Rafael Galvez—Ed. (KUL)
Dimitris Mitropoulos (GRNET)
George Tsoukalas (GRNET)
Panos Louridas (GRNET)
Yiannis Tselekounis (UEDIN)

Final System

Deliverable D4.4

January 31, 2019
PANORAMIX Project, # 653497, Horizon 2020

http://www.panoramix-project.eu

Dissemination Level: Public

P Horizon 2020

* * - .

x X European Union funding
ok for Research & Innovation

B Ref. Ares(2019)565871 - 31/01/2019

http://www.panoramix-project.eu

Revision History

Revision | Date Author(s) Description

0.1 2018-08-28 | DM, GT (GR- | Proposed table of contents
NET)

0.2 2018-09-19 | DM, GT (GR- | Proposed draft of sections
NET)

0.3 2018-10-25 | DM, GT (GR- | Section 2 ready
NET)

0.4 2018-10-26 | DM, GT (GR- | Subection 5.2 ready
NET)

0.5 2018-10-27 | DM, GT (GR- | Subection 3.1 and 3.2 ready
NET)

0.6 2018-10-27 | DM, GT (GR- | Section 3 ready
NET)

0.7 2018-10-28 | DM, GT (GR- | Subection 4.1 and 4.3 ready
NET)

0.8 2018-10-28 | DM, GT (GR- | Section 4 ready
NET)

0.9 2018-10-30 | DM, GT (GR- | Section 6 ready
NET)

1.0 2018-11-16 | RG (KUL) Conclusion and executive summary ready

1.1 2018-11-19 | DM, GT (GR- | Addressing 1lst review comments
NET)

1.2 2018-11-19 | DM, GT (GR- | Addressing 1st review comments part 2
NET)

1.3 2018-11-19 | DM, GT (GR- | Added Panoramix Toolkit as Appendix
NET)

14 2018-12-10 | MB (CCT) Review and proofreading

1.5 2018-12-17 | MW (UEDIN) Final Draft submitted to EC

1.6 2018-12-24 | DM, GT, PL | Changes in Introduction
(GRNET)

1.7 2018-12-30 | DM, GT, PL | Addressed more review comments
(GRNET)

1.8 2019-01-03 | AK(UEDIN) Editorial pass

1.9 2019-01-05 | RG(KUL) Moved license to appendix

2.0 2019-01-31 | MW (UEDIN) Final version submitted to EC

Executive Summary

This deliverable describes the final system of the PANORAMIX framework, which addresses the
remaining integration issues and incorporates the external feedback collected from the use-case
work packages. All the use cases make use of the system to fulfill their requirements.

An internet service has been created to support their operations, and the quality of the code
has been improved to enable third party developers adapt it to their needs or simply use it as
a library in an effective way.

Section [2] provides an overview of the different components of the system, and section [3] details
how a given application (e.g. email, e-voting) may use them.

Sections [] and [5] describe the software and its validation process in order to make its inner
workings transparent enough for third party developers to understand the system and potentially
adapt it to their needs.

Contents

(Executive Summary|

2.2 Registration Service|
2.3 Configuration Servicel e e e e
2.4 Messaging Service|

[3 Use-case Support|

[3.5 Anonymized Surveys and Statistics| oL
3.6 Messaging via MCMix|

4__Architecture and Software|
4.1 Components|. e e e
4.2 Registration| L
4.3 Messaging] e e
4.4 Configuration & Setup|o
4.5 Mix-net Integration Interface]o oL

B Vahdation
5.1 Integrated Mix-nets|
5.1.1 Hat-shuffle Integration|,

[5.1.2 Verificatum Integration| o 0000

...
6 Conclusion|

[A_The PANORAMIX Toolkit|

11
11
11
11
13

15
15
15
17
17
17
18
18
18

21
21
21
22
23
24

25
25
26
27
28

29

33

35

D4.4 - FINAL SYSTEM

~ 8 of 5]

Pl D4.4 - FINAL SYSTEM

1. Introduction

We describe the final integrated system. A production-ready system and a corresponding In-
ternet service that has been shown to work with the proposed use cases. The system is based
on a software architecture that has been described in Deliverables 4.2 and 4.3 and has evolved
to the one described in this document. In addition, the system involves a stable API and it
is accompanied by documentation for (1) System Administrators and (2) Software Developers
(which can be found in the Appendix of Deliverable 4.3). To support a wide variety of different
use cases PANORAMIX offers two types of integration (see also Figure [L.1)): (1) a “tight” inte-
gration in the case of applications and mix-nets where the network is setup and operated from
the core PANORAMIX framework (such as Zeus in the e-voting use case and the Anonymization
Client utilised in the WP6 use-case for statistics, cf. Deliverable 6.2), and (2) a “loose integra-
tion” where the network components operate independently from the core framework while the
framework is used to setup and launch the software that connects to the network per se; such
is the case with the Katzenpost component (developed in WP7).

The system has evolved towards an easy to use and fully featured product that third parties
with different aims can easily use. The latest developments in WP5, WP6, and WP7 already
utilize the system and showcase its flexibility and ease of use.

loose integration (PANORAMIX Framework

I:l_ ______ , Katzenpost
1

Anonymization
Client

,___________________\
N e e e e e

tight integration
_

Figure 1.1: PANORAMIX Offers Two Types of Integration.

