffic features
exploited by WF attacks. For instance, they modify the HTTP headers and inject fake HTTP
requests to modify the length of web object sizes.

RP is the only WF countermeasure that is currently implemented in the Tor browser. It
operates by batching together a single clients requests in the HTTP pipeline to randomize their
order before being sent to the server. Several studies have applied WF attacks on data collected
with a RP-enabled Tor Browser and all of them have shown that the defense was not effective at
decreasing the accuracy of the WF attack in the closed world [5, 31, 14]. The reason why RP does
not work is not clear and has not been investigated in these evaluations.

7.4 Defenses

WF attacks are possible because different webpages serve different content. High level features such
as the number of requests the browser makes to download a page, the order of these requests and the
size of each response, induce distinctive low level features observed in the network traffic [9, 21].
For instance, the number of requests sent by the browser corresponds to the number of objects
embedded in the page such as images, scripts, stylesheets, and so on.

Most existing defenses propose to add spurious network packets to the stream to hide these
low-level features [9, 2, 4], However, effectively concealing these features at network level poses
technical challenges, as the operation of underlying protocols, i.e. TLS, TCP, IP, obfuscates the
relation between low and high level features. For this reason, we believe adding the padding to the
actual contents of the page is a more natural strategy to hide traffic features than sending dummy
packets: if the defense successfully conceals high-level features, the low-level features will follow.

In this section, we describe in detail the strategies that we propose at the application layer at
both server (ALPaCA) and client side (LLaMA) to mitigate WF attacks.

7.4.1 ALPaCA

ALPaCA is a server-side defense that pads the contents of a webpage and creates new content
with the objective of concealing distinctive features at the network level. We demonstrate that this
strategy is not only effective, but also practical to deploy. We have implemented and evaluated
ALPaCA as a script that periodically runs on a server hosting an .onion site.

We first show that it is possible to pad the most popular types of webpage objects (e.g., images,
HTML) to a desired size, without altering how they look to a user. We then propose two variants
of server-side defenses, referred to as P-ALPaCA and D-ALPaCA. At a high level, the defenses
choose, for a page to morph, a suitable list of sizes T , that we call target. A target specifies the
number and size of the objects of the morphed page; P-ALPaCA and D-ALPaCA differ in how they
select such a target. Then, the objects of the original page are padded to match the sizes defined
in T . If T contains more elements than the page’s objects, then new objects (“padding objects”)
are created and referenced from the morphed HTML page (Algorithm 1). Figure 7.2 gives a high
level overview of this process.
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Padding an object to a target size

This section describes how we can pad most types of objects. It is important to note that an
adversary looking at encrypted packets cannot: i) distinguish the type of objects that are being
downloaded, ii) infer how much padding was added to such objects or whether they were padded
at all. By padding an object directly on the server, we can control how large it will look like at the
network level. While this control is not complete (because of compression in the HTTP protocol),
experiments show that this discrepancy does not largely affect on our defenses.

Table 7.1 shows the types of objects that we can pad up to a desired size, and their frequency
within the .onion site world. To pad text objects (e.g., HTML and CCS) we can add the desired
amount of random data into a comment. To pad binary objects (e.g., images), it is normally
sufficient to append random data to the end of the file; in fact, the file structure allows programs
to recognize the end of the file even after this operation.

We verified that binary files would not be corrupted after appending random bytes to them as
follows. We used ImageMagick’s identify program3 for verifying the validity of PNG, ICO, JPEG,
GIF, and BMP files after morphing. The program only raised a warning “length and filesize do not
match” for the BMP file; the image was, nevertheless, unaffected, as it could be opened without
any errors. We used mp3val4 to check MP3 files; the program returned a warning “Garbage at the
end of the file”, but the file was not corrupted, and it could be played. We used ffmpeg5 to verify
AVI files; the program did not return any errors or warnings.

It is thus possible to morph the most common object types. We suspect that many other
types of object can be morphed analogously, by appending random bytes or by inserting data in
comments or unused sections of the type structure. We remark, however, that in experiments we
did not remove content we could not morph from webpages.

Morphing a page to a target T

We introduce Algorithm 1, which morphs the contents of a page to match the sizes defined by a
target T . The target is selected differently by the two versions of ALPaCA, as presented later, and
it defines the size of the objects that the morphed page should have.

The algorithm keeps two lists: M , containing the morphed objects, and P , which keeps track
of the sizes in T that have not been used for moprhing an object; both lists M and P are initially
empty. The algorithm sequentially considers the objects of the original page from the smallest to
the largest; for object o, it seeks the smallest size t ∈ T which o can be padded (i.e., for which
size(o) ≤ t). Once it has found such a t, it removes all the elements of T smaller than t, and pads o
to size t; the elements removed from T at this stage (except t) are put into P . After all the original
objects have been morphed, the sizes remaining in T are appended to P . New “padding objects”
(objects containing random bytes) are generated according to the sizes in P . We make sure that
padding objects will be downloaded by a browser, but will not be shown, by inserting a reference to
them in the HTML page as if they were hidden images6. Finally, the HTML page itself is padded
to a target size by the defense.

3http://www.imagemagick.org/
4http://mp3val.sourceforge.net/
5https://ffmpeg.org/
6To add an invisible object called “rnd.png” to an HTML page we insert <img src="rnd.png"

style="visibility:hidden">’. The browser will consider this a PNG file and it will download it, but it will
not attempt to show it. The file, thus, needs not to respect the PNG format, and it can just contain random bytes.
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Content
type

Morphing Frequency

PNG, ICO,
JPG, GIF,
BMP

Append random bytes
to the file.

51%

HTML Insert random data
within a comment
“¡!–”, “–¿”.

13%

CSS Insert random data
within a comment “/*”
“*/”.

12%

JS Insert random data
within a comment “/*”
“*/”.

13%

MP3 Append random bytes
to the file.

N.O.

AVI Append random bytes
to the file.

N.O.

Table 7.1: Padding the most frequent objects in .onion sites to a desired size. “N.O.” stands for
“not observed”. We assume JavaScript is disabled, although it is possible to morph JS files as
shown.

P-ALPaCA

P-ALPaCA (Probabilistic-ALPaCA) generates a target by randomly sampling from a distribution
that represents real-world .onion sites. Specifically, it has access to three probability distributions
Dn, Dh and Ds, defined respectively on the number of objects a page has, the size of the HTML
page and the size of each of its objects. The defense samples a target T using these distributions,
and then morphs the original page as shown in Algorithm 1.

We estimated Dn, Dh and Ds using Kernel Density Estimation (KDE) from 5, 295 unique
.onion websites we crawled. Details about crawling and analysis of these websites are in Section 7.5.
In Table 7.7 we show the resulting distributions Dn, Dh and Ds, and provide details on how we
used KDE to estimate them.

The defense first samples the number of objects n for the morphed page according to Dn. Then,
it samples the size of the morphed HTML from Dh, and n sizes from Ds which constitute a target T .
Finally, it attempts to morph the original page to T (Algorithm 1); if morphing fails, the procedure
is repeated. The algorithm is shown in Algorithm 2.

Because sampling from the distributions can (with low probability) produce very large targets
T , we introduced a parameter max bandwidth to P-ALPaCA. Before morphing, the defense checks
that the total page size is smaller than or equal to this parameter:

∑
t∈T t ≤ max bandwidth. If

not, the sampling procedure is repeated.

A simple alternative to sampling from a distribution that represents the present state of the
.onion world, is to sample the number and size of padding objects uniformly at random. We expect
that this alternative approach would also set a maximum bandwidth parameter, which would serve
as the upper bound of the size of the morphed page. One could imagine that a naive implementation
of this alternative approach which sets a high maximum would cause extremely high bandwidth
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Algorithm 1 Pad a list of objects to a target

Input: O: list of original objects
T : list of target sizes

Output: M : list of morphed objects

M ← [ ]
P ← [ ]
. Morph the original objects.
while |M | < |O| do

o← arg min
o∈O

size(o)

. Remove the target sizes smaller than size(o).
while min(T ) < size(o) do

Remove min(T ) from T
Append min(T ) to P

end while
if T is empty then

. Cannot morph O to T
fail

end if
. Note: the current min(T ) is larger than size(o)
t← min(T )
m← o padded to size t
Append m to M

end while
. Add padding objects.
Merge P and T into P
for p in P do

m← New padding object of size p
Append m to M

end for

overheads. However, reducing this maximum parameter would constrain the morphed page to
look like a small subsection of the onion world, removing altogether the possibility that the page
is morphed to resemble a large .onion site. Our approach allows a large maximum bandwidth
parameter to bet set while ensuring bandwidth overheads will be low. With our approach, the
probability that a small page, say A.onion, is morphed to the size of a large .onion site, say
B.onion, directly corresponds to the ratio of the number of .onion sites within the .onion world
that are of an equal size to B.onion. Meaning a small .onion site can have the entire .onion world
as an anonymity set while ensuring a low bandwidth overhead.

D-ALPaCA

We propose a second server-side defense, D-ALPaCA (Deterministic-ALPaCA), which decides de-
terministically by how much a page’s objects should be padded. The defense is inspired by Tama-
raw [4], which pads the number of packets in a network trace to a multiple of a padding parameter
L. D-ALPaCA has the advantage of introducing less overheads than P-ALPaCA, but experimental
results suggest this defense is slightly less effective against a WF adversary.
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Algorithm 2 P-ALPaCA

Input: O: list of original objects
Dn: distribution over the number of objects
Dh: distribution over the size of HTML pages
Ds: distribution over the size of objects
html size: size of the original HTML page
max bandwidth: maximum page size

. We use x←$ D to indicate that x is sampled from distribution D
morphed← False
while not morphed do

T ← [ ]
h←$ Dh

if h < html size then
continue

end if
n←$ Dn

for i in 1..n do
s←$ Ds

Append s to T
end for
if sum(T ) < max bandwidth then

Try morphing O to target T (Algorithm 1)
If successful, morphed← True

end if
end while
Pad the HTML page to size h

D-ALPaCA (Algorithm 3) accepts as input three parameters: λ, σ and max s, where max s
should be a multiple of σ. It pads the number of objects of a page to the next multiple of λ, and the
size of each object to the next multiple of σ. Then, if the target number of objects is larger than
the original number of objects, it creates padding objects of size sampled uniformly at random from
{σ, 2σ, ...,max s}. Experiments in Section 7.6 evaluate how different sets of parameters influence
security and overheads.

Practicality of the defenses

Both P-ALPaCA and D-ALPaCA are practical to use in real-world applications. In fact, they only
require a script to morph the contents of a page periodically. This can be done by setting up a
cron job running the defense’s code, which we release.

Since it is preferable to morph a page after each client’s visit, and it may be difficult for the server
operator to decide how frequently they should run the cron job, we propose a more sophisticated
(and flexible) alternative. The defense should preemptively morph the web page many times, and
place the morphed pages within distinct directories on the server. Then, the server should be
configured to redirect every new request to a different directory. Once the content of a directory
has been loaded, the directory is removed, and a new one can be created.
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Figure 7.2: Graphical representation of the server side defenses. Server side defenses P-ALPaCA
and D-ALPaCA first select a target for the original web page. Then, they pad the contents of the
original page as defined by the target (Algorithm 1), and generate new padding objects if needed.
The original and morphed page will look identical to a user.

Third-party content

A limitation of ALPaCA is that it can only pad resources hosted in the web server, thus content
linked from third parties cannot be protected. In the evaluation of the defense, we have intentionally
omitted all third-party content because only two out of the 100 pages in our dataset had resources
from third parties.

To understand the impact of this assumption on a larger scale, we have analyzed the prevalence
of third-party resources in a crawl of 25K .onion sites: only 20% of these sites create requests
to third-party domains. Furthermore, for half the pages with third-party content, the third-party
requests account for less than 40% of total requests observed within a webpage. However, we found
a handful of sites that had more than 90% of their content hosted in third parties. They seem
to act as proxies to existing websites. With such a high percentage of unprotected content, the
defense is most likely to fail at providing protection against website fingerprinting.

Since the average cost in terms of disk space is 5MB, a possible solution for sites with a large
proportion of third-party content would be to cache the third-party resources in the server running
the defense. We strongly discourage this approach as if not implemented properly, the .onion site,
attempting to keep these resources updated, may become vulnerable to timing correlations attacks
by the third parties serving the content. In fact, we recommend .onion site operators minimize
the amount of third-party content they embed to their pages and only cache static content that
does not require periodic updates.

7.4.2 LLaMA

LLaMA is inspired by Randomized Pipelining (RP) [23]. RP modifies the implementation of HTTP
pipelining in Firefox to randomize the order of the HTTP requests queued in the pipeline. However,
RP has been shown to fail at thwarting WF attacks in several evaluations [5, 31, 14].

LLaMA is implemented as an add-on for the Tor browser that follows a similar strategy to RP:
it alters the order in which HTTP requests are sent. The main advantage of a WF defense as a
browser add-on is ease of deployment: it does not require modifications to the Tor source code.
Thus, a user can install the add-on to enable the protection offered by the defense independently
or, if the Tor Project decides to, it could be shipped with the Tor Browser Bundle.

RP exposes a debug flag that logs extra information about its use of the HTTP pipeline [22].
A dataset collected with this flag enabled, visiting the same webpages that the aforementioned
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Algorithm 3 D-ALPaCA

Input: O: list of original objects
σ: size parameter
λ: number of objects parameter
html size: size of the original HTML page
max s: maximum size of a padding object (should be a multiple of σ)

. We use x←$ S to indicate that x is sampled uniformly at random from a set S
T ← [ ]
h← next multiple of σ greater or equal to html size
for o in O do

s← next multiple of σ greater or equal to size(o)
Append s to T

end for
n← next multiple of λ greater or equal to size(O)
while size(T ) < n do

s←$ {σ, 2σ, ...,max s}
Append s to T

end while
Morph O to target T (Algorithm 1)
Pad the HTML page to size h

evaluations did, provided evidence of a suboptimal usage of the HTTP pipeline by RP [24]. Either
the design of those pages or the low adoption of HTTP pipelining on the servers of these pages
or CDNs in between may account for the low performance of RP [1]. Since our defense does not
depend on HTTP pipelining, it allows us to test whether these hypotheses hold or it is actually the
randomization strategy which is flawed.

Delaying requests. In order to randomize the order of the HTTP requests, the add-on intercepts
all requests generated during a visit to a website and adds a different random delay to each one
(see Figure 7.3). We use the statistics extracted from Section 7.5.2 to set the distribution of delays
for the requests. We take the median page load time in our crawl and set a uniform distribution
from zero to half the median load time. As a result, on average, each request will be delayed within
a window of half the page load time. In the worst case, this approach will introduce 50% latency
overhead if the last request is delayed by the maximum time in the distribution.

Extra requests. As shown in Figure 7.3, every time a request is sent or a response is received,
the extension can be configured to send an extra request. It tosses a coin to decide whether to
make an additional HTTP request or not. These fake HTTP requests are sent to a web server that
serves custom-sized resources: a parameter in the URL indicates the size of the resource that will
be sent in the response body. This allows us to fake random responses from the client-side. Tor
isolates streams in different circuits per domain, since such fake requests are made to a different
domain they will be sent through a different circuit. This should not be a problem because the
attacker cannot distinguish them from legitimate third-party requests. However, as we discuss in
the following section, third-party content in .onion sites has low prevalence. In addition, this
approach requires a trusted server that can be queried from the add-ons. To avoid these issues,
the extension implements an alternative method to generate extra responses: it keeps a hash table
with domains as keys and lists of request URLs sent to that domain during a browser session as
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Figure 7.3: Graphical representation of the LLaMA’s operation. δ is the delay added to C2. C
′
1, in

bold, requests the same resource as C1.

values. To generate a new request, it uniformly samples a URL from the list corresponding to the
current first-party domain and sends a request to that URL.

To change the size of legitimate requests we would require cooperation of the server. We
acknowledge that previous defenses have proposed this approach [6], but our focus for this defense
is to not require any change at the server-side.

7.5 Methodology

In this section we describe the methodology that we followed to collect the data and evaluate
the defenses. This data was also used to create the probability distribution used by P-ALPaCA.

7.5.1 Data collection

For the collection of the dataset we used the tor-browser-crawler7, a web crawler that provides
a driver for the Tor Browser, allowing the automation of web page visits in conditions similar to
those of regular Tor users. We added support for the Tor Browser Bundle 5.5.5, the latest version
at the time of our crawls (March 2016) and extended the crawler to intercept all HTTP requests
and responses for future inspection. The crawler logs the size and the URL for each HTTP request
and response. The crawler also allows to modify browser preferences. We used this feature to
disable JavaScript and RP when needed.

We crawled a list of .onion sites obtained from Ahmia8, the most popular search engine for
onion services. Ahmia maintains a blacklist of illegal .onion sites and thus are excluded from our
crawls. The crawl consisted of 25, 000 .onion instances, after removing time-outs and failed loads,
we captured 18, 261 instances of an .onion site load from 5, 295 unique addresses. This dataset
serves as both the basis for which we conduct WF attack experiments with our defense in place,
as a source of information when inferring the distribution of objects that the server-side defense
should conform to, and as a source of load time statistics for which the client-side defense decides
when to inject additional requests.

7.5.2 Data analysis

7 https://github.com/webfp/tor-browser-crawler
8https://ahmia.fi
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From the 18, 261 instances, a total of 177, 376 HTTP responses and 7, 095 HTTP requests were
captured. The average amount of uploaded data per .onion site was 256B, while the median
amount of uploaded data per .onion site was 158B. The average amount of downloaded data per
.onion site was 608KB, while the median amount of downloaded data per .onion site was 45KB.
The average size of one response was 55KB; the average size of a request was 87B. Clearly the
amount of downloaded data surpasses the amount of uploaded data as clients are simply issuing a
HTTP request for objects within the server.

The average number of requests to an .onion site was 3, while the average number of responses
was 11.
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Figure 7.4: CDF of the HTTP response size in the 25K crawl (in log scale).
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Figure 7.5: CDF of the HTTP request size in the 25K crawl.

The average size of an .onion site then is a little over 608KB. In 2015, the average standard
website was just over 2MB, and the average number of objects was over 100 [25, 29], much larger
than the average size and number of objects of an .onion site. Clearly there is a distinct difference
between standard websites and .onion sites; standard websites are much larger and contain a
greater number of objects within the HTML index page, we note however that the space of all
standard websites is orders of magnitude greater than the space of all .onion sites and so contains
much greater variance in both size and number of objects.
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From Figure 7.5 we see that nearly all HTTP requests were less than 100 bytes, combining this
with the knowledge that there are on average just three HTTP requests to download the .onion

site, we can infer it is most common to download the entire site with just one or two requests after
the initial HTTP GET request. From Figure 7.4, 99% of HTTP responses are less than 1MB in
length, and nearly 70% are less than 10KB.

101 103 105 107

Requests

Responses

Bytes

Figure 7.6: Boxplot of the HTTP request and response sizes for 25K .onion sites.

From Figure 7.6 we see that the majority of requests are between 70 − 100B, with relatively
few outliers. There is a large skew between the majority of responses of size less than a few KB’s
and a comparatively (to the number of request outliers) large number of response outliers that are
orders of magnitude larger in size than the average response size.

7.6 Evaluation

To assess the effectiveness of our defenses against WF attacks, we have crawled the same set of
pages with and without the defenses in place. Comparing the accuracy of state-of-the-art attacks
on both datasets provides an estimate of the protection offered by the defenses.

7.6.1 P-ALPaCA & D-ALPaCA Evaluation

We evaluate the server-side defenses when a server does not wish to transform its network traffic
to look like another .onion site but wishes to morph their traffic so it resembles an “average” .onion

site. We use results from Section 7.5.2 to extract information such as the average number of objects
and the average size of these objects across all .onion sites. A participating server can then use
such information to modify their index.html page, resulting in an .onion site resembling, at the
network layer, many different .onion sites rather than a specific targeted site.

The object distributions statistics may change over time and require periodic updates. However,
to determine whether they change and how often is out of the scope of this chapter and leave it for
future research. Such an update mechanism could be served by a trusted entity in the Tor network
(e.g., a directory authority) that supplies .onion sites with this information.

In addition to transforming the network traffic of an .onion site to resemble many different
“average” .onion sites rather than a targeted site, this method allows the server to control the
bandwidth overheads at a more fine grained level, since the server can decide the amount and size
of extra objects placed in the index.html page.

The server also has control over how often their site is morphed. The frequency of morphing
depends on the estimation of how quickly an adversary can mount an attack. If an adversary,
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Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

P-ALPaCA 52.6 6.09 86.2 326

D-ALPaCA (2, 500, 5000) 66.3 6.63 3.66 182

D-ALPaCA (2, 5000, 5000) 56.1 6.22 9.84 193

D-ALPaCA (5, 2500, 5000) 61.7 6.44 15.1 202

D-ALPaCA (10, 5000, 5000) 41.7 5.65 44 254

Table 7.2: P-ALPaCA & D-ALPaCA latency and bandwidth overheads.

can train on network traffic from the server and monitor during a period where the site remains
unchanged, the defense will not be of any use. However, the time to train and launch an attack
on a number of .onion sites will likely be in the order of hours not minutes9, as long as a server
morphs the site in a shorter period than this, the training data the attacker gathers will be of little
use.

To confirm this assertion, we collected 40 network traffic loads, which we call an instance,
for each site of 100 .onion sites. We chose 100 .onion sites that resembled the average size of
an .onion site10, in terms of total page size and number of objects. We also collected 40 P-
ALPaCA morphed instances for each of the .onion sites, such that each instance is the result of
a new morphing process11 . We then check whether an adversary, training on different morphed
versions of an .onion site, can still correctly determine the .onion site of origin.

More specifically, for each of the 100 .onion sites, we collect 40 instances. Resulting in 4000
overall traces. We then apply our server-side defense and re-visit the newly defended sites, resulting
in another 4000 traces. We then apply, separately, WF attacks to both undefended and defended
.onion sites, training on 60% of traces and testing on the remaining 40%. We consider the defense
successful if the WF attack accuracy on the defended .onion sites is dramatically lower than attack
accuracy on the undefended .onion sites.

