Panos Louridas (GRNET)
George Tsoukalas (GRNET)
Dimitris Mitropoulos (GRNET)

Integrated Service

Deliverable D5.3

April 30, 2018
PANORAMIX Project, # 653497, Horizon 2020
http://www.panoramix-project.eu

European Union funding

ko | Horizon 2020
for Research & Innovation

B Ref. Ares(2018)2304804 - 30/04/2018

http://www.panoramix-project.eu

Revision History

Revision | Date Author(s) Description

0.1 2018-20-03 | DM, GT, PL (GRNET) | Proposed table of contents

0.2 2018-30-03 | DM, GT (GRNET) First draft of Integration section
0.3 2018-05-04 | DM, GT (GRNET) Architecture added

0.4 2018-13-04 | DM, GT (GRNET) Added Requirements

0.5 2018-20-04 | DM, GT (GRNET) Added Validation

0.6 2018-23-04 | DM, GT (GRNET) Added Introduction and Conclusions
0.7 2018-24-04 | DM, GT (GRNET) Added Summary

0.8 2018-28-04 | TZ (UEDIN) Review Comments

0.81 2018-28-04 | PC (UOA) Review Comments

0.9 2018-29-04 | DM, GT (GRNET) Addressed review comments

1.0 2018-30-04 | MW (UEDIN) Final version submitted to EC

Executive Summary

This deliverable describes an updated version of the Zeus e-voting system, which is being de-
veloped in the context of Work Package 5. It is actually an integrated service which means
that Zeus is running in the context of PANORAMIX and can work with different mix-nets to
carry out an electronic election. In essence, the integrated service implements the full feature
set and incorporates adjustments after the experience with the PANORAMIX MVP (described in
Deliverable 5.2).

In Section 2, we enumerate a number of basic requirements that were unfulfilled in the MmvP,
and have been fulfilled by the current version of the integrated service. Then, in Section 3,
we present how Zeus was fully ported to PANORAMIX (note that the system was described in
Deliverable 4.3). Furthermore, to validate the integrated service, we have integrated two well-
known mix-nets: Bayer Groth’s and and a re-encryption mix-net developed in the context of the
PANORAMIX project, to enhance Zeus’ efficiency and effectiveness. We discuss these advances
in Section 4.

Contents

Executive Summary 5
1 Introduction 9
2 Fulfilled requirements for the e-voting use-case 11
2.1 Peer Authentication 11

2.2 Usable and Secure Mix-contributor Configuration and Audit-Log for Adminis-
trators L 12

2.3 Integration Between a Mix-net Implementation and the PANORAMIX Controller 12

PANORAMIX Integration with Zeus 15
3.1 Introduction e e e 15
3.2 Architecture Overview e 15
3.3 Public Key Infrastructure and User Management 16
3.4 Workflow Integration L L L 16
Integrated mix-nets and Evaluation 19
4.1 Fauzi et al. re-encryption mix-net L. 19
4.2 Bayer Groth mix-net 22
Conclusions 23

D5.3 - INTEGRATED SERVICE

-8 of 26 -

Pl D5.3 - INTEGRATED SERVICE

1. Introduction

The purpose of this document is to present the updated version of Zeus [12], an e-voting appli-
cation developed by GRNET. Zeus has been in production since late 2012. So far, it has been
used in more than 520 elections for state and private organizations. Zeus is the centerpiece of
Work Package 5 which involves the first PANORAMIX (Privacy and Accountability in Networks
via Optimized Randomized Mix-nets) use-case. Through our work in Wp5 we have been able
to raise e-voting performance by integrating more than one mix-net into the updated version of
Zeus.

This deliverable describes the Zeus integrated system, which implements the remaining
requirements which were not addressed in the version presented in Deliverable 5.2 (Section 2).
It constitutes a complete system with a stable Application Programming Interface (API), and
a solid architecture based on the integrated system presented in Deliverable 4.3 (Section 3).
The architecture of the system lets us integrate two mix-nets and validate our implementation
successfully (Section 4).