-9 off

D4.4 - FINAL SYSTEM

-10 off

2. PANORAMIX Framework Services

2.1 Overview

In the context of the PANORAMIX system, each individual mix-net is organized around three basic
(micro-)services including: the registration service, the configuration service, and the messaging
service. Figure illustrates the services and their high level interactions with (1) the various
contributors and (2) the users.

The aforementioned services were designed and implemented to meet the requirements set in
work packages 5, 6 and 7 and described in detail in Deliverables 4.2 and 4.3. First, general
requirements such as peer authentication and Public Key Infrastructure (PKI), usable and se-
cure mix-contributor configuration and audit-log for administrators, and integration between
different mix-net implementations and the controller are satisfied. And second, specific use-case
related requirements are met: the trustees of an e-voting process are able to control the elec-
tion procedure (including mixing), while a mix server identity registry for secure messaging is
facilitated.

2.2 Registration Service

The fundamental authentication element that PANORAMIX provides for participants to engage
with the system is a public-private key pair. This key pair can be used by the actor to sign
information such as protocol requests and responses, and by anybody else to encrypt information
meant to be communicated to the actor.

In the context of PANORAMIX, the registration service provides peer authentication and a public
key infrastructure that offers identity management. Figure illustrates how the various actors
interact with the service.

All entities in the mix-net should produce their identity credentials in the form of a public-
private (PK) key pair and record it together with a mix-net specific role designation. Then, the
service is responsible to decide on and distribute a common view of the roles and peers in the
network. The generation of identities and the assignment of roles are mix-net specific actions,
and may involve different configuration steps that utilize the service as we discuss in the next
section.

2.3 Configuration Service

Most security-related applications and protocols, including mix-nets, distribute trust among
network entities that are considered independent and are secured in different domains. However,

D4.4 - FINAL SYSTEM Pl

Contributors

‘

P | Contributor Computer

Pl
| Contributor Computer |

| Contributor Computer |

{ PANORAMIX

g
38
=]
[]
<

Pl

g

A

9
32
T ©
c 3
3
[}
g
| d

__

Figure 2.2: The registration service is responsible for the PKI, the authentication of the different
actors and the role assignment. Specifically, it registers a role for clients and administrators
and is able to authenticate a contributor or a client based on their public key.

these distributed entities need to collaborate in order to correctly execute a protocol and the
coordination between them and its security implications are often overlooked.

The configuration service provides means to set-up secure configuration and auditability fea-
tures. Different entities in a mix-net must agree on specific common preferences and parameters.
The agreement and configuration availability is critical for the functionality and security of the
mix-net. An audit record of the agreements is also important for the auditability and account-
ability of the mix-net operations.

The configuration service may accept various proposals for an agreement under an arbitrary
title. Then, administrators negotiate through rounds where they collect the proposals of other
administrators and submit their own. Finally, the service publishes the agreements in a secure
and immutable manner.

The aforementioned actions can be performed in a user-friendly manner through the PANORAMIX
wizard which we describe in an upcoming section.

The final agreement among all relevant participants takes the form of a single document we call
the common Service Deployment Parameters. All important configuration parameters for all
participants must be part of this document.

12 of B5] -

Pl D4.4 - FINAL SYSTEM

Although the production of such a document can be negotiated manually and from scratch,
PANORAMIX offers tools that allow software to start from a template to guide the end-user
through the important choices. This configuration template must be part of the integration of
a mixnet with the PANORAMIX framework.

2.4 Messaging Service

The messaging service accepts encrypted messages for delivery through a mix-net that has been
configured using the framework. The service offers a message inbox where incoming messages
are queued for consumption. Messages are sent and received by end-users. Nevertheless, the
messaging service may also be leveraged for internal communication among the mix-net entities
to exchange information regarding the whole system.

The messaging service employs two kinds of endpoints that can be utilized by a registered client
computer which in turn will send and receive encrypted messages via the mix-net. The service
offers an endpoint to inform clients of the cryptographic algorithms used and an endpoint to
create and use message in-boxes. In particular, the latter provides specific information regarding
the kind of the mix-net and the various parameters that have to be used to either encrypt or
decrypt messages. The endpoints used by the contributor computers may vary based on the
protocol that is being used (e.g., decryption/re-encryption mix-net).

~ 13 of B5] -

D4.4 - FINAL SYSTEM

- 14 off

3. Use-case Support

In this chapter we describe how the implemented PANORAMIX services support various use-cases.
As illustratory examples we describe the e-voting, e-mail and anonymised surveys and statistics
use cases.

3.1 Overview

Figure illustrates how the administrators of a specific use case can configure their software
through PANORAMIX.

First, they need to login to the PANORAMIX wizard and connect to the relevant PANORAMIX
controller (i.e. to the relevant registration service). Through this wizard they can provide
their preferences, see the proposed preferences of other users and decide upon an agreement
regarding the parameters of the running software. These parameters are related to both the
functionality and the security of the running software.

When the administrators reach a consensus, PANORAMIX records the agreement and stores
the corresponding proof. Then, it automatically deploys the system according to the agreed
parameters, which in turn interacts with the framework and its different services.