To explore the parameter space, we also evaluated D-ALPaCA, under four different parameter
choices. We collected 20 instances for the same 100 .onion sites and compared attack accuracy
against both the undefended and P-ALPaCA defended .onion sites. The parameter choices were:
λ - the defended page will have a multiple of λ objects, σ - each of the defended page’s objects will
have a size which is multiple of σ, max s - when generating new padding objects, sample uniformly
within the set [σ, 2*σ, 3*σ, ..., max s]. Specifically, we chose the following parameter values for
(λ, σ,max s): (2, 500, 5000), (2, 5000, 5000), (5, 2500, 5000), (10, 5000, 5000).

User Experience: in Table 7.2, we see that average latencies are approximately 40-60% greater
in the protected traces than in the unprotected ones. In seconds, the extra time that the user

9For example, we used a total of 100 .onion sites in experiments, visiting each .onion sites 40 times. We trained
on 60% of data. The average page load time was around 4 seconds. Therefore an attacker, using one machine for
crawling and gathering training data, would be able to initiate an attack after 9600 seconds. However, we note an
attacker can parallelize this process for faster attacks.

10Via Section 7.5.
11As proposed in Section 7.4.1, the .onion site is differently morphed upon every client visit.
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will spend loading the pages is between two and three seconds. We also measured the times to
load the original resources in the protected traces with respect to loading all content, since serving
extra padding resources once all the original content is sent does not impact on user experience.
We call the time between the first request to the last legitimate request UX-time. However, the
average difference between UX-time and the time to load all resources in a protected page is less
than 200ms. We notice that the randomization of RP often sends original requests at the end of
the transmission which explains the mild difference between UX-time and total page load time.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

P-ALPaCA 0.2 9.5 15.6

D-ALPaCA (2, 500, 5000) 9.5 22.7 27.0

D-ALPaCA (2, 5000, 5000) 12.5 34.4 40.0

D-ALPaCA (5, 2500, 5000) 5.8 22.3 30

D-ALPaCA (10, 5000, 5000) 7.2 22.9 33.0

Decoy [21] 4.9 11.2 X

Tamaraw [4] 6.8 14.0 X

BuFLO [9] 5.3 13.3 X

Table 7.3: Closed world classification for .onion sites morphed via P-ALPaCA and D-ALPaCA,
with other defenses added for comparison. CUMUL depends on packet lengths and so some defenses
that only operate on packet time information cannot be applied.

Closed World classification: we performed a closed world WF attack on P-ALPaCA defended,
D-ALPaCA defended and undefended .onion sites. If our server-side defenses are successful, de-
fended .onion sites should, at the network level, look similar to one another and result in a low
classification accuracy. We use CUMUL [20], k-FP [11] k-NN [30] for evaluation12. The number of
neighbours used for classification is fixed at two.

7.3 shows the closed-world classification results of undefended .onion sites against .onion

sites with each instance uniquely defended using P-ALPaCA or D-ALPaCA. WF attacks are in-
effective under both defenses, and in fact P-ALPaCA improves upon Tamaraw and BuFLO. D-
ALPaCA does slightly worse than the P-ALPaCA in terms of defending .onion sites, but as can
be seen from Table 7.2, has real advantages in terms of limiting bandwidth overheads. For example,
D-ALPaCA with parameters (2, 500, 5000), reduced k-FP accuracy from 69.6% to 22.7%, compared
to the P-ALPaCA which reduced attack accuracy to 10%. But, D-ALPaCA (2, 500, 5000) required
23.6 times less bandwidth than P-ALPaCA to achieve these results. A server operator wishing to
provide a defense to its clients while limiting the increase in bandwidth may then consider this a
worthwhile trade-off and choose to use D-ALPaCA over P-ALPaCA.

Open World classification: in addition to closed world experiments, we evaluated the server-
side defenses in the open world setting, where we include network traffic instances of .onion sites
that are not of interest to the attacker. We observe how the classification accuracy is affected

12We use Tobias Pulls’ implementation of the k-NN website fingerprinting attack [26].
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k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 37.0 1.0 62.1 0.8 49.7 5.4

P-ALPaCA 0.4 0.2 3.6 0.2 1.1 1.3

D-ALPaCA (2, 500, 5000) 4.5 0.2 12.0 0.4 21.4 1.4

D-ALPaCA (2, 5000, 5000) 7.5 0.4 12.6 0.4 28.8 1.2

D-ALPaCA (5, 2500, 5000) 6.0 0.3 12.7 0.3 18.7 1.3

D-ALPaCA (10, 5000, 5000) 3.4 0.3 13.3 0.3 27.3 1.0

Table 7.4: Open world classification for .onion sites morphed P-ALPaCA and D-ALPaCA.

in this setting, which is intended to reflect a more realistic attack. We use 5, 259 unique .onion

sites, from Section 7.5.2, as background traffic instances13 and set the number of neighbours used
for classification at two. Note that CUMUL only does binary classification in the open world,
classifying as either a background instance or a foreground instance of interest, whereas k-FP and
k-NN attempt to classify an instance to the correct .onion site if it is flagged as a non-background
instance. In order to compare the results of the attacks in the open-world, we have used the
feature vectors of CUMUL while applying the k-FP classification process. To make sure that the
classification model does not affect the accuracy of the attack, we evaluated the CUMUL features
with k-FP in a closed-world and achieved a similar accuracy to SVM.

As we can see from Table 7.4 there is a dramatic decrease in attack accuracy when both P-
ALPaCA and D-ALPaCA are used, showing that if a server morphs their site at a higher rate than
the adversary can gather training data, the site will be almost perfectly concealed.

D-ALPaCA parameter choices: 7.3 and 7.4 show there is no notable difference in attack
accuracy when changing parameters. However, as expected, smaller parameter choices led to smaller
bandwidth overheads.

7.6.2 LLaMA Evaluation

We have crawled the same list of .onion sites as in the evaluation of ALPaCA, under four
different conditions:

JS enabled: we collected our data with no defense installed and JavaScript enabled, the default
setting in the Tor Browser.

JS disabled: we repeated the same crawl as with JS enabled but disabling JavaScript in the Tor
Browser. We keep JS disabled for the rest of our crawls.

RP with delays: we collected data with the defense only delaying requests, altering the order of
the requests as described in Section 7.4.

Extra requests: we crawled the same data with the defense adding delays and extra requests as
described in the previous section.

13For k-FP, we train on 1,000 of the 5, 259 background traces and for each .onion site we train on 50-75% of
instances. Whereas k-NN uses Leave-one-out cross-validation on the entire dataset.
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We note that we have disabled RP in the Tor Browser for all the crawls above by disabling the
browser preference network.http.pipelining.

In Table 7.5, we show the results for the three classifiers in the closed world of 100 onion sites.
We do not observe much difference in accuracy between JavaScript enabled and disabled. This
shows that our assumption of no dynamic content holds for the list of onion sites used in our
evaluation.

k-NN k-FP CUMUL
(%) (%) (%)

JS enabled 64.0 55.8 52.4

JS disabled 60.8 53.4 52.7

RP with delays 46.8 47.9 49.6

Extra requests 31.5 36.0 34.8

Table 7.5: Closed world classification for .onion sites under different countermeasures.

When the defense only adds delays to requests, the accuracy of the classifiers decreases 10% in
the k-NN classifier and has limited effect on k-FP and CUMUL. The mild impact on the accuracy of
the classifier may imply that the hypothesis that RP does not work because servers do not support
HTTP pipelining does not hold, suggesting that the request randomization strategy is flawed, as
previous evaluations have argued [5, 31].

We also evaluated the scenario in which the countermeasure, besides adding delays, repeats
previous HTTP requests. We observe a significant decrease in accuracy to almost half the accuracy
obtained in the unprotected case for the k-NN classifier.

In Table 7.6, we show the overheads of LLaMA for its two different modes. We see that overheads
are around 10%. Even though the protection provided by the defense is considerably lower than
the server-side defense or other defenses in the literature, its simplicity and the small overhead that
it introduces makes it a good candidate for a WF countermeasure.

Latency Volume

% Avg. (s) % Avg. (KB)

JS disabled − 5.01 − 126

RP with delays 8.4 5.42 X X

Extra requests 9.8 5.49 7.14 135

Table 7.6: Latency and bandwidth overheads of the client-side defense in the closed world.

7.7 Discussion and Future Work

Both the ALPaCA and LLaMA have performed at least as well as state-of-the-art defenses,
showing that application layer WF defenses do indeed protect against attacks. Next we discuss
potential avenues for future research.
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Ease of Deployment. We argue that application layer defenses are simpler to implement than
previously proposed approaches as they require no modifications to existing protocols or partici-
pation from a relay in the circuit. The only expensive part of ALPaCA comes in the form of the
gathering of statistics for the probabilistic based morphing approach. However, we suggest this
cost can be amortized over all participating servers by allowing a centralized entity to collect this
information, such as is done by directory authorities now to collect Tor relay descriptors. Future
research could determine how often these statistics must be updated. Implementation of the client-
side defense is simple, as we developed it as a browser add-on. This could be made available to Tor
clients either by direct integration in to the Tor browser bundle, or through an add-on store.

Rate of Adoption. Initially, we expect relatively few .onion sites to implement server-side
defenses. Over time if a significant number of .onion sites adopt ALPaCA, it is possible that a
large fraction of sites will morph their page to resemble one another. In turn, this will create stable
anonymity sets of .onion sites that have the same network traffic patterns. Finding the rate and
size of these anonymity sets is left for future work.

Clearly, smaller .onion sites are easier to protect than larger ones, as it is impossible to morph
a larger site to resemble network traffic patterns of a smaller site. Thus, we expect larger .onion

sites to be more difficult to protect over time. However, as Section 7.5.2 show, the majority of
.onion sites are small and so should be relatively simple to defend against WF attacks.

Latency and Bandwidth Overheads. All WF defenses come at the expense of added latency
and bandwidth. Our defenses allow the exact overheads to be tuned by the participating client or
server. We saw from Section 7.6.1 that P-ALPaCA adds, on average, 52.6% extra waiting time
and 86.2% additional bandwidth. We note, that compared to previous works, these overheads are
relatively small, and that due to the nature of .onion sites, even the morphed pages are small in
size compared to standard web pages. LLaMA improves on striking a balance between overhead
limitation and protection against WF attacks. By issuing additional HTTP requests, WF attack
accuracy is halved, while only adding 9.8% in waiting time and 7.14% in bandwidth. We also
saw comparably small overheads in our D-ALPaCA defense which significantly reduced WF attack
accuracy at the expense of an additional 3.66% of bandwidth.

Natural WF Defenses. We note that compared to related works, the attack accuracy on .onion

sites seems alarmingly low. Wang et al. [30] achieved accuracies of over 90% when fingerprinting
the top 100 Alexa websites, whereas our experiments on 100 .onion sites resulted in an accuracy
of only 45.6% using the same classifier. We have validated the results of Wang et al. on the top
100 Alexa websites, removing the possibility of a bug or some irregularity in our own crawler.
We conclude that this reduction in accuracy is an artifact of the size and type of the majority of
.onion sites. The average size of a .onion site is substantially smaller than that of a standard
web page; resulting in less information being leaked to a classification process, allowing for the
increase in chance of misclassifications. We also found that a large number of .onion sites are
log-in pages to various forums, that are based on standard designs and so bear a resemblance to
one another. The small size and design of .onion sites provide a natural defense against WF.
By restricting the amount of information available to a classification process, and conforming to
standard website designs, despite the small world size of .onion sites we conclude that successful
website fingerprinting attacks are considerably more difficult than on standard websites.

HTTP/2. HTTP/2 is the upcoming new version of the HTTP protocol and is already supported
by some of the domains that receive most traffic volume in the Web [1]. HTTP/1.1 tried to provide
parallelism of HTTP messages with HTTP pipelining. However, the deployment of HTTP pipelin-
ing has not been ideal, as many intermediaries (e.g., CDNs) do not implement it correctly [1].
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HTTP/2 supports parallelism of HTTP conversations natively and overcomes one of the main lim-
itations of HTTP/1.1. From our experiments with request randomization performed with LLaMA,
our intuition is that randomization of HTTP/2 will not provide better results than RP. HTTP/2
also allows to add padding in HTTP messages to mitigate cryptographic attacks [10]. We devise
the use of HTTP/2 padding as a primitive for application-layer WF defenses.
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Appendices: Onion service target experiments

In addition to morphing a page via P-ALPaCA and D-ALPaCA, we evaluate the efficacy of our
server-side defense on a number of .onion sites via morphing to a target .onion site. We dispense
with applying a new morphing process for each capture of an .onion site load. Instead, we morph
the .onion site once and capture 40 instances of this morphed site. We show that even if a server
morphs their network traffic once, if it is morphed towards a targeted .onion site, this is enough
to thwart WF attacks.

A. SecureDrop

To protect its users, SecureDrop may want to morph the network traffic pattern of its page load
to look like that of an .onion site which would not raise suspicion on a visit. We collected 40
instances of network traffic when visiting SecureDrop; we then chose 40 target .onion sites which
our server-side defense would morph SecureDrop’s traffic to look like.

We considered a powerful adversary, who knows all sites that the defense would like to morph
traffic to look like. For each target site, the adversary could train on all the undefended SecureDrop
network traffic and the network traffic of the target .onion site, and they must classify an unknown
traffic instance as either SecureDrop or the target .onion site. In our experiment, all new traffic
instances were the morphed SecureDrop page; under a perfect defense all should have been classified
as the target site

Using k-FP with 1,000 trees [11], the average binary classification accuracy over the 40 different
.onion sites was 0.372± 0.416. Overall, our server-side defense was successful in obscuring which
site a client was visiting, though we saw a large variation: some onion sites perfectly concealed the
true label while others failed.

The average communication cost (incoming and outgoing size of packets) of the SecureDrop
page was 15 KB, and it loaded on average in 4.62 seconds. The average communication cost of the
morphed page was 373 KB and it loaded in 6.70 seconds. The size of the morphed page entirely
depends on the target page we chose to morph the SecureDrop page towards, if a smaller target
page had been chosen this would result in a smaller bandwidth overhead. However, the average
bandwidth overhead is still smaller than that of a standard website.

B. Facebook

To generalize our defense beyond SecureDrop we chose 100 .onion sites that may also wish to
protect visiting clients from WF attacks, by morphing their traffic to that of the Facebook .onion

site14. We collected 40 traffic instances for each .onion site. All WF attacks were applied in the
same manner as in Section 7.6.1.

Binary classification: the average binary classification accuracy over the 100 .onion sites was
0.098 ± 0.253. Even when the adversary knows undefended and target site, the attack’s accuracy
is below 10%.

Closed World classification: we also compared a closed world attack on the 100 undefended
.onion sites and the same attack after morphing those sites to look like Facebook .onion site. If
our server side defense is successful the 100 morphed .onion sites should, at the network level, look
like the Facebook .onion site, resulting in a low classification accuracy.

14 https://facebookcorewwwi.onion
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Table 8, shows as expected, attack accuracy decreases when onion sites are morphed to resemble
Facebook’s network traffic patterns.

Table 7: Facebook experiment latency and bandwidth overheads.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

Defended 27.3 5.08 80 315

Table 8: Closed world classification for .onion sites morphed to Facebook’s .onion site.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

Defended 9.4 55.6 53.6

Open World classification: in addition to closed world experiments, we evaluated the server-
side defense in the open world setting, where we included instances of .onion sites that were not
of interest to the attacker. We used 5, 259 unique .onion sites, from Section 7.5.2, as background
traffic instances. Table 9 shows, as expected, attack’s accuracy decreases when sites are morphed
to resemble Facebook’s network traffic patterns.

Table 9: Open world classification for .onion sites morphed to Facebook’s .onion site.

k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 30.8 2.6 59.3 5.2 53.2 5.7

Defended 7.8 0.9 44.9 1.8 44.4 2.0

Table 7 shows the average time to load a page only increases by 1.09s when morphing a page
to the Facebook .onion site. We also see that the bandwidth overhead is, compared to previous
works, quite tolerable. The total cost of communication rises by only 140KB.

C. KDE distributions

We used Kernel Density Estimation (KDE) to estimate the distributions of number of objects
(Figure 7), size of html pages (Figure 8) and size of objects (Figure 9). KDE is a non-parametric
method for estimating a probability distribution given a data sample, which provides smoother esti-
mates than histograms. KDE requires to specify a kernel (Gaussian, in our case) and a bandwidth.
The bandwidth impacts on the smoothness of the estimate: a larger bandwidth tends to provide
better smoothness, but less fidelity to the original data. To determine the bandwidth for each of
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our distributions, we first performed Grid Search Cross Validation using scikit-learn library15,
to obtain a rough idea of the bandwidth ranges. Then, we manually trimmed the bandwidth to
achieve what visually seemed to reflect well the variance of data, but also provided smooth distri-
butions. For our purposes, it was important to have smooth estimates to guarantee a good quality
in sampling (e.g., to avoid spikes). We used a bandwidth of 2 for the distribution over objects, and
of 2000 for both the HTML and object sizes distributions.
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Figure 7: KDE distribution of the number of objects

15http://scikit-learn.org/
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Figure 8: KDE distribution of the HTML sizes
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Figure 9: KDE distribution of the object sizes
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8. Privacy Trilemma:
Anonymity, Overhead, Latency

8.1 Introduction

Millions of users from all over the world employ anonymous communication networks, such as
Tor [48], to protect their privacy over the Internet. The design choice made by the Tor network to
keep the latency and bandwidth overheads small has made it highly attractive to its geographically
diverse user-base. However, over the last decade, the academic literature [4,23,26,28,37,38,46] has
demonstrated Tor’s vulnerability to a variety of traffic correlation attacks. In fact, Tor also has
been successfully attacked in practice [47].

It is widely accepted that low-latency low-bandwidth overhead of anonymous communication
(AC) protocols, such as Tor [16], can only provide a weak form of anonymity [6]. In the anonymity
literature, several AC protocols were able to overcome this security barrier to provide a stronger ano-
nymity guarantee (cryptographic indistinguishability based anonymity [21,25]) by either increasing
the latency overhead or the bandwidth overhead. In particular, high-latency approaches (such as
threshold mix networks [44]) can ensure strong anonymity by introducing significant communica-
tion delays for users messages, while high-bandwidth approaches (such as Dining Cryptographers
network [7] and its extensions [10, 24, 43]) can provide strong anonymity by adding copious noise
(or dummy) messages.

There have been a few efforts to propose hybrid approaches [11, 32, 34, 41, 49, 51] that try to
provide anonymity by simultaneously introducing latency and bandwidth overhead. However, it
is not clear how to balance such system parameters to ensure strong anonymity while preserving
practical performance.

In general, in the last 35 years a significant amount of research efforts have been put towards
constructing novel AC protocols, deploying them, and attacking real-world AC networks. However,
unlike other security fields such as cryptography, our understanding regarding the fundamental
limits and requirements of AC protocols remains limited. This work takes some important steps
towards answering fundamental question associated with anonymous communication. “Can we
prove that strong anonymity cannot be achieved without introducing large latency or bandwidth
overhead? When we wish to introduce the latency and bandwidth overheads simultaneously, do we
know the overhead range values that still fall short at providing stronger anonymity?”

8.1.1 Contribution to the PANORAMIX project

We confirm a previously conjectured [33, 41] relationship between bandwidth overhead, latency
overhead and anonymity. We find that there are fundamental bounds on sender and recipient
anonymity properties [2,21,25,35] of a protocol that directly depend on the introduced bandwidth
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and latency overheads.

This work presents a generic model of AC protocols using petri nets [27,42] such that different
instantiations of this model will represent different AC protocols, covering most practical AC sys-
tems in the literature. We derive upper bounds on anonymity as functions of bandwidth overhead
and latency overhead, against two prominent adversary classes: global passive network-level ad-
versaries and strictly stronger adversaries that additionally (passively) compromise some protocol
parties (e.g., relays in case of Tor). These bounds constitute necessary constraints for anonymity.
Naturally, the constraints are valid against any stronger adversary class as well.

For both adversary classes, we analyze two different user distributions (i.e., distributions that
determine at which time or rate users of the AC protocol send messages): (i) synchronized user
distributions, where users globally synchronize their messages, and (ii) unsynchronized user distri-
butions, where each user locally decides when to send his messages independent of other users.

We analyze the trade-off between latency overhead and bandwidth overhead required to achieve
strong anonymity, i.e., anonymity up to a negligible (in a security parameter η) chance of failure.
For any AC protocol where only a fraction of β ∈ [0, 1] users send noise messages per communication
round, and where messages can only remain in the network for ` ≥ 0 communication rounds, we
find that against a global network-level adversary no protocol can achieve strong anonymity if
2β` < 1 − 1/poly(η) even when all the protocol parties are honest. In the case where a strictly
stronger adversary additionally passively compromises c (out of K) protocol parties, we show that
strong anonymity is impossible if 2(`− c)β < 1− 1/poly(η) (for c < `), or 2β` < 1− 1/poly(η) and
` ∈ O(1) (for c ≥ `).

We also assess the practical impact of our results by analyzing prominent AC protocols. Our
impossibility results naturally only offer necessary constraints for anonymity, but not sufficient
conditions for the AC protocol. However, these necessary constraints for sender and recipient
anonymity are crucial for understanding bi-directional anonymous communication. In fact, we find
that several AC protocols in the literature are asymptotically close to the suggested constraints.
Moreover, designers of new AC protocols can use our necessary constraints as guidelines for avoiding
bad trade-off between latency and bandwidth-overhead.

8.2 Overview

8.2.1 Formalization and Adversary Model

AC Protocols as Petri Nets We define a view of AC protocols as petri nets [27, 31, 42], i.e.,
as graphs with two types of labeled nodes: places, that store colored tokens, and transitions, that
define how these tokens are sent over the graph. In our case, each colored token represents a
message, places are the protocol parties that can receive, hold and send messages, and transitions
describe how parties exchange and relay messages. Our model captures all AC protocols under the
assumption that messages are transmitted directly, i.e., in order for Bob to receive a message from
Alice, Alice has to send the message and the message (albeit relayed, delayed and cryptographically
modified) eventually has to reach Bob. While this requirement may sound strict, as elaborated in
Section 8.4.2, we effectively only exclude few esoteric protocols.