We need to note here that in the context of PANORAMIX and in the e-voting case in particular,
we wanted to encourage mix-net technology to be adopted in an environment where respon-
sibility for user privacy is being legislated as a core component of the information technology
industry. For instance, the European Union General Data Protection Regulation (GDPR) [1]
replaces central certification authorities with self-assessment processes. This shifts the weight of
risk analysis and security responsibility to the individual organization. Our service was designed
for increased transparency and control of technical parameters and as such it will be a valuable
asset for meeting the regulatory requirements.

-9 of 26 -

D5.3 - INTEGRATED SERVICE

—10 of 26 -

2. Fulfilled requirements for the e-voting
use-case

In this section we will present a number of key requirements that we have satisfied via the
integrated product These requirements are quite important in the e-voting context, because
trustees must be able to control the election procedure, including mixing. This requires a
usable and intuitive user interface that will present all decisions and actions in a uniform way
so that the trustees can have sufficient overview themselves and not rely on delegation to more
technically trained operators. Usability will also make finer control and overview possible.
An important part of control is the audit log of all actions so that trustees can both be held
accountable for the procedure and prove to auditors that they observed due diligence.

There are also several general requirements fulfilled by the current version of the integrated
service. Note that these requirements were not satisfied by the MvP (see Deliverable 5.2). We
discuss these requirements in detail. Note that a more generic description of such requirements
was discussed in Deliverable 4.3.

2.1 Peer Authentication

To authenticate the different entities that exist in the e-voting context and participate in the
corresponding protocols, the integrated service employs public-key cryptography. Specifically, a
key pair can be used by each entity to sign information such as protocol requests and responses,
and by anybody else to encrypt information meant to be communicated to the entity (e.g. in
the case of peer negotiation as seen in Figure 2.1).

The inherent public key infrastructure problem is how different actors know each other’s
public keys. A typical implementation would be to establish a trusted authority that will sign
certificates that map public keys to application-specific roles. However, this trusted authority
becomes a central security and privacy point of failure. A central authority is still supported by
PANORAMIX, but flexibility is needed so that applications themselves can establish the actor-to-
key correspondence in a way that they know and guarantee is secure in their use-case.

As explained in D4.3 (Subsections 2.1.1), PANORAMIX peer authentication should offer peer-
to-peer discovery of public keys, and through its negotiation mechanism, the mix network must
establish consensus of the global peer list. To do so, the mechanism needs to use application-
specific contacts. The basic information that actors or systems have before the establishment of
a Public Key Infrastructure (PKI), provides the means to communicate privately and securely
with each other (e.g. an email address, or a firewall-ed VPN connection). Hence, trust must
be established by exchanging public keys through an initially available communication channel.
The integrated service employs the PANORAMIX architecture and its APIs to facilitate such an
exchange and key discovery.

D5.3 - INTEGRATED SERVICE P

Peers O
2 E

Negotiation

I I I
v v v

=7
- Consensus

~\ﬂ
@

Figure 2.1: Public Cryptography is employed for Peer Negotiation in the e-voting Workflow of
Zeus.

2.2 Usable and Secure Mix-contributor Configuration and Audit-
Log for Administrators

A security-critical application like Zeus, distributes trust among network entities that are con-
sidered independent and are secured in different administrative domains. However, these entities
need to communicate and collaborate in order to correctly execute an e-voting protocol and the
coordination between them and its security implications are often overlooked.

A consensus over technical details during an election does not necessarily pre-exist (e.g.
which cryptographic algorithms are used, what tuning parameters are used to initialize software,
which are the actor’s network endpoints and more). Very often, this consensus occurs because
stakeholders are strongly interested in a specific mix-net. However, this interest makes those
stakeholders well-known, prone to attacks, corruption and / or coercion. Our integrated service
should offer an easy, yet trusted way for disinterested parties to be able to contribute.