3.2 Workflow

The general workflow for setting up a mixing service with PANORAMIX tools starts with the
administrators of each of the server nodes that participate in the service using the PANORAMIX
wizard and the related tools (see the sysadmin manual Appendix). These tools enable admin-
istrators to configure and deploy the software server of their local nodes in coordination with
the other peers. It is possible that there are more than one type of server nodes, and therefore
their administrators assumes different roles.

For instance, in the case of a re-encryption mix-net for elections, there are two roles: trustees
and mixers. Both roles are implemented by two different pieces of software running in the
server. On the one hand, trustee nodes hold the election key shares and can decrypt the mixed
ballots. On the other hand, mixer nodes provide the actual mixing and proofs. The server node
administrators must specify which role they want to deploy software for.

Each server node administrators follow the following steps:
1. Install the PANORAMIX toolkit (including the PANORAMIX wizard)

2. Register the local node at the Registration Service launched by the Controller of the
service they want to participate.

D4.4 - FINAL SYSTEM Pl

T . Service | | Service |
i ! Admin Admin

Pl PANORAMIX '

Admins provide their
A - preferences and reach
a consensus through

the PANORAMIX wizard

(Contoller

PANORAMIX
Wizard

T tore are |
The parameters are
_____ accompanied by a

proof of agreement
between admins

1

1

1

__ 7
r Running Use Case

Software Software

Figure 3.1: Setting up a specific use case in our framework.

3. Negotiate the common service deployment parameters. The PANORAMIX configuration
tool uses a mix-net specific template which is provided as part of the mix-net integration.
It is then filled by contributions from all administrators. A final service parameter con-
figuration is agreed upon and signed by all participants in a common proof-of-agreement
statement. The whole procedure is coordinated through the PANORAMIX Configuration
Service.

4. Extract and install local configuration files from the service parameter configuration state-
ment. This mechanism is also mix-net specific and must be provided as part of the mix-net
integration.

5. Launch the local server software with the extracted deployment parameters.

6. Wait for software termination or any other security actions that must be taken as part
of the role of the specific administrator in the service architecture (propose or consent to
business logic actions).

The PANORAMIX wizard can be utilized to walk through steps 2 to 6 in a unified and user-friendly
manner.

When the administrators manage to set-up their mixing servive through the PANORAMIX frame-
work, the corresponding configuration is representated by a J SOI\El (JavaScript Object Notation)
document within the system. As an example, consider the case of the Sphinx decryption mix-
net [5] has been integrated in PANORAMIX (as you can recall from Deliverable 5.2,). A corre-
sponding configuration, will be represented by the values below:

static_sphinxmix_spec = {
'.negotiation.static_sphinxmix ': {},
"content ': {
'mixnet_name ': {},
'messaging_service_url ': {},
'routing ': 'static ',
'sphinx_params ': {

'group ': {},

"https://www. json.org/

~ 16 of B3] -

https://www.json.org/

Pl D4.4 - FINAL SYSTEM

'"head_len ': {},
"body_len ': {},
}7
"cycle_mix_size ': {},
"mixers ': {
|? l: {
"public_key ': {},
"input_from ': {},
}7
}’
}7
}

All the values should be instantiated through the wizard by the corresponding administrator,
including the mix-nets name, the URL of the messaging service, the public key of the mixer and
more.

3.3 E-voting

The e-voting use case (which involves Zeus [7]) utilizes all three services of PANORAMIX. The
registration service is used to introduce, authorize, and identify participants with their crypto-
graphic credentials. The configuration service is used to produce service deployment parameters
that cover two server administrator roles: trustees and mixers. We provide information regard-
ing the two roles in the subsections below.

Once the service is configured and deployed, clients can use the PANORAMIX messaging service
to submit votes irrespective of what mix-net technology is used at the back-end. The choice of
the mix-net technology can vary either at the installation level (i.e. different Zeus installations
using different mix-nets) or at the event level (i.e. different elections at the same service using
different mix-nets).

3.3.1 Trustee Role

Each trustee launches the PANORAMIX software to
1. Generate, keep, and contribute a secret share to the election encryption key.
2. Validate the shares of other trustees.

3. Agree on basic parameters for the election including name, ballot type and content, date,
voter list and mixer list.

4. Propose and consent to put the election process to the corresponding stage (creating,
voting, mixing, decrypting).

5. Validate mixing and (partially) decrypt the mixed ballots.
3.3.2 Mixer Role

Each mixer utilizes the PANORAMIX software to:
1. Agree on the mixing algorithm and the security parameters.

2. Receive encrypted votes and shuffle them providing a proof of correctness.

- 17 off

D4.4 - FINAL SYSTEM Pl

3. Validate other mixer’s shuffles (optional).

Specific service installations might require additional roles that are tied to mix-net cryptography
or general work-flow. They will have to implement those additional roles (e.g. auditor) by
providing an integration as described in Section

3.4 E-mail

The e-mail use case (built on the Katzenpost system developed in WPT7) involves the configura-
tion service and the messaging service. A Katzenpost network is assumed to be independently
operational. The framework is then employed to help server administrators easily launch the
Katzenpost software with the correct configuration to join the Katzenpost network, while giving
them a comprehensive view of the network parameters to review and consent to.

Example parameters include the cryptographic algorithms and standards used (for instance
X25519 certificates), the identity of the network authority, the type of the network authority
(e.g., voting or non-voting), the algorithm for encryption key derivation, the era duration for
encryption key derivation, and overlap time. The registration service is not used as the identity
of nodes in Katzenpost is part of its core functionality.