User Distributions, Communication Rounds, Bandwidth Overhead, and Latency We
consider two types of user distributions. In the first user distribution (synchronized) N users send
their messages in exactly N rounds (see Figure 8.1 for notations). Per round, exactly one user sends
a message. The protocol decides which users send noise messages in each round. In the second
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` Latency overhead for every message

β Bandwidth overhead for every user per round

p Probability to send a message per user per round

K Number of (internal) protocol parties

c Number of compromised protocol parties

N Number of online users (that may send messages)

δ Adversarial advantage in the anonymity game

Π A protocol. Π ∈M : Π is within our model

η The security parameter

ε A (very small, but non-negligible) function

Figure 8.1: Notation

user distribution (unsynchronized) each user independently decides whether to send a message in
a round using a coin flip, with a success probability p.

The model considers synchronous communication rounds as in [10,22,43,45]. We model latency
overhead ` as the number of rounds a message can be delayed by the protocol before being delivered.
We formalize bandwidth overhead β as the number of noise messages per user that the protocol
can create in every round, i.e., the dummy message rate.

Our two types of user distributions cover a large array of possible scenarios. Results for our
user distributions imply results for similar distributions, if a reduction proof can show that they
are less favorable to the protocol.1

Adversaries We consider global passive non-compromising adversaries, that can observe all com-
munication between protocol parties; and strictly stronger partially compromising (passive) adver-
saries, that can compromise protocol parties to learn the mapping between inputs and outputs for
this party.

Anonymity Property We leverage an indistinguishability based anonymity notion for sender
anonymity: the adversary has to distinguish two senders of its own choosing [21,25].

For a security parameter η, we say that a protocol achieves strong anonymity, if the adversary’s
advantage remains negligible in η. Strong anonymity is relative to a strength η, which is bound
to system parameters or analysis parameters such as the number of users or protocol parties, the
latency overhead and the bandwidth overhead. These parameters typically increase as η increases,
which improves the protocol’s anonymity.2 Anonymity in relation to η unifies a wide variety of
possible analyses on how the anonymity bound changes with changing system parameters, and user
numbers and behaviors.

8.2.2 Brief Overview of the Proof Technique

As non-compromising adversaries are a subset of partially compromising adversaries, our proof
technique for the former is a simplified case of the latter. In general, we derive our results in four

1Such distributions might contain usage patterns, irregularities between users and synchronization failures that
the adversary can exploit.

2In some analyses, individual parameters may reduce with increasing η, such as the bandwidth overhead per user,
as the other parameters, such as the number of users, increase.
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main steps.

First, we define a concrete adversary Apaths, that uses a well established strategy: upon recog-
nizing the challenge message (as soon as it reaches a receiver) Apaths constructs the possible paths
this message could have taken through the network, and tries to identify the user who has sent the
message.

Second, given the concrete adversary Apaths, we identify a necessary invariant that any protocol
has to fulfill in order to provide anonymity. Intuitively: both challenge users chosen by the adversary
must be active (i.e., send at least one message) before the challenge message reaches the recipient,
and it must be possible for these messages to meet in at least one honest party along the way. We
prove that indeed this natural invariant is necessary for anonymity.

Next, we propose an ideal protocol Πideal that is optimal in terms of satisfying the invariant:
The probability that Πideal fulfills the necessary invariant is at least as high as for any protocol
within our model (limited by the same constraints for β and `). Moreover, whenever Πideal satisfies
the invariant, the advantage of Apaths is zero. Thus, Πideal is at least as good as any protocol within
our model at winning against Apaths.

Finally, we calculate the advantage of Apaths against Πideal to obtain a lower bound on the
adversarial advantage against all protocols within our model.3

8.2.3 Scenarios and Lower Bounds

We devise necessary constraints for four different scenarios. Let Π be a protocol in our model,
with N users, restricted by bandwidth overhead β ∈ [0, 1] and latency overhead ` ≥ 0. For the
compromising cases, the adversary can compromise c out of K protocol parties. We derive the
following lower bounds for δ-sender anonymity in the respective scenarios.

Synchronized Users, Non-compromising Adversaries:

δ ≥ 1− fβ(`), where fβ(x) = min
(

1,
(
x+βNx
N−1

))
.

Synchronized Users, Partially Compromising Adversaries:

δ ≥
{

1− [1−
(c
`

)
/
(K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(K
c

)
]fβ(c)− fβ(`− c) c < `.

Unsynchronized Users, Non-compromising Adversaries:

δ ≥ 1 − [1/2 + fp(`)], where for p ≈ β we have fp(x) = min(1/2, 1 − (1 − p)x) for a positive
integer x.

Unsynchronized Users, Partially Compromising Adv.:

δ ≥





1− [1−
(
c
`

)
/
(
K
`

)
][1/2 + fp(`)] c ≥ `(

1− [1− 1/
(
K
c

)
][1/2 + fp(c)]

)

·
(

1− [1/2 + fp(`− c)]
)

c < `.

3Apaths is a possible adversary against all protocols within our model. If Apaths has an advantage of δ against
our ideal protocol Πideal (bounded by β and `), then Apaths will also have an advantage of at least δ against any
protocol within our model (that is also bounded by β and `). Thus, our bound for δ describes a lower bound on the
adversarial advantage against any protocol within the model, while against particular protocols there can be other
adversaries (in the same adversary class) with an even higher advantage.
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To keep the presentation concise, we focus on how to derive bounds for sender anonymity. As
the bounds for recipient anonymity are obtained analogously, we only explain the adjustments in
the proofs and the corresponding resulting bounds. The omitted canonical analysis can be found
in [15].

8.2.4 Interpretation and Interesting Cases

Our first and third lower bounds, for respectively synchronized and unsynchronized user behaviors
against in a non-compromised AC network, suggest an anonymity trilemma. Both lower bounds
can be simplified under some natural constraints to the following simplified lemma:

Lemma 1 (Informal Trilemma). For security parameter η, no protocol can achieve strong anony-
mity if 2`β < 1− ε(η), where ε(η) = 1

ηd
for any positive constant d.

Ideal asymptotic values for latency overhead is ` = O(1) (i.e., a constant number of hop sepa-
ration from the receiver), while ideal asymptotic values for bandwidth overhead is β = O(1/N) =
O(1/poly(η)) (i.e., a constant number of message per round from all N = poly(η) users combined).
It is easy to see that for this ideal overhead `β = O(1/poly(η)), the trilemma excludes strong ano-
nymity, while, with latency overhead ` = N = O(poly(η)) or with bandwidth overhead β = O(1),
the trilemma does not exclude strong anonymity.

We find some interesting possible overhead constraints for strong anonymity (e.g. ` = O(η)
and β = O(1/η)) demanding some compromise in both latency and bandwidth. These constraints
can help understand and improve existing AC protocols as well as inform the design of future AC
protocols.

For partially compromised scenarios the requirements are naturally stronger. All constraints
discussed for compromised case in the following part are in addition to the requirements from the
non-compromised case. While bandwidth overhead might be sufficient against non-compromising
adversaries, it is not sufficient if parts of the protocol are compromised. With ` = η and K

c =
constant strong anonymity may be possible, whereas with ` = O(1), strong anonymity is impossible,
even for K ∈ poly(η) and c = O(1).

In case c < `, strong anonymity guarantees may be possible only if 2(`− c)p > 1− ε(η), where
p = p′ + β combines the genuine user messages p′ with their bandwidth overhead β. Our result
shows a connection between the expected usage behavior p and the latency `. If p is not particularly
large, the latency cannot be low; otherwise, the path-length cannot be sufficiently high to ensure
mixing at an honest node. In other words, unless p is very large (as should be the case for some
file sharing applications), a low latency renders the AC protocol cheap to compromise, i.e., c can
be low.

Our necessary constraints enable protocol designers of AC protocols to avoid bad trade-offs
between latency and bandwidth overhead. For a given expected user behavior and a given tar-
get attacker against which the AC shall provide anonymity, our constraints clearly state which
combinations of latency and bandwidth overhead to avoid.

8.2.5 Related Work

In contrast to previous work, our work provides necessary constraints for strong anonymity w.r.t.
to bandwidth and latency overhead. While there is a successful line of work on provable anonymity
guarantees [2,5,19,21,30,35,50], it is incomparable since it provides lower bounds on anonymity for
specific protocols, and does not prove any general statements about sufficient conditions for strong
anonymity.
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Previous work on attacks against anonymous communication protocols, except for Oya et al.
[39], solely provides upper bounds on anonymity for specific protocols [12,14,20,40]. Oya et al. [39]
cast their attack in a general model and provide a sophisticated generic attacker. However, they
only compute bounds w.r.t. a dummy message rate against timed pool mixes, not against other
protocols and not w.r.t. latency and compromisation rate. Even more important, none of these
results discuss the relationship of the lower bounds for latency and bandwidth overheads.

8.3 Anonymity Definition and User Distributions

8.3.1 AnoA-Style Anonymity Definition

We define our anonymity notions with a challenge-response game similar to AnoA [2, 35], where
the challenger simulates the protocol and the adversary tries to deanonymize users. The challenger
Ch(Π, α, b) allows the adversary to adaptively control user communication in the network, up to an
uncertainty of one bit for challenges, and is parametric in the following parts: (i) the AC protocol
Π to be analyzed, (ii) the so called anonymity function α, that describes the specific variant of
anonymity such as sender anonymity, recipient anonymity and relationship anonymity, (iii) and
the challenge bit b which determines the decision the challenger takes in challenge inputs from the
adversary.

Given a security parameter η, we quantify the anonymity provided by the protocol Π simulated
by Ch(Π, α, b) in terms of the advantage the probabilistic polynomial time (PPT) adversary A has in
correctly guessing Ch’s challenge bit b. We measure this advantage in terms of indistinguishability
of random variables additively, where the random variables in question represent the output of the
interactions 〈A|Ch(Π, α, 0)〉 and 〈A|Ch(Π, α, 1)〉.

Definition 1 ((α, δ)-IND-ANO). A protocol Π is (α, δ)-IND-ANO 4 for the security parameter η, an
adversary class C, an anonymity function α and a distinguishing factor δ(· ) ≥ 0, if for all ppt
machines A ∈ C,
Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η).

For an anonymity function α, we say that a protocol Π provides strong anonymity [21, 25] if it
is (α, δ)− IND-ANO with δ ≤ neg(η) for some negligible function neg . If δ is instead non-negligible
in η, then we say that Π provides weak anonymity. Note that η does not measure the size of the
anonymity set, but the computational limitation of the adversary.

Sender Anonymity Sender anonymity characterizes the anonymity of users against a malicious
server through the inability of the server (or some intermediary) to decide which of two self-chosen
users have been communicating with the server. We borrow the sender anonymity αSA definition
from the AnoA framework [2], where αSA selects one of two possible challenge users and makes
sure that the users cannot be distinguished based on the chosen recipient(s) or message(s).

Definition 2 (Sender anonymity). A protocol Π provides δ-sender anonymity if it is (αSA, δ)-
IND-ANO for αSA as defined in Figure 8.2.

Recipient Anonymity Recipient anonymity characterizes that the recipient of a communication
remains anonymous, even to observers that have knowledge about the sender in question. Similar

4AnoA also allows a multiplicative factor ε; we use the simplified version with ε = 0, such that δ directly
corresponds to the adversarial advantage.
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Adaptive AnoA Challenger Ch(Π, α, b)

Upon message (Input, u, R,m): RunProtocol(u,R,m)

Upon message (Challenge, u0, u1, R0, R1,m):

if this is the first time, such a message is received then
Compute (u∗, R∗)← α(u0, u1, R0, R1, b)
RunProtocol(u∗, R∗,m))

end if

RunProtocol(u,R,m):

Run Π on r = (u,R,m) and forward all messages that are sent by Π to the adversary A and send all messages
by the adversary to Π.

αSA(u0, u1, R0, R1, b) = (ub, R0)

αRA(u0, u1, R0, R1, b) = (u0, Rb)

Figure 8.2: Adaptive AnoA Challenger [2]

to sender anonymity, we borrow the recipient anonymity αRA definition from the AnoA framework,
where αRA selects one of two possible recipients for a message and makes sure that the recipients
cannot be distinguished based on the chosen sender(s) or message(s).

Definition 3 (Recipient anonymity). A protocol Π provides δ-recipient anonymity if it is (αRA, δ)-
IND-ANO for αRA as defined in Figure 8.2.

We omit the detailed technical notation of the anonymity functions in the following sections,
and write Pr [0 = A|b = i] instead of Pr [0 = 〈A|Ch(Π, αSA, i)〉].

8.3.2 Game Setup

Let S be the set of all senders, R be the set of all recipients, and P be the set of protocol parties
that participate in the execution of the protocol (like relays/mix-nodes in Tor/mix-nets, for DC-net
or P2P mixing users and protocol parties are the same). We consider a system of total |S|= N
senders. Given our focus on sender anonymity, we need only a single element in R. We allow
the adversary to set the same entity (say R) as the recipient of all messages, and expect R to be
compromised by the adversary. The adversary uses a challenge (as defined in Figure 8.2) of the
form (u0, u1, R, ,m0), where u0, u1 ∈ S, for our sender anonymity game.

We consider a completely connected topology, which means any party can send a message
directly to any other party. We assume a standard (bounded) synchronous communication model
as in [10, 22, 43, 45], where a protocol operates in a sequence of communication rounds.5 In each
round, a party performs some local computation, sends messages (if any) to other party through
an authenticated link. By the end of the round, every party receives all messages sent by the other

5While a time-sensitive model [3] would be more accurate, e.g., for low-latency protocols like Tor [17], such a
model would only strengthen the attacker. As we present necessary constraints, our results also hold for the more
accurate setting.
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parties to her the same round. With our focus on computing lower bounds, our model abstracts
from the time the computations at the node take and also the length of the messages. Nevertheless,
as we are interested in quantifying the communication/bandwidth overhead, unlike [10,22,43], we do
not assume that the parties have access to ready-made broadcast communication channels; Parties
are expected to communicate with each other to implement broadcast features [18,45]. Lastly, the
use of the asynchronous communication model offers more capabilities to the attacker, and thus,
our impossibility results for the synchronous model naturally apply to the asynchronous model as
well.

We define the latency overhead ` as the number of rounds a message can be delayed by the
protocol before being delivered. We define the bandwidth overhead β as the number of noise
messages per user that the protocol can create in every round (i.e., the dummy message rate) and
we do not restrict the time these noise messages reside within the protocol.

We consider two types of global passive adversaries: Our non-compromising adversaries (which
model network-level eavesdroppers) can observe all communication between all protocol parties,
but do not compromise any party of the AC protocol except the recipient R. We say that the
AC protocol is non-compromised. Our strictly stronger partially compromising adversaries (which
model hacking and infiltration capabilities) can additionally compromise some of the AC parties in
the setup phase of the game to obtain these parties’ mapping between the input messages and output
messages during the protocol’s runtime. We say that the AC protocol is partially compromised.

8.3.3 User Distributions

We consider two kinds of user distributions in our anonymity games and both of them assume an
N sized set S of users that want to send messages. In both cases, the adversary can choose any two
senders u0, u1 ∈ S. However, the time and method by which they actually send messages differs:

� In the synchronized user distribution the users globally synchronize who should send a message
at which point in time. We assume that each user wants to send exactly one message. Consequently,
we choose a random permutation of the set of users S and the users send messages in their respective
round. In every single round out of a total of N rounds exactly one user sends a message. Since the
users globally synchronize their sending of messages, we allow the protocol to also globally decide
on the bandwidth overhead it introduces. Note that here the requirements are identical to those of
the Bulk protocol in [10].

� In the unsynchronized user distribution each of the N users wants to send messages eventually
and we assume that each user locally flips a (biased) coin every round to decide whether or not
to send a message. In this case we define the bandwidth overhead as an increased chance of
users sending messages. Since the protocol does not globally synchronize the input messages, for
noise messages also we allow the users to decide it locally and send noise messages with a certain
probability.

8.4 A Protocol Model for AC Protocols

An AC protocol allows any user in the set of users S to send messages to any user in R, via a
set of anonymizing parties P. We define protocols that are under observation of an eavesdropping
adversary A that may have compromised a set of c parties Pc ⊆ P and that furthermore observes
the communication links between any two parties, including users.

Technically, whenever a party P1 ∈ P ∪ S sends a message to another party P2 ∈ P ∪ R, the
adversary is able to observe this fact together with the current round number. However, we assume
the protocol applies sufficient cryptography, s.t., the adversary can not read the content of any
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Protocol

S TS

$1

P1 TP1

P2 TP2

P3 TP3

R

Figure 8.3: Petri net of an AC protocol with K = 3 parties.

message except the messages sent to the malicious recipient, which technically results in simply
being able to additionally recognize when the challenge reaches the recipient.

For an actual protocol, the sets S, R, and P might not be mutually exclusive [7, 24, 43]. Since
we have only one malicious party in R, and the content of a message can only be read when it
reaches its final recipient, we consider R to be mutually exclusive from S ∪ P for the purpose of
simplicity.

With the above preliminaries in mind, we shall now formally define our generic AC protocol
using a petri net model.

8.4.1 Protocol Model

We model any AC protocol with K parties by a timed colored petri net [27, 31, 42] M , consisting
of places S for the users, P1, . . . , PK symbolizing the protocol parties, $1 for randomness and R for
recipients of messages, and colored tokens m symbolizing the messages (real or noise) sent by clients
or protocol parties, and transitions TS for inserting messages into the network and TP1 , . . . , TPK

as
functions for sending the messages from one party to another. The structure of the petri net
with its places, tokens and transitions remains the same for every AC protocol. However, the
implementation of the guards within the transitions is different for different protocols: protocols
can choose to which party messages are to be sent next and whether they should be delayed. But,
protocols in M are oblivious to the challenge message or the challenge users. We refer to Figure 8.3
for a graphical depiction of petri net model M .

Definition 4 (Colored token). A colored token is represented by the tuple m = 〈msg, meta, tr, IDt, prev, next, ts〉,
where, msg is the content of the message, meta is the internal protocol meta-data for this message,
tr is the time the message can remain in the network, IDt is a new unique ID generated by each
transition for each token by honest parties; dishonest parties instead keep IDt untouched to allow
the adversary to link incoming and outgoing messages, prev is party/user that sent the token and
next is the user/party that receives the token. Finally, ts is the time remaining for the token to be
eligible for a firing event (a feature of timed petri-net). Here, ts either describes when new messages
are introduced into the petri net or is set to the next round, such that messages can be processed in
every round as soon as they enter the network.

The four fields IDt, prev, next, ts are public, and are visible to the adversary. The remaining
three fields msg, meta and tr in a token are private and can not be observed by the adversary, with
the exception that msg can be observed when a message reaches its destination, i.e, is received by
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TS on tokens q = 〈msg, , , , u, , ts〉 from S and $ from $1:

(Pi,meta) = fΠ(q, $); IDt = a fresh randomly generated ID
r = current round; t = 〈msg,meta, `, IDt, u, Pi, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt, u, Pi, 1〉, r)
else Tokens = Tokens ∪ (〈 , , , IDt, u, Pi, 1〉, r)

Output: token t at Pi

TPi on tokens q = 〈msg, , tr, IDt, , Pi, ts〉 from Pi, $ from $1:

(P ′,meta′) = fΠ(q, $) ; r = current round
if tr − 1 = 0 then P ′ = R
if Pi is honest then IDt

′ = a fresh randomly generated ID
else if Pi is compromised then IDt

′ = IDt

t = 〈msg,meta′, tr − 1, IDt
′, Pi, P

′, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt

′, Pi, P
′, 1〉, r)

else Tokens = Tokens ∪ (〈 , , , IDt
′, Pi, P

′, 1〉, r)
Output: token t at P ′

fΠ: A function provided by Π to determine routing and the meta field.

Figure 8.4: Transitions in petri net model M

a recipient. Formally, we introduce a set Tokens, that is initially empty and in which we collect the
pair (t, r), where t is a copy of a token and r the round number in which the token was observed.

Places Any AC protocol with K parties P = {P1, . . . , PK} consists of the following places:

� S: A token in S denotes a user message (real or noise) which is scheduled to enter the network
after ts rounds.

� $1: This place is responsible for providing randomness. Whenever a transition picks a token
from this place, the transition basically picks a random value.

� Pi with Pi ∈ P: A token in Pi denotes a message which is currently held by the party Pi ∈ P.

� R: A token in R denotes a message which has already been delivered to a recipient.

Transitions As part of the initial configuration, the challenger populates S on behalf of the
protocol. All other places are initially empty. The transitions then consumes tokens from one place
and generate tokens to other places, to modify the configuration of the petri-net. The event of
consumption of a token from one place by a transition and generation of a new token represents
the movement of a message from one party to another. We define the following transitions (refer
to Figure 8.4 for the pseudocodes of the transitions):

� TS : takes a token 〈msg, , , , u, , ts〉 from S and a token from $1 to write t = 〈msg,meta, `, IDt, u, Pi, ts = 1〉
to Pi; the values of i and meta are decided by the AC protocol.

� TPi : takes a token 〈msg,meta, tr, IDt, , Pi, ts〉 from Pi and a token from $1 to write t =
〈msg,meta′, tr − 1, IDt

′, Pi, P ′, 1〉 to P ′. If Pi is an honest party IDt
′ is freshly generated, but if Pi

is a compromised party IDt
′ = IDt. The place P ′ ∈ {P1, . . . , PK} ∪ {R} and meta′ are decided by

the AC protocol, with the exception that if tr = 0, P ′ always is R.

In either case, the transition also adds an element (t′, r) to the set Tokens, where r is the current
round number and t′ is a copy of the respective (new) token t, with the fields meta and tr are
removed. If the place where t was written to is not R, then additionally the field msg is removed.
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Game Setting Recall that we define anonymity as a game between a PPT adversary A and an
honest challenger Ch.

Validity of the Protocol Model The above protocol model M behaves as expected (more
details in Lemma 2 in Appendix 8.11). We show in Lemma 2 that the protocols indeed have
a bandwidth overhead of β and a latency overhead of `. For every message that is sent from
one party in S ∪ P to another party in P ∪ R, the adversary learns the time, the sender, and the
receiver. When a message leaves the network, the attacker learns whether it was the target (i.e., the
challenge) message. The attacker also learns the mapping between the input and output messages
of compromised parties.

8.4.2 Expressing Protocols

Our protocol model M allows the expression of any AC protocol with very few, esoteric exceptions.