There are several points to consider for this. First there is the awareness of the consensus.
This means that human actors or automated entities must be able to review and explicitly agree
on the consensus. Usability is another major requirement. We expect that users will not under-
stand all parameters, but they have to be able to distinguish among different parameters and be
able to relay information to expert consultants if they choose to do so. Finally, when considering
that disinterested parties acquire responsibilities by being an actor in a cryptographic protocol
such as a mix-net, auditability becomes a major requirement.

In the context of e-voting, the following observation is very prevalent: Since the disinterested
actors have no knowledge of the process and application environment they will resist responsi-
bilities in case they are manipulated by better informed but malicious stakeholders. To address
this trend, our integrated service needs to offer: (1) ways to record the protocol requirements
for each entity in the protocol so that their responsibilities are strictly defined, (2) an audit log
of all configuration parameters and actions and (3) this audit log together with the system’s
safe defaults, can be used by the actors themselves to review their own security and to prove to
investigating authorities that they did no wrong.

2.3 Integration Between a Mix-net Implementation and the
PANORAMIX Controller

As we mentioned earlier, a software controller for authentication / PKI, configuration, and audit

log management is an important contribution that PANORAMIX should bring to its users.
Nevertheless, as we have observed in Deliverable 5.2, this view requires that various mix-

nets can be plugged in and be controlled through a modular interface. Hence, the PANORAMIX

—12 of 26 -

Pl D5.3 - INTEGRATED SERVICE

controller software of the integrated service must provide an interface so that different mix-nets
can be integrated. At the very least, integration means a module that encodes configuration
parameters, actor roles, and can produce configuration files. At best, integration could mean
that the mix-net is controllable at runtime.

— 13 of 26 -

D5.3 - INTEGRATED SERVICE

— 14 of 26 -

3. PANORAMIX Integration with Zeus

3.1 Introduction

Zeus as a voting application cannot simply integrate a mix-net service as a simple component in
the architecture without compromising on software quality and security. There are two reasons
for that.

First, the mix-net dictates the cryptosystem that the rest of the application must use, i.e.
the voting booth for the encryption of ballots, the ballot box for the validation of the submitted
votes, the mixing chain for the validation of the mixes, and the trustee control panel for the
distributed decryption of the mixed votes. Therefore, mixing has a central role in Zeus, not
only regarding privacy, but also from a software engineering perspective.

Second, there is the issue of distributed trust. Placing trust in distributed independent
actors is the only way to safeguard privacy and ensure proper observation of protocol, since
central authorities can become coercible on their own or coercive themselves.

Unlike in other applications where the distribution of trust is set up at the time of the
deployment of the service, in e-voting trust must be ideally distributed separately for each
election event, as each event has their own stakeholders that have strong incentive to protect
the proper procedure.

Other security and privacy-critical applications have complex initial set-up procedures (e.g.
z-cash) or extensive legal and organizational overhead (e.g. financial clearing houses) to create
an environment of trust. Zeus as an e-voting service has to create this environment over and
over again as a matter of course for each individual election event, or category of events.

Therefore, the integration of Zeus with PANORAMIX involves the incorporation of modular
cryptography using different mixing algorithms available, and the use of the negotiation and
consensus mechanism to establish secure distributed control of the mixing process, and the
e-voting process in general.

3.2 Architecture Overview

Figure 3.2 illustrates the architecture of the integrated system. The architecture is based on
the PANORAMIX system described in Deliverable 4.3. Recall that the “Controller” of the system
consists of three basic services, namely: registration, configuration and messaging. As depicted
in the figure, each user runs the PANORAMIX client software and the software related to the
corresponding mix-net.

Registration Service The registration service provides peer authentication and public key in-
frastructure which are critical in the context of e-voting. All entities in the mix-net must create
their identity in the form of a public-private key pair and register it along with a mix-net-specific
role designation. The service is then responsible to decide on and distribute a consistent view of
the peers and roles in the network e.g. election trustees and more. The generation of identities
and the assignment of roles are mix-net-specific actions, and may involve different configuration

D5.3 - INTEGRATED SERVICE Pl

steps as we explain later in the section.