3.5 Anonymized Surveys and Statistics

In WP6 we have demonstrated the use and benefits of the privacy-enhancing techniques that
the PANORAMIX framework can provide in anonymized surveys and statistics. In particular,
as described in Deliverable 6.2, a specific client adapter (the use case software depicted in
Figure covers differentially private anonymization of client data by sending them to a
corresponding mix-net through PANORAMIX.

Example parameters include the number of mix-net nodes, the number of messages need to be
gathered before mixing is started (i.e., the “batch size” parameter which influences performance
and privacy protection), the cryptography used and more.

3.6 Messaging via MCMix

The MCMix system developed in WP3 comprises of the following entities: users, the entry
server and the MPC servers. Initially, users register to the entry server submitting their
public-keys and they also exchange private keys with the MPC servers. The main role of
the MPC serves is to execute Multi-Party Computation (MPC) protocols, which is the main
ingredient of the MCMix system. The role of the entry server is to gather messages sent by
clients and to forward them synchronously to the MPC servers. In addition, the output of the
MPC servers is delivered to the entry server, and clients contact it periodically to check if there
are incoming messages. In order for privacy to be preserved, the communication between a
client and an MPC server is end-to-end encrypted, using the private key exchanged during the
registration phase.

The MCMix system comprises of two main protocols, namely the dialing and the conversation
protocol. In order for a party, say A, to initiate a conversation with another party, say B,
A needs to participate on the dialing protocol, at the end of which B becomes aware of A’s
intention to initiate a conversation. After this step both A and B participate in the conversation

~ 18 of B5] -

Pl D4.4 - FINAL SYSTEM

protocol, that enables them to exchange messages. One can think of the MCMix system as a
voice-telephone system with text in place of audio, in which every user can be in conversation
with at most one person at a time. The two protocols depend on client-server MPC, which
is executed by the MPC servers, and allows users to exchange messages; auxiliary information
capturing the actions “A calls B” or “A sends message m to B”, is also included in the messages.
In particular, in the dialing protocol, the auxiliary information is a users username, while in
conversation it is a “dead drop”: a value shared between two users who wish to converse, but that
no other user can calculate. For both protocols, the MPC servers implement a sorting algorithm,
which is performed (obliviously) so that messages having the same auxiliary information are
placed next to each other. Also, in both protocols users submit encrypted payloads (messages)
to the entry server, i.e., usernames in the dialling protocol as well as “dead drops” in the
conversation protocol are all encrypted and private. The entry server modifies the payloads by
appending wire IDs associated with the users, which allows the output payloads returned by the
MPC servers to be delivered to the correct users. Privacy against the entry server is ensured
as the payloads are encrypted before being passed to the entry server. Also, the MPC servers
only learn secret-shares of the input to the computation, thus privacy is preserved assuming
an honest majority. After the MPC protocol has run, the payloads are returned to the users
via the entry server. This server manipulates the payloads by removing the wire IDs and then
makes them available to be requested by clients.

The MPC servers of the MCMix system back-end have been implemented using the Sharemind
system ﬂ This had many advantages as from the beginning of the project, Cybernetica, the
company that develops Sharemind, provided a Debian virtual machine preloaded with the MPC
server binaries and Secre(ﬂ compiler, enabling a fast and convenient project initiation.

The main requirements for the client-facing components of this project are simple: securely
manage connections with clients, accept and return data for clients, and initiate and manage
rounds of the MCMix protocols. Therefore, choosing a language and framework that allowed
for fast development was critical. The components also had to provide the required security
properties and ease of future extension. These constraints and requirements led to a choice of
writing the front end in the Python language.

Clients have been implemented for Android, which is a is a Linux based operating system with
a suite of tools freely available for developing applications. We chose to develop the client
program for Android Version 7 (Nougat) and above as this was the most recent major release
when initiating the project. However, at all opportunities we chose classes and library options
that will allow future developers to easily port the application back to previous versions if
required. We wrote the application in Java (Version 7) as this is the standard language for
Android development. PANORAMIX framework integration is intended to be of the similar
type as the Katzenpost system.

2See https://sharemind.cyber.ee/
3The programming language supported by Sharemind.

~ 19 of B5] -

https://sharemind.cyber.ee/

D4.4 - FINAL SYSTEM

~ 20 of B5] -

Pl D4.4 - FINAL SYSTEM

4. Architecture and Software

We provide a description of the architecture of the PANORAMIX software toolkit. Specifically, we
describe the software that implements the services that we described in Chapter 2 Figure 4.1
illustrates the architecture of the final system and involves the controller system, and either
contributor entities or client computers.

4.1 Components

Every registered contributor entity contains a wizard component. This component can be used
by the administrator to set up the mix server, which then will act as an authenticated mix-
net peer. The mix server contains two basic components, that is the crypto module and the
PANORAMIX client. In particular, the PANORAMIX client initializes the crypto module after
interacting with the controller through the corresponding endpoints. Each user computer con-
tains a local agent with the same components together with the corresponding application (e.g.
related to e-voting).

4.2 Registration

In subsection we provided an overview of the registration service. Here, we provide further
information regarding the corresponding module as part of the architecture and in more detail.