Mix networks can be naturally embedded into our model, in particular any stop-and-go mix [29]
that uses discrete distribution and even AC protocols with specialized path selection algorithms [13,
36]. For the sake of our necessary constraints, low-latency protocols (with time-bounded channels)
that are not round-based (e.g., Tor [17]) can be expressed in a round-based variant, since it only
strengthens the protocols anonymity properties. This section illustrates embedding techniques into
our model for some other kinds of protocols, but a much larger variety of protocols can be expressed
in our model.

Users as protocol parties In peer-to-peer protocols like dining cryptographers networks (DC
net) [24, 43], there are no separate protocol parties, users act as a type of relays. Also, any noise
sent by users counts into the bandwidth overhead of the protocol (we will see in Claim 2 that noise
sent by nodes that are not users can be treated differently). Whenever a user wants to send a
message it should use the transition TS , but when it acts as a relay it should use the transition TPi .
For interested readers, we show in Appendix 8.11 how to model a specific DC net type protocol
using our petri net model.

Splitting and Recombining Messages We model protocols that split and later re-combine
messages by declaring one of the parts as the main message and the other parts as noise, which
may count into the bandwidth overhead. This declaration is mainly required for the analysis, i.e., for
evaluating the success of the adversary and for quantifying the amount of noise messages introduced
by the protocol. We do not restrict the strategy by which the protocol decides which message is
“the main share” (i.e., the message that is sent on) and which is “an additional share” (i.e., a fresh
noise message). A more complex scenario involves threshold schemes in which a smaller number of
shares suffices for reconstructing the message and in which some shares are dropped randomly. In
such cases we consider the protocol to decide beforehand which of the constructed shares will be
dropped later and to declare one of the remaining shares the “main share”.

Broadcasting Messages If the protocol chooses to copy or broadcast messages to several re-
ceivers, we consider the copy sent to the challenge receiver to be the main message and copies sent
to other receivers to be noise (which, if the copies are created by nodes that are not users, will not
count into the bandwidth overhead).6

6We note that in some cases, where users act as nodes and broadcast messages to other users, our quantification
of the bandwidth overhead might be a bit harsh. If the group of users to which the broadcast will be sent is known
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Private Information Retrieval In schemes based on private information retrieval we require
that the receiver retrieves the information sufficiently fast (within the latency limit). Otherwise,
our method is similar to the broadcasting of messages: the receiver of interest will retrieve the main
message, whereas other receivers will retrieve copies that are modeled as noise.

Excluded Protocols For this work we exclude protocols that cannot guarantee the delivery of
a message within the given latency bound (except if this occurs with a negligible probability).
Moreover, we cannot easily express the exploitation of side channels to transfer information, e.g.,
sending information about one message in the meta-data of another message, or sending bits of
information by not sending a message.

8.4.3 Construction of a Concrete Adversary

Given two challenge users u0 and u1 and the set of observed tokens (t, r) ∈ Tokens, where t is
the token and r the round in which the token was observed, an adversary can construct the sets
Sj (for j ∈ {0, 1}). Assume the challenge message arrives at the receiver R in a round r. We
construct possible paths of varying length k, s.t., each element p ∈ Sj represents a possible path of
the challenge message starting from uj (j ∈ {0, 1}) and the challenge message then arrives at R in
round rk = r. With challenge bit b, Sb cannot be empty, as the actual path taken by the challenge
message to reach R has to be one element in Sb.

Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t.

t1.prev = uj ∧ tk.next = R

∧ tk.msg = Challenge ∧ k ≤ `
∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ ( ∃t′i+1 : (t′i+1, ri+1) ∈ Tokens ∧ t′i+1.prev = ti.next

∧ t′i+1.IDt = ti.IDt)⇒ t′i+1 = ti+1)}

Definition 5 (Adversary Apaths). Given a set of users S, a set of protocol parties P of size K,
and a number of possibly compromised nodes c, the adversary Apaths proceeds as follows: 1. Apaths
selects and compromises c different parties from P uniformly at random. 2. Apaths chooses two
challenge users u0, u1 ∈ S uniformly at random. 3. Apaths makes observations and, based upon
those, constructs the sets S0 and S1. For any i ∈ {0, 1}, if Si = ∅, then Apaths returns 1 − i.
Otherwise, it returns 0 or 1 uniformly at random.

Apaths thus checks whether both challenge users could have sent the challenge message. We
explicitly ignore differences in probabilities of the challenge users having sent the challenge message,
as those probabilities can be protocol specific. Naturally, when c = 0, Apaths represents a non-
compromising adversary; but when c 6= 0, Apaths is partially compromising.

8.4.4 Protocol Invariants

We now investigate the robustness of protocols against our adversary. We define an invariant that,
if not satisfied, allows Apaths to win against any protocol. Moreover, we present a protocol that
maximizes the probability of fulfilling the invariant. Moreover, we show that whenever the invariant

in advance (i.e., if messages are broadcast to all users or to pre-existing groups of users), we can allow the protocol
to use a single receiver for these messages instead.
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is fulfilled by our protocol, the advantage of Apaths reduces to zero (as it is forced to randomly
guess b).

Necessary invariant for protocol anonymity It is necessary that at least both challenge
users send messages in one of the ` rounds before the challenge message reaches the recipient, as
otherwise there is no way both of them could have sent the challenge message. Moreover, on the
path of the actual challenge message, there needs to be at least one honest (uncompromised) party,
as otherwise the adversary can track the challenge message from the sender to the recipient ( Sb
will have exactly one element and S1−b will be empty). Those two conditions together form our
necessary protocol invariant.

Invariant 1. Let u0 and u1 be the challenge users; let b be the challenge bit; and let t0 be the
time when ub sends the challenge message. Assume that the challenge message reaches the re-
cipient at r. Assume furthermore that u1−b sends her messages (including noise messages) at
V = {t1, t2, t3, . . . , tk}. Now, let T = {t : t ∈ V ∧ (r − `) ≤ t < r}. Then,

(i) the set T is not empty, and

(ii) the challenge message passes through at least one honest node at some time t′ such that,
t′ ∈ {min(T ), . . . , r − 1}.

Claim 1 (Invariant 1 is necessary for anonymity). Let Π be any protocol ∈M with latency overhead
` and bandwidth overhead β. Let u0, u1, b and T be defined as in Invariant 1. If Invariant 1 is not
satisfied by Π, then our adversary Apaths as in Definition 5 wins.

We refer to Appendix 8.12 for the proof. We next claim that it suffices to consider noise messages
sent by users that also remain within the system for at most ` rounds, i.e., noise messages that
follow the same rules as real messages. Note that we consider every new message originating from
any user’s client as a fresh noise message.

Claim 2 (Internal noise does not influence Invariant 1). Any message not originating from an end
user u ∈ S does not influence the probability for Invariant 1 being true. Moreover, noise messages
do not contribute to the probability for Invariant 1 being true after they stayed in the network for
` rounds.

We refer to Appendix 8.12 for the proof. We henceforth consider noise messages as a protocol
input.

8.4.5 Ideal Protocol

We construct a protocol Πideal that maximizes the probability of fulfilling Invariant 1. We show
that the invariant is sufficient for Πideal to win against Apaths, i.e., to reduce Apaths’s advantage to
0. Claim 1 shows that for any protocol in our model Apaths wins whenever Invariant 1 does not
hold. Thus, an upper bound on the probability that Πideal satisfies Invariant 1 yields an upper
bound for all these protocols.

Given the set of all protocol parties P = {P0, . . . , PK−1} of size K, the strategy of Πideal is as
follows: in a round r, Πideal delivers all messages scheduled for delivery to a recipient. All other
messages (including the messages that enter Πideal in round r) are sent to the protocol party Pi
with i = r mod K. For every message that enters the protocol, Πideal queries an oracle O for the
number of rounds the message should remain in the protocol. We define the following events:
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� u.sent(x, y) : user u has sent at least one message within rounds from x to y. For a single
round we use u.sent(x).

� Cmpr(x) : Apaths has compromised the next x consecutive parties on the path.

� ¬H : NOT of event H.

Given a message sent at t0 by sender x, and delivered to the recipient at (t0 + t), we define Pt for
sender v ∈ S \ {x}:

Pt =
∑t0

j=r−`
Pr [v.sent(j) ∧ ¬v.sent(j + 1, t0)] · Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [v.sent(j) ∧ ¬v.sent(r − `, j − 1)]

· Pr [¬Cmpr(r − j)]

When v = u1−b, and the message is the challenge message, Pt is the probability of fulfilling
Invariant 1, for the strategy above. For each message, oracle O chooses an optimal t that maximizes
the expectation of Pt over all users. After the oracle has decided the latencies for all messages,
it sets the time t for the messages from u1−b to `. Since the oracle uses the knowledge of u1−b,
Πideal is slightly more powerful than protocols in M . Due to the over-approximation with this
(not realizable) oracle, the resulting protocol is optimal w.r.t. Invariant 1 (Refer to Claim 3 and
Claim 4).

Claim 3 (Ideal protocol is ideal for the invariant). Against the given adversary Apaths, Πideal

satisfies Invariant 1 with probability at least as high as any other protocol in M .

Claim 4 (Ideal protocol wins). If Πideal satisfies Invariant 1, Apaths has an advantage of zero:
Pr[b = Apaths | Invariant 1 holds] = 1

2

We refer to Appendix 8.12 for the proofs of Claim 3 and Claim 4.

8.5 Synchronized Users with Non-compromising Adversaries

Our first scenario is a protocol-friendly user distribution UB, where inputs from all users are globally
synchronized: over the course of N rounds, exactly one user per round sends a message, following
a random permutation that assigns one round to each user. Analogously, the protocol globally
instructs the users to send up to β ∈ [0, 1] noise messages per user per round, or B = βN noise
messages per round in total.

In real life, the user distribution is independent of the protocol. However, to make the user
distribution protocol-friendly in our modeling we consider a globally controlled user distribution.
For this scenario, we consider non-compromising passive adversaries that can observe all network
traffic.

8.5.1 Lower Bound on Adversarial Advantage

Theorem 1. For user distribution UB, no protocol Π ∈ M can provide δ-sender anonymity, for
any δ < 1− fβ(`), where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Proof. By Claim 3 and Claim 4, we know that Πideal is an optimal protocol against Apaths; and
with c = 0, Apaths is our representative non-compromising adversary. Thus, it suffices to calculate
the advantage of Apaths against Πideal as a lower bound of the adversary’s advantage against any
protocol.
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Let, u0 and u1 be the users chosen by the adversary and let b be the challenge bit. Let t0 be
the round in which ub sends the challenge message and let r be the round in which the challenge
message reaches the recipient.

Recall that Invariant 1 is necessary for the protocol to provide anonymity; u1−b sends her mes-
sages (can be a noise message) at V = {t1, t2, t3, . . . , tk}, then T = {t : t ∈ V ∧(r−`) ≤ t < r}. Since
we are considering a non-compromising adversary, Pr [Invariant 1 is true] = Pr [T is not empty] .
With the above in mind, let us define the following events:

H1: In ` rounds u1−b sends at least one noise message.

H2: u1−b sends his own message within the chosen ` rounds.

H3: there is at least one message from u1−b within the chosen ` rounds ≡ T is not empty ≡
Invariant 1 is true.

Consider any slice of ` rounds around the challenge message, there are exactly (`−1) user messages
other than the challenge message. Hence, any slice of ` rounds yields the same probability of
containing a user message from u1−b, except when r < ` OR r > N where the probability is smaller.
Thus, no matter what value of t is returned by O, Pr [H2] ≤ `−1

N−1 .

Given any values `, β ≥ 0 , Apaths has the least chance of winning, if for a given interval of `
rounds, βN` unique users are picked to send the noise messages in such a way that they are not
scheduled to send their own messages in that interval.

Pr [¬H3] = Pr [¬H1,¬H2] ≥ max(0, (N− `− βN`)/(N− 1)).

Pr [H3] = 1− Pr [¬H3] ≤ min(1, ((`+ βN`)/(N− 1))).

Thus, we can bound the probability for the adversary as Pr[0 = Apaths|b = 1] = Pr[1 = Apaths|b = 0] =
1
2Pr [H3]; and Pr[0 = Apaths|b = 0] = 1− 1

2Pr [H3]. And therefore, since δ ≥ Pr[0 = Apaths|b =
0]− Pr[0 = Apaths|b = 1], δ ≥ 1− Pr [H3] ≥ 1− fβ(`).

8.5.2 Impossibility for Strong Anonymity

We now investigate under which constraints for ` and β Theorem 1 rules out strong anonymity.

Theorem 2. For user distribution UB with ` < N and βN ≥ 1, no protocol Π ∈ M can achieve
strong anonymity if 2`β < 1− ε(η), where ε(η) = 1

ηd
for a positive constant d.

We refer to Appendix 8.12 for the proof.

Interesting Cases For illustration, we now discuss a few examples for different values of `, β,
and N.

1. If ` = N, we can have δ = 0 even for β = 0. Anonymity can be achieved trivially by
accumulating all messages from all N users and delivering them together at round (N + 1). In this
case 2`β = 0 < 1− ε(η), but also βN = 0 < 1.

2. β = 1
η , ` = η: We have δ ≥ N−η−N

N ≥ −ηN . In ` rounds the protocol can send `βN = N noise
messages and achieve strong anonymity (all N users send a noise message each).

3. β = 1
2τ , ` = τ , where τ is a positive integer: Here we have, δ ≥ N−τ−N

2
N = 1

2− τ
N . Here, strong

anonymity is possible if τ
N ≥ 1

2 − neg(η). Even though 2`β = 1 > 1 − neg(η), anonymity depends
on the relation between τ and N.
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Case c ≥ `:

r − c r − ` t0 r

Case c < t < `:

r − ` t0 r − c r

Case t < c < `:

r − ` r − c t0 r

Arriving messages satisfy Invariant 1.

Arriving messages satisfy Invariant 1 depending on Pc.

Arriving messages don’t satisfy Invariant 1.

Figure 8.5: Satisfying Invariant 1 depending on the arrival time of messages from u1−b in the cases
of the proof for Theorem 3.

4. β = 1
9 , ` = 3: For η > 3 and N > 4, which is a very natural assumption, we have 2`β =

2
3 < 1 − neg(η). Then, δ ≥ N−3−N

3
N > neg(η). In ` rounds Πideal receives only (N3 + 3) messages,

and thus, with high probability u1−b does not send a message. Hence, Πideal cannot achieve strong
anonymity.

8.6 Synchronized Users with Partially Compromising Adversaries

We now extend our analysis of the previous section by having compromised protocol parties. Given
the set of protocol parties P, now our adversary Apaths can compromise a set of c parties Pc ⊂ P.
If Apaths can compromise all the parties in P, anonymity is broken trivially - that’s why we do
not analyze that case separately. Recall from Section 8.4.3 that Apaths picks the c parties from P
uniformly at random. We consider the same user distribution UB as in Section 8.5.

8.6.1 Lower Bound on Adversarial Advantage

Theorem 3. For user distribution UB, no protocol Π ∈ M can provide δ-sender anonymity, for
any

δ <

{
1− [1−

(c
`

)
/
(K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(K
c

)
]fβ(c)− fβ(`− c) c < `

where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Proof. Let u0, u1 be the challenge users and let b be the challenge bit. Moreover, let t0 be the time
the challenge message is sent by ub and let r = t0 + t be the time it is received by the recipient,
where t is the delivery time decided by the oracle O. Similar to Section 8.5, we now calculate the
advantage of Apaths against Πideal.

We distinguish two cases, depending on ` and c: 1. First, where the number of compromised
parties c is at least as large as the maximal latency `. In this case, all parties on the path of
the challenge message could be compromised. 2. Second, where not all parties on the path of the
challenge message can be compromised. And hence, the analysis focuses on the arrival times of
messages from u1−b. For a graphical depiction of the relationship between the rounds a message
from u1−b arrives and it satisfying Invariant 1 we refer to Figure 8.5.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The invariant is true only if u1−b sends at
least one message in one of the rounds between (r−`) and (r−1). Additionally, if u1−b sends at least
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one message in {r−`, . . . , t0}, the invariant holds only if there is at least one non-compromised party
on the path between t0 and (r− 1). Whereas, if u1−b does not send any message in {r− `, . . . , t0},
and the first message from u1−b in the interval {t0 + 1, r− 1} arrives at t1, the invariant holds only
if there is at least one non-compromised party on the path between t1 and (r − 1).

Note that K > c ≥ `. Also recall from Section 8.4 that Apaths picks the c parties uniformly at
random from K parties. Hence,

Pr [Invariant 1 is true]

≤
∑t0

j=r−`
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(j + 1, t0)]

· Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(r − `, j − 1)]

· Pr [¬Cmpr(r − j)]
≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

≤ [1−
(
c

`

)
/

(
K

`

)
] ·min(1, ((`+ βN`)/(N− 1))).

By Claim 1 the adversary wins whenever Invariant 1 is not true, and by Claim 4 Apaths has
zero advantage whenever Πideal satisfies the invariant. Hence, we know that the probability that
the adversary guesses incorrectly is bounded by:
Pr [0 = Apaths|b = 1] = Pr [1 = Apaths|b = 0]

≤ 1
2Pr [Invariant 1 is true] ≤ 1

2 [1−
(c
`

)
/
(K
`

)
] ·min(1, ( `+βN`N−1 )).

Thus, δ ≥ 1− [1−
(c
`

)
/
(K
`

)
] ·min(1, ( `+βN`N−1 )).

2) Case c ≤ `: The probability that all parties on the mutual path of the challenge message
and a message from the alternative sender u1−b are compromised now mainly depends on the arrival
time of the messages from u1−b. We find two sub-cases depending on the oracle’s choice for t.

2a) Case c ≤ t:
Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

≤ min(1, (
(`−c)+βN(`−c)

N−1 ))

+ min(1, (
N−(`−c)−βN(`−c)

N−1 )( c+βNc
N−(`−c)−βN(`−c) ))[1− 1

(Kc)
]

≤ fβ(`− c) + fβ(c)[1− 1/
(K
c

)
].

Note that the probability that there are no messages from u1−b in [(r − `), (r − c)] and that
there is at least one message from u1−b in [(r − c), r] are not independent from each other. The
best thing a protocol can do with the noise messages is to have Nβ` unique users, different from
the ` users who send their actual message, send the noise messages. Thus, if a user sends a message
in [(r − `), (r − c)], he can not send a message in [(r − c), r]. The above calculations are done
considering that best scenario. Also note that the value of K may be larger or smaller than ` and
t, but as long as c ≤ K, the bound given above holds. Hence, δ ≥ 1− fβ(`− c)− [1− 1/

(
K
c

)
] · fβ(c).

2b) Case t < c :
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Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c), r)] · Pr [¬Cmpr(t)]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(t)]

The event expression above is the same as in the previous case (t > c). The bound on δ thus
follows analogously.

8.6.2 Impossibility for Strong Anonymity

Theorem 4. For user distribution UB with K ∈ poly(η), K > c ≥ ` , ` < N and βN ≥ 1 , no
protocol Π ∈M can achieve strong anonymity if 2`β < 1− ε(η) or ` ∈ O(1), where ε(η) = 1/ηd

for a positive constant d.

We refer to Appendix 8.12 for the proof. To achieve strong anonymity against Apaths, we need
` ∈ ω(1), additional to the constraint of 2`β > 1−neg(η). We now focus on the constraint ` ∈ ω(1)
and refer to Section 8.5.2 for a comprehensive case study on the other constraint.

Interesting Cases Now we are going to discuss a few interesting cases for different values of
` < c, and K.

1. ` = η and K/c = constant: In this case we have,
(
c
`

)
/
(
K
`

)
= c(c−1)...(c−`+1)

K(K−1)...(K−`+1)
< (c/K)` = (c/K)η. Hence,(

c
`

)
/
(
K
`

)
becomes negligible and strong anonymity is possible. Even though c has a high value, because

of the high value of ` it is highly likely that the challenge message will meet a message from u1−b
at some honest node, given a high value of β such that 2`β > 1− neg(η).

2. ` = O(1), c = O(1): Now we have,
(
c
`

)
/
(
K
`

)
= c(c−1)...(c−`+1)

K(K−1)...(K−`+1)
> ((c− `)/(K− `))`. But K ∈ poly(η),

and c and ` can only have integer values. Hence ((c− `)/(K− `))` is non-negligible, and hence
(
c
`

)
/
(
K
`

)

is also non-negligible. Even though c has a small value, ` is also small. Hence, it is unlikely that the
challenge message will mix with a message from u1−b at some honest node. Thus, strong anonymity
cannot be achieved.

Theorem 5. For user distribution UB with K ∈ poly(η), c ∈ O(1), K > ` > c, ` < N and βN ≥ 1,
no protocol Π ∈ M can achieve strong anonymity if 2(` − c)β < 1 − ε(η), where ε(η) = 1

ηd
for a

positive constant d.

We refer to Appendix 8.12 for the proof. The analysis in this case is exactly same as Section 8.5.2,
except that here we need to consider the slice of (`− c) rounds instead of ` rounds.

It is worth repeating here, all the constraints we have derived in Section 8.5 and Section 8.6 are
necessary for anonymity, but they are not sufficient conditions for anonymity.

8.7 Unsynchronized Users with Non-compromising Adversaries

In this and the subsequent section we use an unsynchronised user distribution UP : In each round,
independent of other users and other rounds, each client tosses a biased coin with success probability
p ∈ (0, 1]. On a success the client sends a message in that round, otherwise it does not send a mes-
sage. Consequently, the number of messages per round follows Binomial distribution Binom(N, p)
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if the number of users N is large and p sufficiently small, the resulting binomial distribution reduces
to a Poisson distribution, which is a close approximation of real-life traffic patterns.

For a protocol with bandwidth overhead β, we distinguish between the actual probability that
users want to send messages p′ and the value for p that we use in our analysis, i.e., we set p = p′+β.
In this unsynchronised scenario the bandwidth of genuine messages contributes to the anonymity
bound. As in Section 8.5 we consider a non-compromising adversary.

8.7.1 Lower Bound on Adversarial Advantage

Theorem 6. For user distribution UP , no protocol Π ∈ M can provide δ-sender anonymity, for
any δ < 1−

(
1
2 + fp(`)

)
, where fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

Proof. Since we consider a non-compromising adversary, Pr [Invariant 1 is True] = Pr [T is not empty] ,
where T is defined as in Invariant 1.

Let us consider the random variables X(1), X(2), . . . , X(N), where X(i) denotes the event of the
ith user sending her own message within a given interval of ` rounds [a, b], with (b − a) = `. All
X(i)s are mutually independent and we have,

X(i) =

{
0 with probability (1− p)`
1 with probability (1− (1− p)`).