Configuration Service The configuration service is responsible for the secure configuration
and auditability by administrators and / or other parties. In an e-voting mix-net, different
entities must independently agree on the initial setup or the current effective parameters. The
agreement and configuration availability is critical for the function and security of the mix-net.
An audit record of the agreements is also important for the auditability and accountability of
the operation of the mix-net. The configuration service is designed to accept different proposals
for an agreement under an arbitrary title. Then, actors negotiate through multiple rounds where
they collect the proposals of others and submit their own. In the end, the service publishes the
agreements in a secure manner.

Messaging Service After a mix-net has been set up and ready to work, this service accepts
messages for delivery through the mix-net using a specific interface that is followed by the
implementation. Furthermore, the service offers a message inbox where messages are queued
for reading. Messages are typically sent and received by end-users. However, the messaging
service may also be leveraged for internal communication among the mix-net entities.

3.3 Public Key Infrastructure and User Management

As mentioned in the introduction of this chapter, Zeus must use the same cryptography of the
mix-net in use, therefore it must use PANORAMIX for managing public keys. Since Zeus also
integrates with the negotiation and consensus facilities of PANORAMIX.

As described in Work Package 4 deliverables, a PANORAMIX peer is a basic entity identified
by a public key and is able to send and receive messages, and negotiate and sign consensuses with
other peers. In the integrated Zeus system, each important actor in the application workflow,
such as an election trustee, or a mix-net contributor, and each important endpoint, such as the
election ballot box, or a mixing server input, is represented by a PANORAMIX peer. Ultimately,
the process is controlled by the trustees, who initiate the election event by jointly creating an
election peer to serve as the control center of the whole process. The election peer signs a number
of standing orders which are descriptions of what actions may be performed by actors in the
application. There are also details on how long, how many times, and on what conditions such
actions can take place. Typically, the election administrator is the recipient of most standing
orders. Since the election peer is jointly owned by the trustees, every standing order requires a
negotiation / consensus among them.

3.4 Workflow Integration

The general design of the integrated workflow is that all important actions must be permitted
by a signed order. The actions are prepared and proposed, and before they are executed, they
must either be permitted by an existing order, or they must be permitted by a newly issued
order. Usually, the election administrator is the one who proposes actions while the election
peer (i.e. the trustees) are the ones who permit it.

In the following, we list and describe the different actions that are prepared and signed for
a Zeus election in its current form.

e CREATE ELECTION AUTHORITY: Prepared by an election administrator. It designates a
committee of trustees as an election authority. It requires consensus of the trustees. It
results in the creation of the election peer.

e CONFIGURE ELECTION EVENT: Prepared by an election administrator. Allows the cre-
ation of election events, including election type, polls, opening and closing times, ballot

— 16 of 26 -

D5.3 - INTEGRATED SERVICE

P‘

(Contributor Computer)

Wizard

Mix Server

Crypto
= Module
I
Panoramix
Client

| Contributor Computer

P,

Contributor Computer li \: J

PANORAMIX Contoller

Registration / Configuration / Messaging /

initialize the | Zeus Outcome ”
crypto module V
A
9. send ballots
p - 9. !
Voter Computer ——————— %% 1
| Voter
Local Agent } Computer
Panoramix
Client Q.
| L | Voter
Crypto Computer
Module ‘J"
Voting Booth

Figure 3.1: The Architecture of the Integrated System.

(candidate list), voter list, etc. The configured event cannot be finalized with this order
(i.e. cannot freeze).

FINALIZE ELECTION EVENT: Proposed by the administrator, this order allows the freezing
of an election event. After this action is executed, the election event becomes officially
active.

MODIFY ELECTION EVENT: With this order, the election authority can modify an active
election (e.g. voter list, times, extension). Every modification of a finalized (i.e. frozen)
election must be approved by the election authority (i.e. committee of trustees). The
order includes actions such as excluding voters, canceling, and closing the election. This
order does not enable control of closed elections.