Figure illustrates how the registration is done. We observe that registration is managed by
the PANORAMIX controller. On the other hand we have different peers which can be mix-net
contributors, administrators, users of the service provided (e.g. voters), and more. Initially,
peers send their key to the service so that the service can identify them. Then, the service
provides a corresponding certificate that will in turn predetermine the role(s). Recall that a
peer can have more than one role in the context of a use case, i.e. in the e-voting use case a
trustee can be also a mix-net contributor.

The registration component comes with a an API. In the following, we provide the basic methods:
e CET_INFO: returns a globally unique identifier for this instance of Registration API.
e REGISTER_PEER: with the following parameters: common name and signed_public_key.
e RESPONSE: returns the peer_certificate.

e MAKE_ATTRIBUTION_REGUEST: with the following arguments: issuer_common name,
target_common_name, attributes, issuer_signature.

e LOOKUP_PEER_REQUEST: arguments can include either the common_name, the public_key
or other attributes.

~21 off

D4.4 - FINAL SYSTEM Pl

Contributors

| Contributor Computer

=
Contributor Computer |

Panoramix
Client

1
|
I
1
|
I
1
|
I
1
|
I
1
|
I
1
|
I
1
|
I
1
|
I

Protocol Endpoints / // // / [...]
— T e

Contoller

{ Clients
(At . w

Client Computer A send
Local Agent

receive

Panoramix
Client

Client
Computer

Client ¥
Computer

Application

Figure 4.1: The PANORAMIX Software Architecture.

e RESPONSE: provides a list of peer_certificates.

4.3 Messaging

Applications either send or receive messages through a mix-net via a software component which
we call Local Agent. This is provided by the system as a standalone software service and corre-
sponding client software library and command line tools that takes care of all the cryptographic
details as well as the PANORAMIX internals, i.e. it encrypts and decrypts messages and manages
any cryptographic keys needed.

The API methods of the message are the following:

e GET_INFO: this method has the same functionality as the corresponding method of the
registration module.

e CREATE/UPDATE_INBOX_REQUEST: with the corresponding arguments:
peer_owner_common_name, inbox_ACLs, peer_owner _request_signature.

The PANORAMIX inbox has three specific and simple API methods:
1. SUBMIT_MESSAGE_REQUEST with the corresponding text as an argument,

2. READ_MESSAGE: with the message indexes to read as arguments,

— 22 of B5] -

Pl D4.4 - FINAL SYSTEM

r 1
Peers receive a certificate
. related to their roles

r 1
Peers send their keys
. for authentication

Computer PR RN

1
1 1
1 1
1 1
1 1
1 1
1 Contributor o= :
1
1 1
1 1
1 1
1 1
1 1

Figure 4.2: The registration module. Peers send their keyes and recieve corresponding certici-
tates regarding their roles.

3. EXTRACT MESSAGE: which can read and remove messages from an inbox.

4.4 Configuration & Setup

To make the process of setting up a mix-net an easy task, we have developed an interactive
wizard that guides contributors through the parameter selection, allowing them to confirm or
counter-propose different values. This wizard can be tuned case-by-case to interactively process
only a subset of the actual parameters, so that it does not become too difficult to use.

Figure displays the steps that a user must follow to set-up a server through the PANORAMIX
wizard. First, the registration credentials must be provided. Then the deployment parameters
are configured. The user should also create the inboxes and launch the software. Finally, there
are actions that are use-case related. Hence, the final step could take place multiple times.

Y

Deployment
| E;Zi?s < Parameters
Configuration

Y i
Launch Local Application-
Server specific
Software Action
Y

Figure 4.3: The workflow behind the set-up of a server role through the PANORAMIX wizard.

The API methods used by the configuration service are:

e CET_INFO: this method has the same functionality as the corresponding registration

method.

- 23 of 3] -

D4.4 - FINAL SYSTEM Pl

e CREATE_NEGOTIATION_REQUEST: an optional parameter; could be the negotiation_id.

e CONTRIBUTE_REQUEST: the following arguments are required: peer_common name,
contribution_text and peer_request_signature.

e GET_CONSENSUS.

e RESPONSE: returns that consensus text (if a consensus reached) and a list of contributor
peer signatures.

4.5 Mix-net Integration Interface

In order to integrate a mix-net into the PANORAMIX framework, the integrator engineer must
implement an interface to connect the mix-net software with the PANORAMIX framework. The
interface includes:

a. An adapter implementing the generic message submission API of PANORAMIX, that will
translate PANORAMIX message submissions into native mix-net messages.

b. A service parameter configuration template document with provisions for every server
administrator role that will be supported (e.g. trustee, mixer).

c. A script that will extract local server configuration files from the common service param-
eter configuration document, for each different role.

d. A script that will apply the extracted configuration files into the local system so that they
will be available and loaded by the mix-net software.

e. A script that will launch the actual local server software for each role.

- 24 off

5. Validation

To validate the PANORAMIX framework we have integrated two more mix-nets (apart from the
ones that we have discussed in other deliverables such as 5.2 and 5.3) and developed a test suite
to examine its functionality.