Next, let X =
∑N

i=1X
(i) be a random variable representing the number of users that send messages

in an interval of ` rounds. We calculate for the expected value E[X] of X,
E[X] =

∑N
i=1 E[X(i)] = N(1− (1− p)`) = µ.

Using the Chernoff Bound on the random variable X we derive Pr [X − µ ≥ Na] ≤ exp(−2a2N),
which for a = µ

N lets us estimate, Pr [X ≥ 2µ] ≤ exp (−2(µ2/N2)N). For brevity in the following calcula-
tion we denote, Pr [X ≥ 2µ] by E and the event that T is non-empty by Y and since all users are
acting independently from each other we get for j ∈ {0, . . . ,N}, Pr [Y |X = j] = 1− Pr [¬Y |X = j] = j

N
.

For 2µ ≤ N, we have,

Pr [Y ]

=Pr [X ≥ 2µ] · Pr [Y |X ≥ 2µ] + Pr [X < 2µ] · Pr [Y |X < 2µ]

≤Pr [X ≥ 2µ] · Pr [Y |X = N] + Pr [X < 2µ] · Pr [Y |X = 2µ]

=E · Pr [Y |X = N] + (1− E) · Pr [Y |X = 2µ]

=E · N
N

+ (1− E) · 2µ

N
= 1− (1− E) (1− 2fp(`)) .

If 2µ > N, we get with f(`) = min
(
1
2 , 1− (1− p)`

)
, Pr [Y ] ≤ E + (1− E) 1 ≤ 1 ≤ 1 − (1 −

E) (1− 2fp(`)).
Thus, δ ≥ 1− Pr [Y ] ≥ (1−E) (1− 2fp(`)) . We now use Markov’s Inequality on X and derive

E = Pr [X ≥ 2µ] ≤ 1
2 , which means, δ ≥ 1

2 (1− 2fp(`)) ≥ 1
2 − fp(`).

Note that in the proof of Theorem 6, in case p is a constant and N is a very high value, then E
goes towards zero and instead of using Markov’s inequality, we can derive δ ≥ 1− 2fp(`).

8.7.2 Impossibility for Strong Anonymity

Theorem 7. For user distribution UP and p > 0, no protocol Π ∈M can achieve strong anonymity
if 2`p < 1− ε(η), where ε(η) = 1/ηd for a positive constant d.

We refer to Appendix 8.12 for the proof. Similar to the constraints in Section 8.5 and Section 8.6,
this is also a necessary constraint for anonymity, not a sufficient condition. There can exist ` and
p such that 2`p > 1− neg(η), but still no protocol can achieve strong anonymity.
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Interesting Cases Now we are going to discuss a few interesting cases for different values of `,
p, and N.

1. p = 1
η , ` = η : Here, fp(`) = 1 − (1− p)` > 1 − 1/e > 1

2 . Hence, δ ≥ 1
2 − fp(`) = 0. Since

p` = 1, in ` rounds the protocol has 1 message per user on an average. So, the protocol has a high
chance of winning. Whereas in Section 8.5.2, we saw that Πideal can win with absolute certainty in
this case.

2. p = 1
2τ , ` = τ , τ is a positive integer: even for τ > 2, fp(`) = 1 − (1− p)` < 0.45. Hence,

δ ≥ 1
2 − fp(`) > 0.05. Even though 2`p = 1, strong anonymity can not be achieved. In an expected

scenario, in a slice of ` rounds only p` = 1
2 portion of the total users send messages, and hence there

is a significant chance that u1−b is in the other half. Note that this is different from the scenario
with synchronized users where Πideal could achieve strong anonymity in this case (c.f. Section 8.5.2).

3. p = 1
9 , ` = 3: Here, fp(`) = 1 − (1− p)` = 1 −

(
8
9

)3
< 0.29, and δ ≥ 1

2 − fp(`) > 0.21; because
of low values of both p and ` only a few users send messages within the interval of ` rounds, and
hence the protocol has a small chance to win. As in Section 8.5.2, Πideal can not achieve strong
anonymity in this case, since the necessary constraints are not satisfied.

8.8 Unsynchronized Users with Partially Compromising Adver-
saries

Finally, we consider partially compromising adversaries that can compromise a set of c parties
Pc ⊂ P for the user distribution UP defined in Section 8.7.

8.8.1 Lower Bound on Adversarial Advantage

Theorem 8. For user distribution UP , no protocol Π ∈ M can provide δ-sender anonymity, for
any

δ <





1− [1−
(c
`

)
/
(K
`

)
][12 + fp(`)] c ≥ `

(
1− [1− 1/

(K
c

)
][12 + fp(c)]

)

·
(

1− [1/2 + fp(`− c)]
)

c < `

where fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

We derive the bound in Theorem 8 by combining the techniques presented in Section 8.6 and
Section 8.7. Since the proof does not introduce novel techniques, we omit it and instead refer the
interested reader to Appendix 8.12 for the proof.

8.8.2 Impossibility for Strong Anonymity

To analyze the negligibility condition of δ in this scenario, we heavily borrow the analyses that we
already have conducted in Section 8.7.2 and Section 8.6.2. We are going to analyze this scenario
in two parts:

Case c ≥ `: We have, δ ≥ 1− [1−
(
c
`

)
/
(
K
`

)
]
[

1
2

+ fp(`)
]
.

To make δ negligible, both the factors [1−
(
c
`

)
/
(
K
`

)
] and [1/2 + fp(`)] have to become overwhelming.

From Theorem 4, we know that we need ` ∈ ω(1) to make [1 −
(
c
`

)
/
(
K
`

)
] overwhelming. This is a

necessary condition, but not sufficient. For a detailed discussion, we refer to Section 8.6.2. From
Section 8.7.2 we know that the necessary condition for [1/2+fp(`)] to be overwhelming is 2`p > 1−neg(η).
Hence, both conditions are necessary to achieve strong anonymity.
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Case c < `: We have,
δ ≥ (1− [1/2 + fp(`− c)])(1− [1− 1/

(
K
c

)
][1/2 + fp(c)]).

In the above expression, we can see two factors:
(i) F1 = (1− [ 1

2
+ fp(`− c)]), (ii) F2 = (1− [1− 1/

(
K
c

)
][ 1

2
+ fp(c)]).

To make δ negligible, it suffices that F1 or F2 become negligible. Unlike Section 8.6, here
fp(`− c) and fp(c) are independent, which allows us to analyze F1 and F2 independently. First, F1

is similar to the δ-bound in Section 8.7, except that we consider fp(`− c) instead of fp(`). Hence,
the analysis of F1 is analogous to Section 8.7.2. Second, F2 is negligible if both [1 − 1/

(
K
c

)
] and

[1/2 + fp(c)] are overwhelming. From Section 8.6.2 we know that [1− 1/
(
K
c

)
] can not be overwhelming

for a constant c. Moreover, fp(c) can be analyzed exactly as fp(`) in Section 8.7.2.

8.9 Recipient Anonymity

We derive impossibility results for recipient anonymity analogous to our results for sender ano-
nymity via the same strategy we employed in the previous sections. In this case, since we are
considering recipient anonymity, we assume only one sender in S, and N′ users in R. Here, the
adversary is naturally not informed about the delivery of the challenge message by a recipient, but
of the sending of the challenge message by the sender. Moreover, instead of ignoring all internally
generated messages in Claim 2 we ignore all internally terminating messages. Note that this gives
β a slightly different flavor.

Synchronized Users We slightly tweak the user distribution to suit the definition of recipient
anonymity. We assume that all the input messages come within N′ rounds, exactly one message
per round, following a random permutation that assigns one round to each recipient. In a given
round, the sender sends a message to the assigned recipient. Then, the protocol decides when
to deliver the message to the recipient, but not delaying more than ` rounds. Let fRA

β (x) =

min
(

1,
(
(x+`)+(x+`)βN′

N′

))
. Then we get that no protocol Π ∈M can provide δ-recipient anonymity

in the following cases:

� Without compromisation: δ < 1− fRA
β (`).

� For adversaries that compromise up to c parties:

– if c ≥ `: δ < 1− [1−
(
c
`

)
/
(
K
`

)
]fRA
β (`).

– if c < `: δ < 1− [1− 1/
(
K
c

)
]fRA
β (c)− fRA

β (`− c).

Moreover, no protocol M with K ∈ poly(η) can achieve strong recipient anonymity when ` < N′

and βN′ ≥ 1 in the following cases, where ε(η) is a non-negligible function.

� Without compromisation: if 4`β < 1− ε(η),

� For adversaries that compromise up to c parties:

– if K > c ≥ `: 4`β < 1− ε(η) OR ` ∈ O(1).

– if K > ` > c: 4(`− c)β < 1− ε(η).
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Unsynchronized Users Similar to the previous case, here also we borrow the definition of user
distribution from Section 8.7, with minor modifications. The biased coins are now associated with
recipients instead of senders — in each round the sender sends a message for a recipient, with
probability p. Let fRA

p (x) = min(1/2, 1 − (1 − p)`+x). Then we get that no protocol Π ∈ M can
provide δ-recipient anonymity in the following cases:

� Without compromisation: δ < 1− (1/2 + fRA
p (`)).

� For adversaries that compromise up to c parties:

– If c ≥ `: δ < [1−
(c
`

)
/
(K
`

)
][1/2 + fRA

p (`)].

– If c < `: δ <
(

1− [1/2 + fRA
p (`− c)]

)

·
(

1− [1/2 + fRA
p (c)][1− 1/

(K
c

)
]
)

.

Moreover, for p > 0, no protocol can achieve strong recipient anonymity if 2`p < 1 − ε(η), where
ε(η) is a non-negligible function. For a detailed recipient-anonymity analysis, we refer the readers
to the extended version [15].

8.10 Implications

To put our result into perspective, we discuss whether our trilemma excludes strong anonymity for
a few AC protocols from the literature. More precisely, this section exemplarily applies the results
from Theorem 2 and Theorem 7, i.e., with synchronized and unsynchronized user distributions and a
global network-level, non-compromising adversary. We use both results since for some AC protocols
(e.g., DC-nets [7]) the synchronized user distribution is more accurate and for other protocols (e.g.,
Tor [16]) the unsynchronized user distribution is more accurate. Our constraints mark an area on a
2D graph (see Figure 8.6) with latency overhead (x-axis) versus bandwidth overhead (y-axis) where
strong anonymity is impossible. As the latency of some AC protocols depends on system parameters
and we want to place the protocols in a 2D graph, we carefully choose system parameters and make
a few simplifying assumptions, which are subsequently described.

This section is solely intended to put our impossibility result into perspective. It is not meant
and not qualified to be a performance and scalability comparison of the discussed AC protocols.
Table 8.1 in the appendix summarizes bounds on the bandwidth β and latency overhead ` (in the
sense of this work).

Technically, this section considers translations of AC protocols into our protocol model. As these
translations do not provide any additional insights, we do not present the full translated protocols
but only the abstraction steps. We abstract away the cryptographic instantiation of messages
including the bandwidth overhead they introduce over the plaintext. We assume an upper bound
on the latency of the protocol and are oblivious to server-side noise (see Claim 2). Moreover, recall
that we are only interested in the question whether our trilemma excludes strong anonymity for
the ten AC protocols from the literature; hence, we consider the upper bound on the latency and
bandwidth overhead for deterministic latency. For randomized latency, such as Loopix [41], we list
for simplicity the expected delay as the latency bound.

Low-latency protocols such as Tor [16], Hornet [8], and Herd [33] are low-latency AC proto-
cols, i.e., they immediately forward messages. While Tor and Hornet do not produce asymptotically
more than a constant amount of both bandwidth overhead and latency overhead and thus cannot
provide strong anonymity, Herd produces dummy traffic linearly proportional to the number of
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users (bandwidth overhead β ∈ θ(N/N)), thus the trilemma does not exclude strong anonymity for
Herd.

Riposte [9] uses secure multiparty computation and a variant of PIR to implement an anony-
mous bulletin board. Riposte operates in epochs and for each epoch the set of users is public. Hence,
Riposte is expected to be run with long epochs to maximize the number of users that participate
in an epoch, which leads us to estimating the latency overhead to be ` ∈ θ(N). To counter traffic
analysis attacks, Riposte clients send constant dummy traffic, resulting in a bandwidth overhead
of β ∈ θ(N/N). Thus, the trilemma does not exclude strong anonymity for Riposte.

Vuvuzela [49] is a mix-net that is tailored towards messengers. Clients communicate by de-
posing their encrypted messages in one of the mix net nodes. To achieve strong resistance against
compromised servers, Vuvuzela takes a path through all servers, resulting in a latency overhead of
` ∈ θ(K) (for K servers). Additionally, Vuvuzela utilizes constant traffic, leading to a bandwidth
overhead of β ∈ θ(N/N), and has the potential for strong anonymity.

Riffle [32] uses a verifiable mix-net. Just as Vuvuzela, Riffle also chooses paths that traverse
all K servers, leading to ` ∈ θ(K) and if we assume K ∈ θ(log(η)), we get ` ∈ θ(log(η)). We assume
that the clients send dummy traffic up to a constant rate (depending on the user’s sending rate p′),
so we have β ∈ θ(N/N) and the potential for strong anonymity.

In a threshold mix net, each of the K mix servers waits until it received up to a threshold T
many messages before relaying the messages to the next mix, resulting in ` ∈ θ(T ·K). Threshold
mixes [44] do not provide strong anonymity unless their threshold T is of the order of the number
of users N . As such a large threshold are impractical for a large number of users, we judge it
impossible to achieve strong anonymity for practical of Threshold mixes.

Loopix [41] is a mix net that combines exponentially distributed delays at each mix-node
and dummy messages from each user. Ignoring so-called loop messages (meant to counter active
attacks), Loopix naturally enforces our unsynchronised user distribution: the rate at which Loopix
clients send messages is the sum of a dummy-message rate (β) and a payload message rate (p′),
which are system parameters. We assume that the path lengths in Loopix’ stratified topology is√
K with the number of nodes K ∈ θ(log(η)). If β + p′ ≥ 1/

√
η, and if every hop introduces an

expected delay of `′ ≥
√
η√
K

, the expected latency overhead is ` =
√
K · `′, in particular ` ∈ θ(

√
(η)).

We get (p′ + β)` = 1√
η ·
√
η = 1 and the trilemma does not exclude strong anonymity for Loopix.

In AC protocols based on DC-nets [7, 24] each party broadcasts either a dummy or real
message in every round to every other party. As our bandwidth overhead only counts dummy-
message rates, it does not capture the broadcast, thus β ∈ θ(N/N). DC-nets use a combination
operation (e.g., an XOR) that causes dummy messages to cancel out. Then, all parties output the
resulting bitstring. If only one real message is sent, the bitstring equals this message. As Theorem 7
assumes a synchronized user distribution, in each round only one party sends a message, thus our
model treats ` as ` ∈ θ(1).

The Dissent-AT [51] scheme (the AnyTrust-variant of Dissent) improves on the performance
of DC-nets by relying on dedicated servers. Instead of broadcasting to every other client, clients
in Dissent-AT send these messages to at least one of these dedicated servers. These servers then
perform a DC-net communication round. Abstracting from an initial set-up phase and only count-
ing the client-messages, Dissent-AT has β ∈ θ(N/N) for the clients (assuming that each client
communicates to one server), and ` ∈ θ(1).

Dicemix [43] is a peer-to-peer AC protocol that is based on the DC-net approach. While
Dicemix includes a self-healing mechanism that leads to 4 + 2f communication rounds for one
message if f peers are malicious, this mechanism does not kick in if all peers are honest, leading
to only 4 communication rounds, resutling in ` ∈ θ(1). As every party sends a message in every
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Figure 8.6: Asymptotic latency overhead (`) and bandwidth overhead (β) together with the “area
of impossibility” where 2`β ≤ 1 − ε(η). We portray protocols as dots depending on their choices
for ` and β. Technically, if we use Theorem 7, we β is replaced by p = β + p′, where p′ is the
rate at which users send messages. This graph assumes N is ca. poly(η), the number of nodes K
is ca. log η. The threshold for Threshold Mix T = 1 and for Threshold Mixsec T = N = poly(η).
In the graph, both the axes are approximately in logarithmic scale. (For a more accurate visual
representation we refer the readers to Appendix 8.13 and [1].)
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round β ∈ θ(N/N).

Table 8.1: Latency vs. bandwidth vs. strong anonymity of AC protocols, with the number of
protocol-nodes K, number of clients N, and message-threshold T , expected latency `′ per node,
dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity

Tor [16] θ(1) θ(1/N) impossible
Hornet [8] θ(1) θ(1/N) impossible
Herd [33] θ(1) θ(N/N) possible
Riposte [9] θ(N) θ(N/N) possible
Vuvuzula [49] θ(K) θ(N/N) possible
Riffle [32] θ(K) θ(N/N) possible
Threshold mix [44] θ(TK) θ(1/N) impossible∗

Loopix [41] θ(
√
K`′) θ(β) possible

DC-Net [7, 24] θ(1) θ(N/N) possible
Dissent-AT [51] θ(1) θ(N/N) possible
DiceMix [43] θ(1) θ(N/N) possible
∗ if T in o(poly(η))

8.11 Protocol Model Revisited

8.11.1 Validity of the Protocol Model (Contd.)

Lemma 2. Let Π be a protocol ∈M with K parties with parameters β and `. Then: 1. Messages are
delivered within ` steps. 2. The protocol adds (for the unsynchronised case on average) a maximum
of β noise messages per user per round. 3. Whenever a party in S ∪ P sends a message to another
party in P ∪ R, the adversary learns that and in which round this happens. 4. For every message
that leaves the network (received by R), the adversary additionally learns whether the message is
the target message. 5. For every compromised party, the adversary learns the mapping between the
input messages and the output messages.

Proof. Let Π be a protocol ∈ M with K parties with parameters β and `. Part (2) of the Lemma
holds, since we restrict the user distributions accordingly and since the none of the transitions in
the petri-net can create more tokens within the network than it consumes from its input place.

We show the part (1) of the lemma via structural induction over fired transitions of the petri net.
We additionally add to the induction invariant that all tokens that are not in S have a timestamp
for their next transition of ts = 1 and a remaining time of tr > 0 and there are at least tr rounds
left in which the token can be delivered.

Induction base: The protocol is initialized and no transitions have happened. Thus, no
messages have been sent so far, i.e., there is no message that has not been delivered within ` steps.
The only transition that can fire is TS and for ` > 0, the message introduced into the network in
this way does not need to be delivered already (0 < tr = `). Moreover, TS sets the timestamp of
this message token to ts = 1

Induction step: Let tr be any execution trace s.t. the induction invariant is satisfied and let
t be an arbitrary possible transition that extends tr to tr :: t.

We distinguish two cases for t: In case t is TS , it consumes a token from PS and puts this token
into a place Pi and, by definition we have tr > 0 and ts = 1. Otherwise, the transition is TPi for
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some i and consumes a token from Pi accordingly. By the induction invariant, the token has tr > 0.
If this token has tr − 1 = 0, the transition delivers the token to R. Otherwise, t decreases tr by
one (thus fulfilling the condition that there are at least tr rounds left in which the token can be
delivered) and sets ts = 1. Since every token in any place Pi needs to be consumed in every round,
the protocol delivers every message in at most ` steps.

Other parts of the lemma: By definition of our petri net, whenever a transition fires, an
element (t, r) is placed into Tokens, containing the public fields of t, such as t.prev and t.next, as well
as the current round number r, which fulfills part (3). Moreover, whenever the transition places
the token in R, the adversary can additionally see the field t.msg and no transition can change the
field msg, which allows the adversary to effectively tag and recognize the challenge message and
thus fulfills part (4). Finally, if any party Pi is compromised, Pi does not modify the unique (and
otherwise freshly sampled) field t.IDt, which allows the adversary to map incoming and outgoing
messages.

Since the transitions discussed here are the only way for messages to be sent to a recipient, the
model correctly enforces the conditions from the lemma.

8.11.2 Expressing Protocols in the petri net model

Modeling DC net Here we show how to model an actual DC net type protocol using our petri
net model M as defined in Section 8.4. Specifically we pick up the short DC net protocol proposed
by Golle and Juels [24], and present MDC which models the aforementioned protocol.

We model a DC net protocol with N participants, where S = P, |S| = |P| = N. We denote the
parties with P1, . . . , PN . The protocol can be denoted by ΠDC ={paramgen, keydist, post, verify,
extract}7 - as described below.

� paramgen: In protDC , paramgen is executed by a trusted entity and the output is published.
Since we are mainly interested in the anonymity game, we consider that paramgen step is executed
by our honest challenger and happens outside the protocol run, and the output is globally known
(to all the transitions TPi).

� keydist : using the output of paramgen, this step yields for each party Pi a private key xi
and a corresponding public key yi. In protDC , the above key generation part is done by a trusted
entity, and hence we consider that it is done by our honest challenger and for each party Pi the
public-private keypair xi, yi is already known to the corresponding transition function TPi . As part
of protocol each party Pi publishes its public key yi. Additionally, each party Pj receives from
Pi a share of private key xi,j and a share of public key yi,j , where the keys are shared in a (k,N)
threshold manner for a parameter k ≤ N.

� post : Each player Pi generates a vector of random pads Wi = {Wi(1),Wi(2), . . . ,Wi(N)}8
using xi. ΠDC does not handle collisions, instead assumes that the players decide their positions
by a consensus protocol. Similarly our model assumes that each party Pi knows its position, and
assume the position is qi (but not known to the adversary). Then each player Pi computes the
vector Vi such that Vi(w) = Wi(w) for all w 6= i and Vi(w) = Wi(w)⊕mi for w = qi, where mi is
the message of Pi. Also, each player Pi computes σi = {σi(1), σi(2), . . . , σi(N)}, where σi includes
the identity of player Pi and a proof of valid formatting of Vi. Then Pi publishes both the vectors Vi
and σi. Our model assumes the pair (Vi(w), σi(w)) for each position w as a single message, where

7Since we are mainly interested in the anonymity property, we don’t need to model the part of the protocol where
the protocol parties reconstructs the keys in case of a failure. But it is easy to extend MDC to include that step by
adding one more round to the current model.

8The anonymity game does not include multiple sessions. Also, in our model all the N players participate in a
protocol run.

– 182 of 210 –



D3.3 - Final Report

Vi(w) is a message content and σi(w) becomes a part of meta field. For each position w player Pi
generates one such message, and publishes the message to all other players.

� verify and extract are local computations after a party Pi receives messages from all other
parties.

Although the protocol model assumes that the adversary can not read the contents of any
message, here we shall model ΠDC along with its cryptographic primitives to demonstrate the
expressiveness of our model. Alternatively, to get rid of all the cryptographic primitives, the
parties can send a dummy message (= 0) whenever Vi(w) = Wi(w), and the actual message mi

whenever Vi(w) 6= Wi(w).

As per our anonymity definition in Section 8.3, we assume that up to (N − 2) users can be
compromised, which necessarily makes up to (N− 2) protocol parties compromised. The adversary
chooses two challenge users, and one of them sends the challenge message depending on the challenge
bit b. All other (N − 1) users send dummy messages.

In MDC we model ΠDC as a two round protocol. The challenger sets the initial configuration of
the petri-net with the messages to be sent by each party. In the first round, each party Pi sends two
kinds messages: (1) publishes the public key message yi and (2) sends share of the public-private
keypair (xi,j , yi,j) to Pj for all j 6= i. Here, one party can publish a message to (N−1) other parties
by sending (N − 1) separate messages. In the second round, each party Pi publishes N messages:
one message for each position, only one of them contains his own message. After second round,
every party receives messages from every other party, and then does local computations to verify
and extract the original messages.

For ΠDC , we do not actually need a separate recipient R in ΠDC , if we make R = P. But,
to be consistent with M , in MDC we keep a separate recipient. In the second round whenever
a party Pi publishes a message, Pi also sends a copy to R. This easily models the fact that the
adversary knows whenever a message is published, but avoids the complication of modeling a subset
of compromised recipients.

The meta fields of the tokens contains the following subfields: (1) stage, (2) position, (3) sigma.
stage can have three possible values identifying three possible cases: (1) public key distribution,
(2) share of the public-private keypair, (3) message. Using stage subfield, any party in the protocol
recognizes if the message is part of keydist messages, or part of post messages. When the value
of stage is message, the user posts Vi(w), and position takes the value of w. sigma includes the
identity of the sender and a proof of computation whenever necessary. sigma fields helps in the
verify stage, we avoid the details here.

If we want to analyze the user distribution for ΠDC , we do not count the first round since it
is used only for key exchange. Note that, if we get rid of the cryptographic primitives, we do not
require the first round.

Modeling Tor Since Tor does not operate in rounds, embedding it into our model is not straight
forward. Suppose, a Tor node takes at least x milliseconds to process a message when it receives
a message, and it takes at least y milliseconds for a message to travel from one node to the next
node over a network link. Then we define one round as x + y milliseconds. We assume a perfect
condition where each node takes exactly equal computation time for one message, and each link
has exactly same delay. In the real world, delays and computation times are less stable, but can
be estimated by an adversary. Instead of analyzing this, we instead allow the messages to remain
within the node for the respective time.

Tor nodes and recipients are separate entities and hence, S, P and R are mutually exclusive.
Whenever a Tor node receives a message, the node immediately processes and forwards that message
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to the next node or recipient. We can either model the latency overhead ` of Tor by estimating the
time messages spend within the network that exceeds the (minimal) round length x+y from above,
or we set it to the number of hops, i.e., ` = 3. In either case, we assume that ` does not increase
with η and thus get a latency overhead ` ∈ O(1). For analyzing Tor with a variable number h of
hops, we can instead set ` = h. When a party Pi receives a message, TPi can retrieve the next hop
from the meta field of the message. Since Tor does not add any noise messages, the bandwidth
overhead is β = 0.

8.12 Delayed Proofs

Proof of Claim 1. If the set T is empty, then S1−b is empty as well. However, by construction of
our protocol mode, the set Sb is always non-empty. Consequently, the adversary Apaths will output
b and thus win with probability 1. If T is not empty, the following cases can occur:

1. The challenge message never passes through an honest node: In this case, the field IDt of the
message never changes for the tokens. Thus, Sb will have exactly one element, and S1−b will be an
empty set, and consequently Apaths wins.

2. The challenge message passes through one or more honest nodes at times t′, such that
t′ < min(T ), but not afterwards. Following the same reasoning as above, we see that paths before
min(T ) can be ambiguous, but none of them leads to u1−b. Hence, Sb can have multiple elements,
but S1−b will still be an empty set. Thus, Apaths wins.

3. The challenge message passes through an honest node at time t′ with t′ ≥ min(T ). In this
case, the invariant is true.

In all of the above mentioned cases either the invariant is true, or the adversary wins with
probability 1.

Proof of Claim 2. Let u0, u1 be the challenge users and let b be the challenge bit and let r be the
round in which the challenge message is delivered to the recipient. We discuss both parts of the
invariant separately:

(i) The set T is not empty. Since by definition, T is the set of messages sent by u1−b, messages
originating in any party not in S do not influence T . Moreover, any message sent by u1−b in a
round previous to r − ` does not influence T either. Thus, noise messages staying in the protocol
for more than ` rounds, do not improve the probability of T being not empty.

(ii) The challenge message passes through at least one honest node at some time t′ such that,
t′ ∈ {min(T ), . . . , r − 1}. Obviously this second part of the invariant does not depend on any noise
message.

Proof of Claim 3. We want to prove our claim by contradiction. Suppose, Πideal is not the best
protocol. That means, there exists a protocol Πnew, which satisfies Invariant 1 with a higher
probability than Πideal, against the adversary Apaths.

Now we construct a new protocol Πhybrid, which exactly follows the strategy of Πideal with one
exception: for a given message Πhybrid selects the time delay t same as Πnew, instead of querying
it from oracle O. Suppose, the challenge message is delivered to the recipient at round r. Given
the set {min(T ), . . . , r − 1}, the ideal strategy for ensuring that at least one honest party is on the
path of the challenge message is to ensure that as many distinct parties as possible are on this path.
Also, given the time delay t, the value of min(T ) is independent of the protocol, since protocols in
M are oblivious to the challenge users and the challenge message. Hence, Πhybrid has a probability
of satisfying Invariant 1 at least as high as Πnew.
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Now, if we compare Πhybrid and Πideal: they follow the same strategy. But Πideal picks the
time delay t for any message from oracle O (except for messages from u1−b) such that t is optimal.
The time delay t can be picked for each message independent of the time delays of other messages.
Hence, the value of t received from oracle O for the challenge message is optimal. Hence, Πideal

satisfies Invariant 1 with probability at least as high as Πhybrid. Thus, Πnew does not satisfy
Invariant 1 with a higher probability than Πideal.

Proof of Claim 4. If the Invariant is true, the challenge message passes through an honest party
at t′, such that t′ > min(T ). Hence, there is at least one message (noise or original message) from
u1−i which visits the same honest party together with the challenge message (Πideal ensures that
all messages are always kept together until they are delivered). That ensures that in addition to
Sb 6= ∅, we also have S1−b 6= ∅ and thus Apaths outputs a random bit (and has an advantage of
zero).

Proof of Theorem 2. For strong anonymity, we require: δ(η) = neg(η), and we know that for Πideal

we have: δ(η) ≥ 1− fβ(`) =
(
N−`−βN`

N−1

)
≥
(
N−`−βN`

N

)
≥ 1− `

N − β`.
We assume for contradiction that there is a protocol limited by ` and β such that 2`β < 1 − ε(η)
that still achieves strong anonymity. Since δ(η) = neg(η), we know that ε(η) > δ(η).

ε(η) > δ(η) =⇒ ε(η) > 1− `

N
− β`

=⇒ ε(η) > 1− `

N
− 1

2
(1− ε(η))

⇐⇒ 2` > N (1− ε(η))
Nβ≥1
=⇒ 2`β > 1− ε(η)

The above contradicts the assumption that 2`β < 1− ε(η).

Note: In case βN < 1, no noise messages are allowed per round (i.e., β = 0) and thus δ(η) ≥
1− `/N, which is not negligible unless ` = N, since N = poly(η).

Proof of Theorem 4. When c > `: δ ≥ 1−
[
1− (c`)

(K`)

]
fβ(`).

For δ to become neg(η), we need both [1−
(c
`

)
/
(K
`

)
] and fβ(`) to become overwhelming. From

Theorem 2 and Theorem 1, we know that 2`β > 1− neg(η) is a necessary condition for fβ(`) to

become overwhelming. Now, we are left with the factor [1−
(c
`

)
/
(K
`

)
]. This can become overwhelming

iff [
(c
`

)
/
(K
`

)
] becomes negligible. We know that K > c ≥ ` and K ∈ poly(η). Hence, for some constant

x,

c− `
K− ` >

1

ηx
⇐⇒

(
c− `
K− `

)`
>

(
1

ηx

)`

=⇒ c(c− 1) . . . (c− `)
K(K− 1) . . . (K− `) >

(
c− `
K− `

)`
>

(
1

ηx

)`

⇐⇒
(
c
`

)
(
K
`

) >
(

1

ηx

)`
.

For any ` ∈ O(1), (1/ηx)` is non-negligible.

Proof of Theorem 5. When c < `:

δ ≥ 1−
[
1− 1/

(K
c

)]
fβ(c)− fβ(`− c).
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First consider the factor [1− 1/
(K
c

)
]. Since K = poly(η) and c = constant, [1/

(K
c

)
] can never be

negligible. And thus, [1 − 1/
(K
c

)
] can never be overwhelming. So, [1 − 1/

(K
c

)
]fβ(c) can never be

overwhelming as well, since fβ(c) ≤ 1.
Now, let’s consider fβ(`− c) and fβ(c) . Note that, these two factors represent the probabilities

of two dependent but mutually exclusive events, and hence fβ(c) + fβ(`− c) ≤ 1. And we already

know that [1 − 1/
(K
c

)
] can never be overwhelming. Thus, the only way δ can become negligible is

if fβ(` − c) becomes overwhelming. Note that, if a + b ≤ 1 and c < 1, the only way ac + b = 1 is
possible if b = 1.

Now we can follow exactly the same procedure as in the proof of Theorem 2 to say: fβ(` − c)
can not become overwhelming if 2(`− c)β < 1− ε(η).

Proof of Theorem 7. We know 0 ≤ E ≤ 1/2. When 2µ ≤ N,

δ ≥(1− E) (1− 2fp(`)) ≥ 1/2
(

2 (1− p)` − 1
)

≥1/2 (2 (1− `p)− 1) = 1/2 (1− 2`p) .

Thus, if 2`p < 1− ε(η),
2`p < 1− ε(η) ⇐⇒ 1− 2`p > ε(η)

=⇒ δ > 1/2 · ε(η) = non-negligible.

Thus, when 2µ ≤ N, a necessary condition for δ to become negligible is 2`p > 1− neg(η).
When 2µ > N, using µ = N(1− (1− p)` ) we get:

2N(1− (1− p)`) > N =⇒ (1− p)` < 1/2

=⇒ 1− p` < 1/2 ⇐⇒ 2p` > 1.

Proof of Theorem 8. Let X(i)(x) and X(x) be defined as in the proof for Theorem 6, where we
replace the fixed length ` of the slice by a variable x. Using the Chernoff Bound on the random
variable X(x) calculate Pr [X(x)− µ(x) ≥ Na] ≤ exp(−2a2N), and for a = µ(x)

N , we define E(x) as
:

E(x) = Pr [X(x) ≥ 2µ(x)] ≤ exp (−2µ(x)2/N2 · N)

≤ exp
(
−2(1− (1− p)x)2N

)
.

Note that, similar to X(i)(x) and X(x), µ(x) is also defined as in the proof for Theorem 6, but
for a slice of variable length x. We denote the event that sender u1−b sends at least one message in
an interval of size x by Y (x) and since all users are acting independently from each other we get
for j ∈ {0, . . . ,N}, Pr [Y (x)|X(x) = j] = 1 − Pr [¬Y |X(x) = j] = j

N . Moreover, for any value of x
with 2µ(x) ≤ N,

Pr [Y (x)] = Pr [X(x) ≥ 2µ(x)] · Pr [Y (x)|X(x) ≥ 2µ(x)]

+ Pr [X(x) < 2µ(x)] · Pr [Y (x)|X(x) < 2µ(x)]

≤ Pr [X(x) ≥ 2µ(x)] · Pr [Y (x)|X(x) = N]

+ Pr [X(x) < 2µ(x)] · Pr [Y (x)|X(x) = 2µ(x)]

= E(x)Pr [Y |X(x) = N]

+ (1− E(x)) Pr [Y |X(x) = 2µ(x)]

= E(x) (N/N) + (1− E(x)) (2µ(x)/N)

= 1− (1− E(x))
(
1− 2

(
1− (1− p)x

))
.
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If 2µ(x) > N, we get with f(x) = min
(
1
2 , 1− (1− p)x

)
:

Pr [Y (x)] ≤ E(x) + (1− E(x)) · 1 ≤ 1

≤ 1− (1− E(x)) (1− 2f(x)) .

Now, we calculate the probability of Invariant 1 being true, under our protocol Πideal and as in
the proof for Theorem 3. We distinguish two cases depending on c and `:

Case 1): c > `
Pr [Invariant 1 is true]

≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

= Pr [¬Cmpr(`)] · Pr [Y (`)]

≤
[
1− (

c

`

)
/
(
K

`

)] [
1−

(
1− E(`)

)(
1− 2fp(`)

)]
.

By applying Markov’s inequality on the random variable X(x), we get E(x) = Pr [X(x) ≥ 2µ(x)] ≤
1
2 . Thus, we derive for δ: δ ≥ 1−

[
1− (c

`

)
/
(K
`

)] [
1
2 + fp(`)

]
.

Case 2): c < `. As for the proof of Theorem 3 we split this case into two sub-cases, depending
on t and c.

Case 2a): c < t

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

= Pr [Y (`− c)] + [1− Pr [Y (`− c)]] Pr [Y (c)] Pr [¬Cmpr(c)]

≤ [1− (1− E(`− c)) (1− 2fp(`− c))]

+ [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(
K

c

)]
.

Thus, for the adversarial advantage δ we derive,
δ ≥ 1− Pr [Invariant 1 is true]

≥ 1− [1− (1− E(`− c)) (1− 2fp(`− c))]

− [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1−

(c
c

)
/
(K
c

)]

= [(1− E(`− c)) (1− 2fp(`− c))]

·
(

1− [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(K
c

)])

≥
(
1−

[
1
2 + fp(`− c)

]) (
1−

[
1
2 + fp(c)

] [
1− 1/

(K
c

)])
.

We again use Markov’s inequality to replace E(x) by 1/2.
Case 2b): t ≤ c

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] Pr [¬Cmpr(c)]

The above event expression is exactly same as the expression we had in the previous case (t > c).
Thus, the rest of the calculations and bounds are exactly same as the previous case.
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8.13 Visual 3D representations of the results

In the paper, we focus on lower-bound results for strong anonymity (or negligible δ values). How-
ever, our key Theorems 1, 3, 6 and 8 also offer lower bounds for non-negligilable δ values, which
can be of interest to several AC protocols.

On our project webpage [1], we visualize these lower bounds using interactive 3D surface plots.
In particular, we plot the adversarial advantage δ ∈ [0, 1] as a function of β and `. We encourage
the readers to interact with these plots to better understand our results for non-negligilbe δ values.

Here, in Figures 8.7 to 8.10, we present and analyze four snapshots of those lower bound plots
for the number of users N = 10000. The x-axis represents latency ` (ranging from 0 to 200), and
the y-axis bandwidth overhead β (ranging from 0.0 to 0.04). But in Figure 8.9 and Figure 8.10,
the y-axis actually represents total bandwidth p = p′ + β as in Theorem 7.

A derived δ lower bound for the non-compromising adversary is also a valid lower bound for
a (partially) compromising adversary. For some edge cases (e.g., when ` is close to N and β is
close to 0), due to some approximations employed in the compromising adversaries scenario, the
non-compromising adversary lower bound is actually tighter than the compromising adversaries
lower bound. Therefore, in Figure 8.10, while plotting the 3D graph for a partially compromising
adversary scenario, we have used the maximum of the lower bounds on δ for compromising adversary
and non-compromising adversary.

In each plot, the dark blue region indicates the possibility of obtaining strong anonymity. For
any point (x, y) outside those regions, strong anonymity is not possible. For example, as shown
in Figure 8.7, for ` = 100 the bandwidth overhead β has to be at least 0.01 to expect strong
anonymity.

For the chosen c and K, the plots in Figures 8.7 and 8.8 are almost identical as the ` and β
factors contribute more to anonymity than the compromised parties can affect it. If we instead
compare Figure 8.9 with Figure 8.10, the effect of compromisation is noticeable: the dark blue
region in Figure 8.10 is much smaller than that in Figure 8.9. Also, we can see a steep wall in
Figure 8.10 for ` ≤ c = 20, demonstrating that providing anonymity becomes difficult when ` < c;
however, for ` > c, the effect of compromisation is less noticeable.
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Figure 8.7: Synchronized User Dis-
tribution with Non-compromising Ad-
versaries. z = 1 − fβ(`), where
fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Figure 8.8: Synchronized User Distribution
with Partially compromising Adversaries. Total
protocol parties K = 100, number of compro-
mised parties c = 20. z = 1− [1−

(c
`

)
/
(K
`

)
]fβ(`)

for ` ≤ c, z = 1 − [1 − 1/
(K
c

)
]fβ(c) − fβ(` − c)

otherwise.

Figure 8.9: Unsynchronized User Distribution
with Non-compromising Adversaries. z = 1 −(
1
2 + fp(`)

)
, where fp(x) = min(1/2, 1 − (1 −

p)x).

Figure 8.10: Unsynchronized User Distribution
with Partially compromising Adversaries. Total
number of protocol parties K = 100, number of
compromised parties c = 20. z′ = 1 − [1 −(c
`

)
/
(K
`

)
][12 + fp(`)] for ` ≤ c, z′ = (1 − [1 −

1/
(K
c

)
][1/2+fp(c)])·(1−[1/2+fp(`−c)]) otherwise.

We set z = max(z′, 1− (1/2 + fp(`)))
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9. A cryptographic framework for the pri-
vacy of email ecosystems

9.1 Contribution to the PANORAMIX project

The main contribution of the University of Edinburgh to the third year for WP3 is the introduction
of a security framework for the formal treatment of privacy in e-mail ecosystems. By introducing
our cryptographic framework, we aim at the following objectives:

1. Enable security analysis of email ecosystems according to the standards of state-of-the art
cryptography.

2. Support the embedding and taxonomy of the well-known notions of privacy (e.g. unlinkability,
anonymity, unobservability, differential privacy etc., see [2, 4, 3] ), by parameterising the said
framework with respect to different cases of privacy leakage.

3. Formally analyse the anonymity of the PANORAMIX email ecosystem and compare with the
anonymity of other existing solutions.

Our framework follows the simulation-based paradigm according to the Universal Composability
(UC) standards put forth by Canetti [1]. In the UC model, the execution flow among interacting
entities is rigorously defined while the security of the studied protocols is preserved under arbitrary
compositions of protocol executions. The UC model is currently the best way to formally capture
security of entities that interact over internet communications, therefore greatly suitable in the case
of an email ecosystem, where clients, service providers and (potentially) mixing nodes, conctinuously
interact in a complicated manner.

Building upon the UC model, we conceptualise an “ideal” email ecosystem and we enhance
it by parameterising its privacy according to some leakage function over the execution transcript
that specifies the type of information that is leaked to the (global passive) adversary. This ideal
ecosystem serves as a privacy reference point that a real-world ecosystem (e.g., the PANORAMIX
email ecosystem) should approximate security-wise by appearing a similar behaviour regarding
execution transcripts. If this happens, then the real-world ecosystem is essentially as secure as the
ideal one, with respect to this leakage function. For example, if the leakage function provides the
adversary with the sender and recipient identities, then the level of privacy matches the standard
notion of anonymity.

Towards this developing our cryptographic framework, modelling the ecosystem’s network pa-
rameters (synchronization, message delay, channel throughput/bandwidth/capacity, etc.) is essen-
tial. We view this step, along with the part of grading various well-known notions of privacy via
the leakage function above, as two interesting research contributions that may be of independent
interest.
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9.2 A UC framework for the privacy of email ecosystems

9.2.1 Entities and protocols of an email ecosystem

The entities that are involved in a private email “(eco)system” E are the following:

– The service providers (SPs) SP1, . . . ,SPN that register users and are responsible for mailbox
management and email transfer. The SPs are aware of each other and also connect to other
external services.

– The clients C1, . . . , Cn that wish to exchange email messages and are registered with the SPs.
For simplicity, we assume that each client is linked with only one SP that manages the client’s
mailbox. We write C`@SPi to denote that C` is registered to SPi We define the set of all
clients whose mailboxes SPi is managing as Ci :=

{
C`
∣∣ C`@SPi

}
.

– The mix-node subsystem MX consisting of the mix-nodes MX1, . . . ,MXm that is the core of
the anonymous email routing mechanism.

An execution of an email ecosystem E comprises the following protocols:

– The Send protocol between client Cs and its service provider SPi. In particular, Cs that wishes
to send a messageM to some client address Cr@SPj authenticates to SPi and provides it with
an encoding Encode(M,Cr@SPj). At the end of the protocol, Encode(M,Cr@SPj) is at the
outbox of Cs@SPi managed by SPi.

– The Route protocol that is executed among SP1, . . . ,SPN and MX1, . . . ,MXm. Namely, the
encoded message Encode(M,Cr@SPj) is forwarded to the MX subsystem, which in turn
eventually delivers it to SPj that manages the inbox of Cr.

– The Receive protocol between client Cr and SPj , where Cr can retrieve (a subset of) the
messages from the inbox of Cr@SPj via a combination of fetch requests and push operations.

Correctness. The correctness of an email ecosystem E dictates that in every honest execution
of Send,Route and Receive protocols, Cr will obtain the message M composed by Cs encoded as
Encode(M,Cr@SPj).
Remark 9.1. In this work, we restrict to email solutions where the client-side operations are simple
and do not include complex interaction with the SPs for the execution of heavy cryptographic
primitives (e.g. secure MPC). As we will explain shortly, the client-friendly approach poses some
limitations on the security level that the email ecosystem can achieve.