5.1 Integrated Mix-nets

One of the basic requirements of the PANORAMIX system is to support different mix-nets. Cur-
rently, our system supports a number of different mix-nets, including: (a) the Verificatum
Mix-Net (vMN) [2], (b) a prototype mix-net based on the re-encryption mix-net designed by the
PANORAMIX team at U. Tartu, Fauzi et al. [6] (also known as hat-shuffle). In this deliverable
part we describe the integration of these two and the corresponding benchmarking we performed
after the integration to observe their efficiency. Note that these are the latest mix-nets that
were integrated and this is why we discuss them here. Recall that we have also ported a number
of other mix-nets to PANORAMIX framework including: Sphinx [5] (as discussed in D5.2) and the
Sako-Kilian re-encryption mix-net [4], which in turn is used by the Zeus [7] e-voting application
(as discussed in D5.3).

D4.4 - FINAL SYSTEM Pl

5.1.1 Hat-shuffle Integration

module ‘ phase ‘ 10,000 10,000-P 100,000 100,000-P 200,000 200,000-P 1,000,000**
CRS Generation 3.6220s 2.2555s 27.1784s 10.8926s 49.5121s 19.4441s 218.1849s
Serialization 1.7291s — 15.1980s — 29.1654s — 152.4044s
Total 5.3511s — 42.3764s — 78.6775s — 370.5893s
CRS Deserialization 0.4397s — 3.3140s — 6.2664s — 31.2038s
encrypt Messages Deserialization 0.0946s 0.5895s 1.0446s 4.0429s
Encryption 27.0073s — 270.0997s — 542.9835s — 2700.1721s
Ciphertexts Serialization 0.4681s — 4.6864s — 9.4914s — 50.7118s
Total 28.0097s — 328.6896s — 559.7859s — 2786.1306s
CRS Deserialization 1.0799s — 8.5572s — 16.3996s — 56.2043s**
Ciphertexts Deserialization | 0.7445s — 7.2519s — 14.2327s — 45.9318s**
prover Prove 13.3515s 9.2914s 112.8631s 69.9510s 220.3691s 138.3695s 389.7530s**
Proofs Serialization 2.7578s 22.1532s 52.1241s 101.1021s**
Total 17.9337s — 150.8254s — 303.1255s — 603.26465**
CRS Deserialization 0.9295s — 8.5857s — 17.2045s — 58.4569s**
verifier Ciphertexts Deserialization | 0.6768s — 6.8215s — 14.3577s — 42.6796s**
Proofs Deserialization 1.4613s — 14.9167s — 30.0238s — 103.6393s**
Verify 26.4480s 8.2774s 248.5492s 74.1561s 494.0374s 150.2706s 1655.6244s**
Total 29.5156s — 278.8731s — 555.6234s — 1860.4001s**
Messages Deserialization 0.0895s — 0.5400s — 1.1618s — 2.0494s**
Ciphertexts Deserialization | 0.5507s — 5.7847s — 11.5266s — 36.8059s**
decrypt Table 9.4963s 93.6353s 184.4576s 408.1059s**
Decryption 9.0543s — 91.3663s — 190.1704s — 381.1743s**
Messages Serialization 0.0144s — 0.1591s — 0.2904s — 0.5766s**
Total 19.2052s — 191.4854s — 387.6068s — 828.7121s**
mix * 0:47m 0:25m 7:10m 3:35m 14:19m 7:18m 41:03m**

Table 5.1: Hut-shuffle efficiency benchmarks.

* mix = Prove + Verify

** MacOSX: 16GB RAM + SWAP Memory

-P: Running Parallel Threads

VM specs: Ubuntu LTS 16.04 (image), 4 (CPUs), 8192MB (RAM), 40GB (System Disk)
Hat-shuffle was designed in the context of PANORAMIX [I] In particular, it is a non-interactive
zero-knowledge proof (N1zK) [3] shuffle argument. We have discussed about the initial integra-
tion in the context of the e-voting use case in Deliverable 5.3. Since then, there were several
software updates and here we provide evaluation of the mix-net as part of the PANORAMIX

framework.

One of the main components of this mix-net involves a common reference string (CRS). Specif-
ically, the CRS model incorporates the assumption that a trusted setup in which all involved
entities get access to the same string CRS taken from some distribution D exists. Schemes
proven secure in the CRS model are secure given that the setup is performed correctly.

We have performed extensive tests regarding the performance of hat-shuffle integration. In
particular, we have examined the generation and serialization of the CRS. In addition, we have
written benchmarks for all the phases of the mix-net including encryption, proving, verification
and decryption. Table [5.1] shows the results of the tests. Our benchmarks included a different
number of messages each time. We started with 10K messages, continued with 100k, then 200K
and finally 1M messages. Note that we also did tests where threads were running in parallel.
Our experiments were performed in an Ubuntu machine (16.04) with 4 cpUs, 8GB RAM and
40GB system disk.

Table presents the different sizes of the files that are generated, for the different numbers
of messages. We observe that there is a linear correlation and as the message number becomes
larger the size increases too. This linearity is important because it proves that the theoretical
scalability of the algorithm is indeed achieved in practice.