9.2.2 Input format

We formally express an input of the ecosystem for some time moment. We write J·K to denote a
multiset.

Definition 1 (Email Input). Let E be an email ecosystem with service providers SP1, . . . ,SPN and
clients C1, . . . , Cn. We define the input IT of E at global time Cl = T

IT :=
q
(Send, Csi@SPSi ,Mi, Cri@SPRi)

y
i∈KT

∪
q
(Fetch, Cr̂j@SPR̂j

)
y
j∈K̂T

,

where Si, Ri, R̂j ∈ [N ] and si, ri, r̂j ,KT , K̂T ∈ [n]. The quadruple (Send, Csi@SPSi ,Mi, Cri@SPRi)
denotes that sender client Csi@SPSi composed a message Mi for recipient client Cri@SPRi , and the
pair (Fetch, Cr̂j@SPR̂j

) denotes that Cr̂j@SPR̂j
has made a fetch request to SPR̂j

.

– 195 of 210 –



D3.3 - Final Report

9.2.3 A global clock functionality

The global clock functionality is parameterised by a set of parties P, a set of functionalities F, the
UC environment Z and the adversary A.

The global clock functionality Gclock(P,F).

Initialisation.

– Upon receiving (sid, Init_Clock) from Z, if its status is not ‘execute’, then

1. It initialises the global clock variable as Cl← 0.

2. It initialises the set of advanced parties as Ladv ← ∅.
3. It sets its status to ‘execute’ and sends the message ‘(sid, ready)’ to Z.

Execution on status ‘execute’.

– Upon receiving (sid,Advance_Clock) from P ∈ P \ {Z,A}, it adds P in Ladv and sends the
message (sid,Advance_Clock, P ) to A. If Ladv = P ∪ F, then it updates as Cl ← Cl + 1 and
resets Ladv ← ∅.

– Upon receiving (sid,Advance_Clock) from F ∈ F, it adds F in Ladv and sends the message
(sid,Advance_Clock,F) to F . If Ladv = P ∪ F, then it updates as Cl ← Cl + 1 and resets
Ladv ← ∅.

– Upon receiving (sid,Read_Clock) from P ∈ P ∪ F ∪ {Z,A}, then it sends
(sid,Read_Clock,Cl) to P .

Figure 9.1: The global clock functionality Gclock(P,F) interacting with the environment Z and the
adversary A.

9.2.4 An ideal-world e-mail privacy functionality

Let Ad be the set of all valid email addresses linking the set of clients C = {C1, . . . , Cn} and the
set of SPs SP = {SP1, . . . ,SPN}. Let MX = MX1, . . . ,MXm be the set of mix servers. The history
of an email ecosystem execution that involves the entities in C,SP and MX is expressed as a list
H, where each entry of H is associated with a unique pointer ptr. The leakage in each step of the
execution, is expressed via a leakage function Leak defined as follows: (a) when given as input an
execution history sequence H, it outputs some leakage string Leak(H); (b) when given as input a
pointer ptr to some history entry of H and Leak(H), then Leak(ptr, Leak(H) is a bit value 1/0 that
determines whether the adversary will obtain the leakage Leak(H) or not. We require that during
a time slot, the environment sends a message for every party, even when the party is ‘sleeping’, so
that the clock can be advanced as described in Fig. 9.1.

The email privacy functionality FLeak,∆net

priv (C,SP,Ad,MX) is parameterised by the message
delivery delay bound ∆net and the leakage function Leak.

Initialisation

– FLeak,∆net

priv (C,SP,Ad,MX) sets its status to ‘init’. It initialises the set of active entities Lact,
the set of clock-advanced entited Ladv, the “history” list H, and the set of leaked entries Lleak

as empty. For every valid address Cr@SPj ∈ Ad, it initializes a list Inbox[Cr@SPj ] as empty.
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– Upon receiving (sid, Init) from a party P ∈ (C∪ SP∪MX), if FLeak,∆net

priv (C,SP,Ad,MX)’s
status is ‘init’, then it adds P to Lact. If Lact ( C ∪ SP ∪MX, then it sends the message
(sid, init, P ) to Sim. If Lact = C ∪ SP ∪MX, then it sets its status to ‘execute’ and sends the
message (sid, init, P, ready) to Sim.

Execution on status ‘execute’

– Upon receiving
(
sid,Active,@SPi

)
from C`, if C`@SPi ∈ Ad \ Lact, then

1. FLeak,∆net

priv (C,SP,Ad,MX) adds
(
ptr,

(
sid,Cl,Active, C`@SPi

))
to H and C`@SPi to

Lact .
2. It sends the message

(
sid,Leak(ptr, H, Leak)

)
to Sim.

– Upon receiving
(
sid, Inactive,@SPi

)
from C`, if C`@SPi ∈ Ad, then

1. It adds
(
ptr,

(
sid,Cl, Inactive, C`@SPi

))
to H and if C`@SPi ∈ Lact, then it deletes

C`@SPi from Lact.
2. It sends the message

(
sid,Leak(ptr, H, Leak)

)
to Sim.

– Upon receiving
(
sid,Send, 〈Cs@SPi,M,Cr@SPj〉

)
from Cs, if Cs@SPi ∈ Ad ∩ Lact and

Cr@SPj ∈ Ad, then

1. It adds
(
ptr,

(
sid,Cl,Send, 〈Cs@SPi,M,Cr@SPj〉

)
, ‘pending’

)
to H.

2. It sends the message
(
sid,Leak(ptr, H, Leak)

)
to Sim.

– Upon receiving
(
sid,Allow_Send, ptr′

)
from Sim, if ptr′ ∈ Lleak and ptr′ refers to a history

entry of the form
(
sid,Cl′,Send, 〈Cs′@SPi′ ,M

′, Cr′@SPj′〉
)
with status ‘pending’, then it adds

this entry to Inbox[Cr@SPj ] and updates the entry’s status to ‘(sent,Cl)’.

– Upon receiving
(
Fetch, sid, Cr@SPj

)
from Cr, if Cr ∈ Lact and Cr@SPj ∈ Ad, then

1. It adds
(
ptr,

(
sid,Cl,Fetch, Cr@SPj

)
, ‘pending’

)
to H.

2. It sends the message
(
sid,Leak(ptr, H, Leak)

)
to Sim.

– Upon receiving
(
sid,Allow_Fetch, ptr′, n

)
from Sim, if ptr′ ∈ Lleak and ptr′ refers to a

history entry of the form
(
sid,Cl′,Fetch, Cr′@SPj′

)
with status ‘pending’, then it defines the

list Inboxn[Cr@SPj ] that contains the first n entries of (or all if n ≥ Inbox[Cr@SPj ]) and sends
the message (sid, Inboxn[Cr@SPj ]) to Cr and updates the entry’s status to ‘(fetched, n,Cl)’. In
addition, it removes the first n entries of Inbox[Cr@SPj ] from the list.

– Upon receiving
(
sid,Read_Clock

)
from a party P ∈ (C ∪ SP ∪MX), then

1. It adds
(
ptr,

(
sid,Cl,Read_Clock, P

))
toH and sends the message

(
sid,Read_Clock

)

to Gclock. Upon receiving
(
sid,Read_Clock,Cl

)
from Gclock, it sends the message(

sid,Read_Clock,Cl
)
to P .

2. It sends the message
(
sid,Leak(ptr, H, Leak)

)
to Sim.

– Upon receiving
(
sid,Advance_Clock

)
from a party P ∈ (C ∪ SP ∪MX) \ Ladv, then

1. It adds
(
ptr,

(
sid,Cl,Advance_Clock, P

))
to H and P in Ladv.

2. It sends the message
(
sid,Leak(ptr, H, Leak)

)
to Sim.

3. If Lact = C∪SP, then it sets its status to ‘advance’ and sends the message
(
sid,Advance_Clock

)

to Gclock.
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Clock advancement on status ‘advance’.

– Upon receiving
(
sid,Advance_Clock

)
from Gclock,

1. For every history entry of the form
(
sid,Cl′,Send, 〈Cs′@SPi′ ,M

′, Cr′@SPj′〉
)
with sta-

tus ‘pending’ such that Cl − Cl′ = ∆net, FLeak,∆net

priv (C,SP,Ad,MX) adds this entry to
Inbox[Cr@SPj ] and updates the entry’s status to ‘(finished,Cl)’.

2. For every history entry of the form
(
sid,Cl′,Fetch, Cr′@SPj′

)
with status ‘pending’ such

that Cl − Cl′ = ∆net, it sends the message (sid, Inbox[Cr@SPj ]) to Cr, resets the list
Inbox[Cr@SPj ]← ε and updates the entry’s status to ‘(fetched, |Inbox[Cr@SPj ]|,Cl)’.

3. It sends the message
(
sid,Leak(ptr, H, Leak)

)
to Sim.

4. It sets its status to ‘execute’ and Ladv as empty, and sends the message (sid, clock_advanced)
to Sim.

Procedure Leak on input (ptr, H, Leak).

– If Leak(ptr, Leak(H)) = 1, then return
(
next, Leak(H)

)
; otherwise, return

next.

We denote by EXEC
FLeak,∆net

priv (C,SP,Ad,MX)

Sim,Z,Gclock(C∪SP∪MX,Z,Sim)(λ), the output of the environment Z in an ideal-

world execution of FLeak,∆net

priv (C,SP,Ad,MX) under the presence of Sim.

9.2.5 The
(
Gclock,F∆net

auth

)
-hybrid world

In a real world execution of the email ecosystem E, the clients, the SPs and the mix servers interact
according to the protocol guidelines, the environment’s instructions, and advance their local time
by making calls to Gclock, which plays the role of a hybrid functionality. The message delivery is
execute via the F∆net

auth described in Section. 9.1.4, the functionality that captures the notion of an
authenticated channel upon which a maximum delivery delay can be imposed. the functionality is
parameterised by G[E] that denotes the network topology of E formalised as a graph with node set
C ∪ SP ∪MX.

– 198 of 210 –



D3.3 - Final Report

The authenticated channel functionality F∆net

auth (G[E]).

The functionality initialises a list of pending messages Lpend as empty.

– Upon receiving (sid,Channel,M, P ′) from P ∈ C ∪ SP ∪MX, if (P, P ′) ∈ G[E], then

1. It sends the message (sid,Read_Clock) to Gclock(C ∪ SP ∪MX).

2. Upon receiving (sid,Read_Clock,Cl) to Gclock(C ∪ SP ∪MX), it picks a unique pointer
ptr and stores the entry

(
ptr, (sid,Cl,Channel, P,M,P ′)

)
to Lpend.

3. It sends the message
(
ptr, (sid,Channel, P,M,P ′)

)
to A.

– Upon receiving (sid,Allow_Channel, ptr′) from A, if there is an entry(
ptr′, (sid,Cl′,Channel, P,M,P ′)

)
in Lpend, then it sends the message (sid,M, P ) to P ′

and deletes
(
ptr′, (sid,Cl′,Channel, P,M,P ′)

)
from Lpend.

– Upon any activation from a party P ∈ P or A as above,

1. It sends the message (sid,Read_Clock) to Gclock(C ∪ SP ∪MX).

2. Upon receiving (sid,Read_Clock,Cl) to Gclock(C∪SP∪MX), it parses Lpend. For every entry(
ptr′, (sid,Cl′,Channel, P,M,P ′)

)
such that Cl−Cl′ = ∆net, it sends the message (sid,M, P ) to

P ′ and deletes
(
ptr′, (sid,Cl′,Channel, P,M,P ′)

)
from Lpend.

Figure 9.2: The authenticated channel functionality F∆net
auth (G[E]) interacting with the adversary A.

We denote by EXECEGclock,F
∆net
auth

A,Z,Gclock(C∪SP∪MX,F∆net
auth ,Z,A)

(λ) the output of the environment Z in a real-

world execution of EGclock,F
∆net
auth under the presence of A.

9.2.6 A UC definition of e-mail privacy

The definition of a private email ecosystem is provided below.

Definition 2 (UC Email Privacy). Let λ be the security parameter and ∆net, ε be non-negative
values. Let E be an email ecosystem with client set C = C1, . . . , Cn, service provider set SP =
SP1, . . . ,SPN , mix server set MX = MX1, . . . ,MXm and Ad be the list of the client’s identities and
all valid addresses. We say that EGclock,F

∆net
auth achieves statistical (resp. computational) ε-privacy with

respect to leakage function Leak(·) and message delay ∆net, if for every unbounded (resp. PPT)
global passive adversary A, there is a PPT simulator Sim such that for every PPT environment Z,
it holds that

EXEC
FLeak,∆net

priv (C,SP,Ad,MX)

Sim,Z,Gclock(C∪SP∪MX,Z,Sim)(λ) ≈ε EXECEGclock,F
∆net
auth

A,Z,Gclock(C∪SP∪MX,F∆net
auth ,Z,A)

(λ) .

Asymptotically, we say that EGclock,F
∆net
auth achieves statistical (resp. computational) privacy with

respect to leakage function Leak(·) and message delay ∆net, if for every unbounded (resp. PPT)
global passive adversary A, there is a PPT simulator Sim such that for every PPT environment

Z, EXEC
FLeak,∆net

priv (C,SP,Ad,MX)

Sim,Z,Gclock(C∪SP,Z,Sim)(λ) and EXECEGclock,F
∆net
auth

A,Z,Gclock(C∪SP∪MX,F∆net
auth ,Z,A)

(λ) are statistically (resp.

computationally) indistinguishable.
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9.2.7 Types of leakage functions

According to the description of FLeak,∆net , the history H of the execution of the email ecosystem E,
tagged by sid is a sequence of messages in one of the following formats

(
ptr,

(
sid, T,Active, C`@SPi

)) (
ptr,

(
sid, T, Inactive, C`@SPi

))
(
ptr,

(
sid, T,Send, 〈Cs@SPi,M,Cr@SPj〉

)
, ‘pending’

) (
ptr,

(
sid, T,Send, 〈Cs@SPi,M,Cr@SPj〉

)
, (‘sent’, T ′)

)
(
ptr,

(
sid, T,Fetch, Cr@SPj

)
, ‘pending’

) (
ptr,

(
sid, T,Fetch, Cr@SPj

)
, (‘fetched’, n, T ′)

)
(
ptr,

(
sid,Cl,Advance_Clock, P

)) (
ptr,

(
sid,Cl,Read_Clock, P

))

where T, T ′ are values of the global clock Cl. Any leakage function that captures an informal
notion of privacy, e.g. anonymity, unlinkability, or unobservability, should be well-defined over the
set of history sequences for execution tagged by sid, denoted as Hsid. Before describing examples of
leakage functions we define the following (multi)sets for some history H ∈ Hsid:

– The active address set for H at time slot T

ActT [H] =:
{

(C`,SPi) ∈ C× SP
∣∣∣ ∃(ptr′, T ′) :

[
T ′ ≤ T ]∧

∧
[(

ptr′,
(
sid, T ′,Active, C`@SPi

))
∈ H

]
∧

∧
[
∀(ptr′′, T ′′) : T ′ ≤ T ′′ ≤ T ⇒

(
ptr′′,

(
sid, T ′′, Inactive, C`@SPi

))
/∈ H

]}
.

– The sender set for H at time slot T

ST [H] :=
{
Cs ∈ C

∣∣∣ ∃(ptr, SPi) :
(
ptr,

(
sid, T,Send, 〈Cs@SPi, ∗, ∗〉

)
, ∗
)
∈ H

}
.

– The sender multiset for H at time slot T , denoted by JST K[H], is defined analogously. The
difference with ST [H] is that the cardinality of the Send messages provided by Cs is attached.

– The fetching recipient set for H at time slot T

FRT [H] :=
{
Cr ∈ C

∣∣∣ ∃(ptr,SPj) :
(
ptr,

(
sid,Fetch, 〈Cr@SPj〉

)
, ∗
)
∈ H

}
.

– The fetching recipient multiset for H at time slot T , denoted by JRK[H], is defined analogously.
The difference with RT [H] is that the cardinality of the Fetch messages provided by Cr is
attached.

JFRT K[H] :=
{(
Cr ∈ C

∣∣{(ptr,SPj)|
(
ptr,

(
sid, T,Fetch, 〈Cr@SPj〉

)
, ∗
)
∈ H

}∣∣
)
∈ C × N

}
.

– The message recipient set for H at time slot T

MRT [H] :=
{
Cr ∈ C

∣∣∣ ∃(ptr, SPj) :
(
ptr,

(
sid, T,Send, 〈∗, ∗, Cr@SPj〉

)
, ∗
)
∈ H

}
.

– The message recipient multiset for H at time slot T , denoted by JST K[H], is defined analo-
gously. The difference with ST [H] is that the cardinality of the Send messages sent to Cr is
attached.
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Time Intervals. Given the above notation, we can define the respective (multi)set for H and
time frame F = [T1, T2] as the union of all sets for H at intermediate time slots. For instance, the
sender set for H and time frame F = [T1, T2], is defined as

SF [H] :=
⋃

T1≤T≤T2

ST [H] .

Our framework enables us to cover a large number of privacy concepts by tailoring the corre-
sponding leakage function. To demonstrate this, we will use our framework to express the leakage
functions from the previous Section.

Unobservability. The unobservability propoerty suggests that nothing is leaked besides the “ac-
tivity bit” of the clients. In our framework, this is formally captured as follows:

Leak(H) = Act(H)

Leak(ptr, H) =

{
1, if

(
ptr,

(
sid,Advance_Clock

))
∈ H

0, otherwise

Anonymity. Our framework gives away as “minimum leakage" the identities of users who attempt
to send and fetch messages. The corresponding function LeakAnon(H) operates as follows: If the last
entry of H is

(
ptr,

(
sid,Cl,Advance_Clock

))
, then output: S[H]Cl−1,Cl,R[H]Cl−1,Cl, otherwise

output ⊥. LeakAnon(ptr, LeakAnon(H)) returns 0 if LeakAnon(H) is ⊥, and 1 otherwise.

Weak Anonymity. Correspondingly, weak anonymity reveals message cardinalities in addition to
identities of message senders and recipients. The corresponding function LeakWAnon(H) operates as
follows: If the last entry ofH is

(
ptr,

(
sid,Cl,Advance_Clock

))
, then output: JSK[H]Cl−1,Cl, JMRK[H]Cl−1,Cl,

otherwise output ⊥. LeakWAnon(ptr, LeakWAnon(H)) returns 0 if LeakWAnon(H) is ⊥, and 1 otherwise.

9.2.8 Example case study: The complete communication solution

The complete communication email ecosystem Ecomp operates in rounds and under a known mes-
sage delivery delay bound ∆net. The ecosystem utilises a public key encryption scheme E =
(Gen,Enc,Dec). For the system’s security and liveness, we require that at the k-th round, (i) clients
provide messages to their SPs during the time interval [(k−1)T + 2(k−1)∆net), kT + 2(k−1)∆net],
and (ii) the round is finalised during the time interval [kT + (2k− 1)∆net), kT + 2k∆net], where the
SPs interact with each other and send messages to their assigned clients.

Furthermore, throughout the description we assume that the following hold:

(a). The execution begins at global time Cl = 0.

(b). All communication is executed via F∆net
auth (G[E]) as described in Fig. 9.2.

(c). All entities are aware of each others’ public keys. By, Enc[X](Y ) we denote the encryption of
Y under X’s public key.

(d). All ciphertexts are of the same length.

(e). All computations require one unit slot.
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(f). Each client C1, . . . , Cn is assigned to exactly one address, so there are exactly n valid addresses
in total.

(g). Each client sends at most one message per round.

Description

The email ecosystem EGclock,F
∆net
auth

comp with client setC = C1, . . . , Cn, service provider set SP = SP1, . . . ,SPN
and valid address set Ad (and no mix servers) has network topology

G[E] :=
(
C ∪ SP, {(C`,SPi) | C`@SPi ∈ Ad} ∪ {(SPi,SPj) | (i, j ∈ [N ]) ∧ (i 6= j)

)
.

The real-world execution for Ecomp is done according the following steps:
� Prior to the execution start (e.g. at least ∆net time before Cl = 0),

– On input
(
sid, Init

)
, a party P ∈ C ∪ SP that is not yet initialised, runs Gen(1λ) to gen-

erate a pair of a private and a public key pair (skP , pkP ). Then, it broadcasts the message(
sid, (init, pkP ), P ) to all clients and SPs by sending

(
sid, (init, pkP ), P ′) to F∆net

auth (G[E]), for
every P ′ ∈ C ∪ SP \ {P}.

– When SPi has received
(
sid, (init, pkSPj

,SPj) for every i ∈ [N ]\{j}, then begins the engagement
in the email message exchange with its assigned clients and the other SPs.

� During round k and for every Cl ∈ [(k − 1)T + 2(k − 1)∆net), kT + 2(k − 1)∆net],

– On input
(
sid,Active,SPi

)
, if C` is not logged in, then she logs in by sending the message(

sid,Enc[SPi](Active, C`)
)
to SPi, where C`@SPi is her valid address (i.e. in Ad). Upon

receiving and decrypting as
(
sid,Active, C`

)
, SPi checks that C`@SPi ∈ Ad and if so, then

it adds C` to its set of active users Liact.

– On input
(
sid, Inactive, SPi

)
, if C` is logged in, then she logs out by sending the message(

sid,Enc[SPi](Inactive, C`)
)
to SPi, where C`@SPi ∈ Ad. Upon receiving and decrypting as(

sid,Active, C`
)
, SPi checks that C`@SPi ∈ Ad and if so, then it removes C` from its set of

active users Liact.

– On input
(
sid,Send, 〈Cs@SPi,M,Cr@SPj〉

)
, if Cs is logged in to SPi, then she sends the mes-

sage
(
sid,Enc[SPi]

(
Cs@SPi,Enc[SPj ]

(
Cr@SPj ,Enc[Cr](M)

)))
to SPi which checks that Cs@SPi ∈

Ad and if so, then it decrypts and adds
(
sid, Cs@SPi,Enc[SPj ]

(
Cr@SPj ,Enc[Cr](M)

))
to its

set of messages pending to be sent, denoted by Lisend.

– On input
(
sid,Fetch, Cr@SPj

)
, if Cr is logged in to SPj , it sends the message

(
sid, Cr@SPj ,Enc[SPj ](Fetch)

)

to SPj which, if Cr@SPj is a valid address, it decrypts and adds Inbox[Cr@SPj ] to its set of
inboxes which messages are pending to be pushed, denoted by Lipush.