We need to highlight here that hat-shuffle handles 1M messages (in the context of the voting
use case, messages are votes) efficiently. Recall that Zeus (the e-voting platform involved in

~ 26 of 35| -

Pl D4.4 - FINAL SYSTEM

File 1000m | 10,000m | 100,000m | 200,000m | 1,000,000m
ciphertexts 829K 8.1M 81M 162M 809M
CRS 1.3M 13M 124M 248M 1.2GB
messages 87K 865K 8.5M 1™ 84M
proofs 2.2M 21M 210M 420M 2GB

Table 5.2: Size of files for different number of messages (m) in hat-shuffle.

messages initialization mix ciphertexts verify

1000000 0:54 18:42 1:32 18:42
500000 0:27 8:04 0:43 8:04
100000 0:08 1:38 0:10 1:38

50000 0:06 0:53 0:06 0:53
10000 0:03 0:17 0:02 0:17
5000 0:03 0:12 0:02 0:12
1000 0:02 0:07 0:00 0:07
10000 0:04 0:43 0:02 0:43

Table 5.3: Verificatum efficiency benchmarks.

WP5), uses a standard mix-net implementation that is simple, but not very efficient; only a few
thousand voters can be handled within an acceptable amount of time (about an hour). Now,
by using hat-shuffle through PANORAMIX, Zeus will be able to support millions of voters as it
is described in Deliverable 5.4.

5.1.2 Verificatum Integration

Verificatum is a well-known open-source re-encryption mix-net. It is a stand-alone server soft-
ware written in Java, with complete documentation. Note that the integration of Verificatum,
is an example of how a mix-net designed outside the PANORAMIX project can be easily incorpo-
rated into our toolkit—which in the big picture, demonstrates the extensibility of the framework
we have developed.

A typical Verificatum workflow is that the administrators of the mixing nodes have a physi-
cal meeting where they agree upon common parameter files and then employ them on their
respective servers during deployment.

The Verificatum servers automatically create shared keys for encryption and decryption of
ciphertexts, proceed with the mixing of ciphertexts, check each other’s proofs, and make the
final results available locally to each node administrator.

However, in order to integrate Verificatum into the more general PANORAMIX framework we
had to isolate the actual mixing phase from the typical Verificatum workflow:

a. The encryption keys are not generated by Verificatum itself but are part of the initial
deployment parameters agreed upon by all mixnet contributors.

b. Verificatum has its own communication system to coordinate all mixnet servers at runtime.
This offers PANORAMIX no control over the workflow. Instead, PANORAMIX only deploys
Verificatum as multiple single node mixnets, and uses the Verificatum proof checker toolkit
to link and verify the mix contributions into a proper mixnet.

- 27 off

D4.4 - FINAL SYSTEM Pl

messages proofs size
1000 2.9 MB
5000 14.4 MB
10000 28.8 MB
10000-2 47.1 MB
50000 144 MB
100000 288 MB
500000 1.4 GB
1000000 3 GB

Table 5.4: Size of files for different messages in Verificatum.

c. Since encryption keys are not generated and managed by Verificatum, for the decryption
of mixed ciphertexts, Verificatum is asked to skip decryption, which is handled at a higher
level in a way similar to (b.) above.

We have evaluated Verificatum in a similar manner to hat-shuffle. Table shows the efficiency
of Verificatum and its functionalities for different numbers of messages. Table displays the
sizes of the files as the messages increase. Once again we observe that there is a linear correlation.

5.2 Testing

It is important to be able to prove that the integration of each mix-net was successful and that
the mix is working properly at all times as the code bases change. A robust approach for doing
so is to feed the PANORAMIX interface with random input and validate the output, repeating
over many cycles. We have implemented this approach for random input testing by setting up
an environment for the test. In this context, an integrated mix-net is initialized and is able to
properly run with real input and produce also real output.

Each mix-net implementation has specific tests. The tests are being monitored regardless of the
integration. Nevertheless, we have to prove that the integration of each mix-net was successful
and that the mix is working at all times.

A stable method for testing is to feed the interface random inputs and validate the outputs.
This is done on many cycles. We have implemented a corresponding testing environment based
on this approach.

For every cycle, random inputs of ciphertexts are created by encrypting a set of plaintexts.
Then, the plaintexts are recorded while the ciphertexts are provided to the mix-net. After the
mix-net processes the ciphertexts, it produces a new set of shuffled ciphertexts as output. The
output is then retrieved and decrypted. Finally, the shuffled plaintexts are compared to the
original ones.

There are two different comparisons. First, the original and the output plaintexts are compared.
We assume that the sets are different, because they original ones have been shuffled. Then, the
two sets are sorted and then compared. In this case, we assert that they are identical. This is
because we expect them to be exactly the same set without any corruption or omission.

The testing process is due for all mix-nets and beyond end-to-end testing and validation. It
offers developers and system administrators quick insights on their configurations, integration,
and performance.

~ 28 of B5] -

Pl D4.4 - FINAL SYSTEM

6. Conclusion

The Final System is a robust, flexible implementation of a framework that effectively provides
the infrastructure for the different PANORAMIX use cases with reasonable performance, clear
and easy programming interfaces, and services easy to deploy.

We have addressed the feedback coming from different work packages with regards to these three
aspects. We also demonstrate the functionality of the framework through the implementations
of our three use cases.

Thanks to the intensive software testing of the software, the code quality has been improved
to reach a production ready level, and future maintenance has become easier thanks to the
automated testing suite integrated in the system.

Full functionality and improved maintainability close the gap between the integrated system
delivered in D4.3 and the final system. Use cases have been able to use it to accomplish their
goals, and third parties are now able to leverage the same infrastructure to provide privacy-
preserving communications based on mix networks.