– On input
(
sid,Advance_Clock), the entity P ∈ C∪SP sends the message

(
sid,Advance_Clock)

to Gclock. In addition, if P is a client C` that is logged in to SPi but has not received an input
at global time Cl, then it sends a dummy message

(
sid,Enc[SPi](0)

)
to SPi.

– On input
(
sid,Read_Clock), the entity P ∈ C∪SP sends the message

(
sid,Read_Clock)

to Gclock. Upon receiving
(
sid,Read_Clock,Cl) from Gclock, P stores Cl as its local time and

forwards the message
(
sid,Read_Clock,Cl) to the environment.
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� During round k and for every T ′ ∈ [kT + (2k − 1)∆net), kT + 2k∆net],

1. For every address Cs@SPi, if there is a message
(
sid, Cs@SPi,Enc[SPj ]

(
Cr@SPj ,Enc[Cr](M)

))

in Lisend, then SPi broadcasts
(
sid, Cs@SPi,Enc[SPj ]

(
Cr@SPj ,Enc[Cr](M)

))
to all SPs and re-

moves the message from Lisend. If there is no such message for Cs@SPi but Cs ∈ Liact, then
SPi broadcasts a dummy message

(
sid,Enc[SPi]

(
0,Enc[SPi](0)

))
under its own key.

2. Upon receiving a message (sid,Enc[SPj ](·, ·)) from some SP, SPj checks whether E2 is a cipher-
text under its public key that decrypts as a valid address Cr@SPj along with a ciphertext E.
If so, then it adds E to Inbox[Cr@SPj ].

3. For every address Cr@SPj , if Inbox[Cr@SPj ] ∈ Lipush, then SPj forwards all messagesEr,1, . . . Er,nr

in Inbox[Cr@SPj ] to Cr along with n− nj dummy ciphertexts under Cr’s public key, empties
Inbox[Cr@SPj ] and removes it from Lipush. If Inbox[Cr@SPj ] /∈ Lipush but Cr ∈ Liact, then
SPj forwards n dummy ciphertexts to Cr. In any case, SPj sends a message of the form
(sid, Er,1, . . . , Er,n) to Cr, if Cr is active.

4. Upon receiving (sid, Er,1, . . . , Er,n) from SPj and if Cr has sent a
(
sid,Fetch, Cr@SPj

)
re-

quest, Cr decrypts all ciphertexts and stores the ones that are not dummy, i.e. the correspond
to actual mail messages.

Extensions. The aforementioned conditions (a)-(f), where assumed to simplify analysis. We note
that this does not harm generality; namely, (a),(b) and (c) guarantee secure end-to-end commu-
nication between entities, (d) can be generalised to a computation upper bound after which the
next round begins, whereas removing (e) and (f) could be addressed by adding a suitable amount
of dummy traffic, specified by the upper bound on the number of addresses per client and messages
per client in each round.

Security

We prove that Ecomp achieves unobservability as formally expressed in Subsection 9.1.7. We con-
sider that leakage happens in a “clock-based" manner, i.e. the ideal adversary obtains leakage only
during clock advancement stage. This assumption is natural for global passive adversaries, as what-
ever happens within the discretised time slot can be consider beyond the adversary’s observational
sensitivity. For the privacy of Ecomp, we require that the underlying public key encryption scheme
E = (Gen,Enc,Dec) satisfies the properties of (i) multiple challenge IND-CCA (m-IND-CCA) secu-
rity, which is equivalent to standard IND-CCA security (up to negligible error). For completeness,
we recall the definitions of m-IND-CCA below.

Definition 3 (m-IND-CCA security). We say that the public key encryption scheme E = (Gen,Enc,Dec)
achieves m-IND-CCA security, if for every PPT adversary B, the probability that B wins the fol-
lowing game is no more than 1/2 + negl(λ).
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The m-IND-CCA game GE,Bm−IND−CCA(1λ).

• The challenger runs Gen(1λ) and obtains a pair of a secret key sk and
a public key pk. It chooses a random bit b ∈ {0, 1}. It provides B with
pk.

• The adversary B may send (polynomially many) challenge queries of
the form (M0,M1) to the challenger which responds with Enc(pk,Mb).

• The adversary B may make (polynomially many) ciphertext decryption
queries of the form C to the challenger which responds with Dec(sk, C),
under the restriction that C is not a response to some previous chal-
lenge query.

• The game returns 1 iff B outputs a bit b∗ that matches b.

We prove the privacy of Ecomp in the following theorem.

Theorem 1. Let Ecomp with clients C = {C1, . . . , Cn} and service providers SP = SP1, . . . ,SPN
be implemented over an m-IND-CCA secure encryption scheme E = (Gen,Enc,Dec). Then, there

is a negligible function ε(·) such that EGclock,F
∆net
auth

comp achieves computational ε-privacy with respect to
leakage function

Leak(H) = Act(H)

Leak(ptr, H) =

{
1, if

(
ptr,

(
sid,Advance_Clock

))
∈ H

0, otherwise

and message delay ∆net, against any global passive PPT adversary A.

Proof. LetA be a global passive PPT adversary against EGclock,F
∆net
auth

comp . We construct an ideal adversary
Sim for A such that given C,SP,Ad and for any environment Z operates as follows:

– Upon receiving a message
(
sid, X

)
from Z, it forwards

(
sid, X

)
playing the role of a simulated

environment.

– Upon receiving a message
(
sid,M

)
from A on behalf of the environment, it forwards

(
sid,M

)

to Z.

– Upon receiving
(
sid, init, P

)
or
(
sid, init, P, ready

)
from FLeak,∆net

priv (C,SP,Ad), it runs Gen(1λ)
on behalf of P ∈ C∪SP, to generate a pair of a private and a public key pair (skP , pkP ). Then,
it broadcasts the message

(
sid, (init, pkP ), P ), playing the role of F∆net

auth (G[Ecomp]).Observe that
since A is global and passive, the execution will always initiate upon Z’s request.

– Upon receiving
(
sid,Advance_Clock, P

)
from some entity P ∈ C∪SP from Gclock, it sends(

sid,Read_Clock
)
to Gclock. Upon receiving

(
sid,Read_Clock,Cl

)
from Gclock, it stores

Cl as its local time.

– Upon receiving
(
sid,Read_Clock

)
from A, it forwards

(
sid,Read_Clock

)
to Gclock and

returns to A the response
(
sid,Read_Clock,Cl

)
it received from Gclock.
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– Upon receiving (sid, next,Act[H]) during time Cl from FLeak,∆net

priv (C,SP,Ad), which according
to the definition of Leak happens only after Gclock has forwarded

(
sid,Advance_Clock

)

to FLeak,∆net

priv (C,SP,Ad), it (i) sets of the simulated active clients/addresses for H at time
Cl as ActCl[H̃] ← Act[H], and (ii) sends

(
sid,Read_Clock

)
to Gclock. Upon receiving(

sid,Read_Clock,Cl
)
from Gclock, it stores Cl as its local time. Then, for every round

k it operates as follows:

◦ If Cl ∈ [(k − 1)T + 2(k − 1)∆net, kT + 2(k − 1)∆net], then Sim simulates the messages
sent from the clients to their SPs. Namely, for every client C` that has either remained
or turned active at Cl (i.e. C` ∈ ActCl[H̃]) and is logged in as C`@SPi, Sim sends a
dummy message

(
sid,Channel,Enc[SPi](0), SPi

)
to the simulated F∆net

auth that forwards(
ptr,

(
sid,Channel, C`,Enc[SPi](0),SPi

))
to A, where ptr is a unique pointer.

◦ If Cl = (k − 1)T + (2k − 1)∆net, then Sim simulates the messages broadcast among the
SPs. Observe that since

(
kT + (2k − 1)∆net

)
−
(
kT + 2(k − 1)∆net

)
= ∆net,

for each C` assigned to SPi that has sent a message
(
sid,Channel,Enc[SPi](0), SPi

)
to

F∆net
auth at time Cl′ ∈ [(k−1)T+2(k−1)∆net), kT+2(k−1)∆net], it holds that SPi will receive

the message
(
sid,Enc[SPi](0), C`

)
before Cl. Therefore, Sim can simulate the broadcast

among the SPs as follows: on behalf of each SPi and for every C` s.t. SPi has obtained
a message

(
sid,Enc[SPi](0), C`

)
(equivalently, C`@SPi ∈ ActCl′ [H̃] for Cl′ = kT + 2(k −

1)∆net) and for every SPj 6= SPi, it sends the message
(
sid,Channel,Enc[SPi](0), SPj

)

to F∆net
auth at Cl.

◦ If Cl = (k − 1)T + 2k∆net, then Sim simulates the messages sent by the SPs to their
clients. Similarly as above, the delay bound ∆net guarantees that during [(k−1)T+(2k−
1)∆net, kT + 2k∆net], for every active address Cs@SPi, every SPj 6= SPi will receive a
dummy message

(
sid,Enc[SPi](0), SPi

)
. Therefore, Sim can simulate what SPj sends to its

active assigned clients by sending a dummy vector of n ciphertexts (sid,Enc[Cr](0), . . . ,Enc[Cr](0))

to every Cr s.t. Cr@SPj ∈ ActCl′ [H̃] for Cl′ = kT + 2(k − 1)∆net.

We prove the privacy of EGclock,F
∆net
auth

comp via a reduction to the m-IND-CCA security of the underlying
public key encryption scheme E = (Gen,Enc,Dec), which are assumed in the theorem’s statement.
Our reduction works as follows: Let A be a real-world adversary and Z be an environment. First,
we order the clients and servers as parties P1, . . . , Pn+N . Then, we construct a sequence of “hybrid"
m-IND-CCA adversaries B1, . . . ,Bn+N , where Bj∗ executes the following steps:

1. It receives a public key pk from the m-IND-CCA challenger.

2. It generates the parties P1, . . . , Pn+N and simulates an execution of EGclock,F
∆net
auth

comp conducted by
Z and under the presence of A, also playing the role of Gclock,F∆net

auth . The simulation differs
from an actual execution as shown below:

(a) Upon initialization of a party Pj : if Pj 6= Pj∗ , then Bj∗ honestly generates a fresh
private-public key pair (skj , pkj). If Pj = Pj∗ , then it sets pkj∗ := pk.

(b) When a party Pi must send an encrypted message M to Pj : if j < j∗, then Bj∗ sends an
encryption of M under pkj ; if j = j∗, then it sends a challenge pair (M0,M1) := (0,M)
to the m-IND-CCA challenger; if j > j∗, then it sends an encryption of 0 under pkj .
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(c) Since all parties are honest, Bj∗ is completely aware of the plaintext-ciphertext corre-
spondence. Therefore, when Pi encrypts M under Pj ’s public key to a ciphertext C, Bj∗
runs Pj as if the latter had decrypted C as M .

3. It returns the output of Z.
Given the description of Bj∗ , j∗ = 1, . . . , n+N , we make the following observations:

• The hybrid step: for every 1 ≤ j∗ < n + N , the adversaries Bj∗ and Bj∗+1 have the same
behaviour regarding the parties Pj , where j 6= j∗, j∗ + 1. In addition, if the m-IND-CCA
challenge bit b is 1 then Bj∗ respects encryption of P ∗j and replaces with 0 any plaintext
intended for Pj∗+1, which is extactly the behaviour of Bj∗+1, if b = 0. Therefore, it holds that

Pr
[
B∗j = 1 | b = 1

]
= Pr

[
Bj∗+1 = 1 | b = 0

]
. (9.1)

• For the limit case of j∗ = n + N , we observe that if b = 1, then Bn+N executes real-world
communication respecting the environments’ instructions and inputs. Thus, we have that

Pr
[
Bn+N = 1 | b = 1

]
= EXECEGclock,F

∆net
auth

A,Z,Gclock(C∪SP,Z,A)(λ) . (9.2)

• For the limit case of j∗ = 1, we observe that if b = 0, then B1 replaces all real-world commu-
nication with encryptions of 0, exactly as Sim does in its simulation. Thus, we have that

Pr
[
B1 = 1 | b = 0

]
= EXEC

FLeak,∆net
priv (C,SP,Ad)

Sim,Z,Gclock(C∪SP,Z,Sim)(λ) . (9.3)

Next, by the m-IND-CCA security of E , we have that for every j∗ ∈ [n+N ], it holds that
∣∣∣Pr

[
Bj∗ = 1 | b = 1

]
− Pr

[
Bj∗ = 1 | b = 0

]∣∣∣ =

=
∣∣∣Pr

[
Bj∗ = 1 | b = 1

]
−
(
1− Pr

[
Bj∗ = 0 | b = 0

]
)
∣∣∣ ≤

≤
∣∣∣2 · Pr

[
(Bj∗ = 1) ∧ (b = 1)

]
+ 2 · Pr

[
(Bj∗ = 0) ∧ (b = 0)

]
− 1
∣∣∣ =

=
∣∣∣2 · Pr

[
GE,Bj∗m−IND−CCA(1λ) = 1

]
− 1
∣∣∣ ≤

∣∣∣2 ·
(
1/2 + negl(λ)

)
− 1
∣∣∣ = negl(λ) .

(9.4)

Finally, by Eq. (9.1),(9.2),(9.3), and (9.4), we get that
∣∣∣EXEC

FLeak,∆net
priv (C,SP,Ad)

Sim,Z,Gclock(C∪SP,Z,Sim)(λ)− EXEC
FLeak,∆net

priv (C,SP,Ad)

Sim,Z,Gclock(C∪SP,Z,Sim)(λ)
∣∣∣ =

=
∣∣∣Pr

[
B1 = 1 | b = 0

]
− Pr

[
Bn+N = 1 | b = 1

]∣∣∣ =

=

∣∣∣∣Pr
[
B1 = 1 | b = 0

]
−
n+N−1∑

j∗=1

Pr
[
Bj∗ = 1 | b = 1

]
+
n+N∑

j∗=2

Pr
[
Bj∗ = 1 | b = 0

]
− Pr

[
Bn+N = 1 | b = 1

]∣∣∣∣ =

=

∣∣∣∣
n+N∑

j∗=1

(
Pr
[
Bj∗ = 1 | b = 1

]
− Pr

[
Bj∗ = 1 | b = 0

])∣∣∣∣ ≤

≤
n+N∑

j∗=1

∣∣∣∣Pr
[
Bj∗ = 1 | b = 1

]
− Pr

[
Bj∗ = 1 | b = 0

]∣∣∣∣ = negl(λ)

which completes the proof.
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9.2.9 Framework extension: towards a complete ideal network functionality

As ongoing work of our framework and supplementary material to this deliverable, we propose a
network functionality that captures a big number of network parameters, such as message delay,
channel bandwidth and throughput and synchronisation loss. By formalising communication via
this functionality, we will be able to capture a wide spectrum of privacy countermeasures that exist
in the literature.

Let E be the set of entities (SPs, clients and mix-nodes) of E. We assume that the email
ecosystem E runs continuously in time units T = 0, 1, 2, 3, . . . called slots under the existence of a
global clock variable Cl over the integers. Each entity (network node) X ∈ E is equipped with an
internal clock Cl[X] and interacts with the other nodes via an incoming and an outgoing tape.

For each X,Y ∈ E , we denote by [X 7→ Y ] the (simplex) communication channel from X
to Y . Each channel [X 7→ Y ] has a bandwidth and a throughput value denoted by BW[X,Y ]
and Through[X,Y ], respectively, where naturally BW[X,Y ] ≥ Through[X,Y ]. We set BW[X,Y ] =
Through[X,Y ] = 0, if channel [X 7→ Y ] does not exist. Additionally, we define the list Data[X 7→ Y ]
that contains the pending data transferred via [X 7→ Y ].

We consider a global passive adversary A that observes the network traffic. Our setting is semi-
synchronous, i.e. A can drift the entities’ internal clocks w.r.t. Cl up to a synchronisation loss bound
∆sync. Moreover, we allow the A schedule the traffic at will, restricted only by some fixed bounded
delay parameter ∆net and the specified channel throughputs. In particular, at any given slot T and
channel [X 7→ Y ], A acts as a rushing adversary that can obtain Data[X 7→ Y ] and permute it
according to its strategy. At the end of T , A must forward the first Through[X,Y ] messages in list
Data[X 7→ Y ] to Y . The forwarded messages must comprise all messages which delivery has delayed
for ∆net slots unless these exceed the thresholds Through[X,Y ], where network congestion enforces
message drop.

The threat model under the presence of an adversary A is captured by the networking func-
tionality Fnet described below. The functionality takes as input the network parameters denoted
by

net_params :=
(
E , {BW[X,Y ],Through[X,Y ]}X,Y ∈E ,∆sync,∆net

)
.

We denote by L1 ← L2 ◦ L1 the appending of list L2 to list L1.

Initialisation (T = 0)

– Upon receiving initialize from A, if its status is neither set to ‘execute’ nor ‘finalise’, then it
executes the following steps:

1. It sets the global clock as Cl← 0.

2. It initialises the set of corrupted entities as Scorr ← ∅.
3. It initialises the set of entities that completed their activity as Scomp ← ∅.
4. For each X,Y ∈ E

– It sets the clock of X as Cl[X]← 0.
– It initializes the list Data[X,Y ]← ε.
– It initializes the list Receive[X]← ε.
– It initializes the “delayed data lists" Delay[i,X, Y ]← ε, where i = 0, . . . ,∆net.

5. It sets its status to ‘execute’ and sends the message ‘slot_start’ to A.
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Process execution during slot Cl = T under ‘execute’ status

– Upon receiving (push,M, Y ) from X, where M is a message and Y is the intended recip-
ient, if the size of Delay[0, X, Y ] does not exceed BW[X,Y ], then it selects a new unique
message ID id(M) for M , appends (id(M), X,M, Y ) to Delay[0, X, Y ], and provides A with
(id(M), X,M, Y ) .

– Upon receiving complete_push from X, it adds X to Scomp and sends (complete_push, X) to
A.

– Upon receiving (corrupt, X) from A, it adds X to Scorr.

– Upon receiving (forward, id(M)) from A, if there is a triple (X,M, Y ) and some i = 0, . . . ,∆net

such that (id(M), X,M, Y ) is an element of Delay[i,X, Y ], then it appends (X,M, Y ) to
Data[X,Y ], also removing (id(M), X,M, Y ) from Delay[i,X, Y ].

– Upon receiving (reorder,Data[X,Y ], L) from A, if L is a permutation of Data[X,Y ], then it
sets Data[X,Y ]← L.

– Upon receiving (set,Cl[X], T ′) from A, if X ∈ Scorr and |T ′−Cl| ≤ ∆sync, then it sets Cl[X]←
T ′.

– Upon receiving complete from A, if Scomp = E , then it sets its status to ‘finalise’ and Scomp ← ∅.
Next, it sends the message ‘slot_end’ to A.

Finalising slot Cl = T and time advancement under ‘finalise’ status

– Upon receiving arrange_messages from A, it executes the following steps:

1. For each X,Y ∈ E ,
– It appends the first up to Through[X,Y ] elements of Delay[∆net, X, Y ] to the first

positions of Data[X,Y ], i.e. it sets Data[X,Y ]← Delay[∆net, X, Y ] ◦ Data[X,Y ].
– For i = ∆net, . . . , 1, it overwrites the data in Delay[i,X, Y ] with the data in Delay[i−

1, X, Y ].
– It sets Delay[0, X, Y ]← ε.
– It appends the first up to Through[X,Y ] elements of Data[X,Y ] to Receive[Y ], by set-

ting Receive[Y ]← Data[X,Y ] ◦ Receive[Y ]. Next, it removes the appended elements
from Data[X,Y ].

2. It sends the list Receive[X] of every X ∈ E to A.

– Upon receiving (reorder,Receive[X], L) from A, if L is a permutation of Receive[X], then it
sets Receive[X]← L.

– Upon receiving (pull, b) from X, where b ∈ {0, 1}, if b = 1, then it writes the contents of
Receive[X] on the incoming tape of X. Next, it adds X to Scomp and sends the message
(pull, b,X) to A.

– Upon receiving advance_clock from A, if Spull = E , then it executes the following steps:

1. For each X /∈ Scorr, it sets Cl[X]← Cl[X] + 1 and Receive[X]← ε.
2. It sets Scomp ← ∅ and advances the global clock as Cl← Cl + 1.
3. It sets its status to ‘execute’ and sends the message ‘slot_start’ to A.
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9.2.10 Email protocol execution over Fnet

Via Fnet(net_params, we can describe the execution of an email ecosystem, as shown in Fig. 9.3.

Email protocol execution over Fnet.

Send Protocol.

– Upon receiving (Cs@SPi,M,Cr@SPj) from Z, Cs computes the encoding as
(Encode(M), Cr@SPj) and sends the message

(
push, Cs, (Encode(M), Cr@SPj), SPi

)
to

Fnet.

Route Protocol.

– Upon receiving (pull, b) from Z, SPi sends the message (pull, b,SPi) to Fnet.

– When reading a message
(
Cs, (Encode(M), Cr@SPj), SPi

)
from its incoming tape, SPi

chooses an entry mix-node MXk according to the protocol description.

Receive Protocol.

– Upon receiving (Fetch, Cr@SPj) from Z, Cr sends the message (push, Cr,Fetch,SPj) to
Fnet.

– Upon receiving (pull, b) from Z, SPj sends the message (pull, b,SPj) to Fnet.

– When reading a message (Cr,Fetch,SPj) from its incoming tape, it forwards the message
(Cr,Fetch,SPj) to Z.

– Upon receiving (push, Cr@SPj), if Inbox[Cr@SPj ] is non-empty, SPj retrieves
the first message of Inbox[Cr@SPj ] denoted by Inbox[Cr@SPj ][1]. Then, it
sends (push, SPj , Inbox[Cr@SPj ][1], Cr) to Fnet, removing Inbox[Cr@SPj ][1] from
Inbox[Cr@SPj ].

– Upon receiving (pull, b) from Z, Cr sends the message (pull, b, Cr) to Fnet.

– When reading a message Inbox[Cr@SPj ][1] from its incoming tape, it parses
Inbox[Cr@SPj ][1] as (Cs@SPi,Encode(M,Cr@SPj)) and decodes it as (Cs@SPi,M).
Then, it forwards (Cs@SPi,M) to Z.

Figure 9.3: Email protocol execution over Fnet .
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