~ 29 of B[-

D4.4 - FINAL SYSTEM

~ 30 of B5] -

Bibliography

1]

Hat-shuffle implementation. https://github.com/grnet/hat_shuffle, 2018. [Online; ac-
cessed 15-September-2018].

The verificatum mix-net (vmn). https://www.verificatum.com/, 2018. [Online; accessed
15-September-2018].

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pages 103—112, New York, NY, USA, 1988. ACM.

David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84-90, February 1981.

George Danezis and Tan Goldberg. Sphinx: A compact and provably secure mix format.
In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09, pages
269-282, Washington, DC, USA, 2009. IEEE Computer Society.

Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient pairing-based
shuffle argument. In ASTACRYPT (2), volume 10625 of Lecture Notes in Computer Science,
pages 97-127. Springer, 2017.

Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayiotis Tsanakas. From
Helios to Zeus. In 2013 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013.

https://github.com/grnet/hat_shuffle
https://www.verificatum.com/

D4.4 - FINAL SYSTEM

~ 32 of B5] -

A. The PANORAMIX Toolkit

We provide the general usage of the PANORAMIX toolkit for administrators and developers.

GENERAL
usage: mixtool [-h]
{init-workspace, register, configure, deploy, launch, watch} ...

positional arguments:
{init-workspace, register, configure, deploy, launch, watch}

sub-command Help

init-workspace Initialize a workspace

register Connect to a service and register key
configure Specify and negotiate deployment parameters
deploy Install agreed configuration

launch Launch app with the deployed settings
watch Watch service state

optional arguments:
-h, --help show this help message and exit.

INIT
usage: mixtool init-workspace [-h] [--name NAME] [--type TYPE]

Initialize a workspace.

optional arguments:
-h, --help show this help message and exit
--name NAME local session identifier
--type TYPE type of mix-net service

REGISTER
usage: mixtool register [-h] [--service-url SERVICE_URL] [--username USERNAME]
[--key-location KEY_LOCATION]

Connect to a PANORAMIX service and register key.

optional arguments:

D4.4 - FINAL SYSTEM

-h, --help show this help message and exit
--service-url SERVICE URL URL of the Panoramix service
--username USERNAME Register as this user name

--key-location KEY_LOCATION Location of crypto key

CONFIGURE
usage: mixtool configure [-h] [--role ROLE] [--config-file CONFIG_FILE]

Specify and negotiate deployment parameters.

optional arguments:
-h, --help show this help message and exit
—--role ROLE assume this role in the service
—--config-file CONFIG_FILE Ioad local params from file

DEPLOY usage: mixtool deploy [-h] [--path PATH]
Install agreed configuration.

optional arguments:
-h, --help show this help message and exit
--path PATH deployment path

LAUNCH
usage: mixtool launch [-h]

Launch application with the deployed settings.

optional arguments:
-h, --help show this help message and exit

WATCH
usage: mixtool watch [-h]

Watch service state.

optional arguments:
-h, --help show this help message and exit

~34 off

B. License

In the original PANORAMIX proposal (section 2.2), it was stated that:

Code of the generic API will be released under a dual-licensed open-source scheme
to allow commercialization in both proprietary codebases and utilization of the code
in the wider open-source community. This will require dual licensing between the
GPLv3/AGPL and a commercial-friendly license such as the BSD license. This
should let us pursue market opportunities with the widest possible kinds of ex-
ploitation plans while keeping a core open source infrastructure for Europe that all
companies and researchers can use with confidence and equally access.

Conforming with our initial objectives, the code framework has been released under the GNU
Affero General Public License (AGPL, see https://github.com/grnet/panoramix/blob/
develop/COPYING). The choice of AGPL was dictated by the following reasons:

e We want a GPL-like license, so that changes to the code will be made publicly available
under the same license. The PANORAMIX partners feel that it is particularly important in
projects with high security requirements to ensure that developments and improvements
are brought out in the open.

e A simple GPL (meaning, not AGPL) license, does not require the publication of code in
products that are used for delivering services and in which it is not necessary to distribute
the code of the product. The PANORAMIX code is such a server-side product, which means
that releasing it under a GPL license would not be meaningful. Indeed, the AGPL license
was evolved from GPL in response to exactly this kind of situations.

e The PANORAMIX partners can of course release the source code, after an appropriate agree-
ment, under a more commercial-friendly license such as the BSD, to interested partners.
In this way, specific commercial opportunities will be explored, without impinging on the
overall open source orientation of the project.

https://github.com/grnet/panoramix/blob/develop/COPYING
https://github.com/grnet/panoramix/blob/develop/COPYING

	Executive Summary
	Introduction
	 panoramix Framework Services
	Overview
	Registration Service
	Configuration Service
	Messaging Service

	Use-case Support
	Overview
	Workflow
	E-voting
	Trustee Role
	Mixer Role

	E-mail
	Anonymized Surveys and Statistics
	Messaging via MCMix

	Architecture and Software
	Components
	Registration
	Messaging
	Configuration & Setup
	Mix-net Integration Interface

	Validation
	Integrated Mix-nets
	Hat-shuffle Integration
	Verificatum Integration

	Testing

	Conclusion
	The panoramix Toolkit
	License