NOTIFY VOTERS: The Administrator is allowed to send election event-related messages
to the election voters and other stakeholders for a specified election. This ensures that
communication is official and authoritative.

MIX BALLOTS: After an election is closed, the administrator prepares the mixing by invit-

— 17 of 26 -

D5.3 - INTEGRATED SERVICE P

— order by consensus

...... » prepare
Trustee
Authority «——| Trustee
b Trustee
" election event
R 4
. S cryptosystem
Administrator . A
"""" » mixing
R : Keyholder
decryption Y
- _ AN Keyholder
Mix Contributor Keyholder
Mix Contributor

Mix Contributor

Figure 3.2: The General Workflow of our Integrated System.

ing mix contributors to mix the ballots one after another. Notably the mix contributors
may be invited after election setup and there is no need to commit to their public key
prior to election start. The mixed ballots can only be placed in the election dataset with
a signed order from the mix contributors. There are two variants for this order, either
each contributor signs their own mix, or, ideally, all contributors validate each other’s mix
round and sign a consensus order to place the entire mixing pipeline in the election.

Although the mix rounds are verifiable by anyone, it is a natural choice to have the mix
contributors validate each other since they already have the cryptographic software, the
computational resources, and the required technical expertise in order to provide a mix
round in the first place.

e DECRYPT AND FINISH ELECTION: The administrator invites the key holders to take the
final mixed ballots and provide partial decryptions. Again, anyone can verify the partial
decryptions, however key holders are already capable and involved in the process and
therefore it is natural to ask them to validate each other’s decryptions and sign the final
results in a consensus order.

— 18 of 26 -

4. Integrated mix-nets and Evaluation

As we have discussed in Deliverable 5.2, Zeus mixes votes with a Sako-Kilian re-encryption mix-
net [5], based on the ElGamal cryptosystem [11]. A limiting factor in the wider adoption of Zeus
and e-voting in general, is the mix-net implementation that is used by the voting platform. As
mentioned above, the Zeus e-voting system currently uses a standard mix-net implementation
that is simple, but not very efficient; only a few thousand voters can be handled within an
acceptable amount of time (about an hour), while the needs of the system are in the order of
tens or hundreds of thousands. Hence, we wanted to utilize the different mix-nets developed in
PANORAMIX to make the integrated service more efficient.

We attempted to integrate two different mix-nets tailored for e-voting and we have evalu-
ated our integrated service with positive results, The mix-nets integrated are: a Bayer Groth
mix-net [2] and the re-encryption mix-net presented by Fauzi et al. [8]. Notably, the latter
was designed and implemented in the context of PANORAMIX. In particular, this is a new non-
interactive zero-knowledge proof (N1zK) [3] shuffle argument. In a standard zero-knowledge
proof one party (the prover) can prove to another party (the verifier) that a given statement is
true, without conveying any information apart from the fact that the statement is indeed true.
NIZK proofs are a variant of zero-knowledge proofs in which no interaction is necessary between
prover and verifier. This new shuffle argument has a simple structure, where the first verifica-
tion equation ascertains that the prover has committed to a permutation matrix, the second
verification equation ascertains that the same permutation was used to permute the ciphertexts,
and the third verification equation ascertains that input ciphertexts were “correctly” formed.

We need to point out here that we have focused on the implementation of two mixes instead
of putting all our effort into one because there are interesting differences between the two.
For instance one avoids ROM usage and the other avoids pairings, while the latter still has a
future speedup by means of switching to the libsnark library as we discuss in the following.
In general, our initial tests indicate that the aforementioned mix-nets are faster than the Sako-
Kilian mix-net that is currently employed by Zeus. We intend to further test them and use
them in an election very soon. The implementation of the two mix-nets can be found at the
following URLS:

https://github.com/grnet/hat_shuffle
https://github.com/grnet/bg-mixnet

4.1 Fauzi et al. re-encryption mix-net

The motivation behind this implementation is to replace the mix-net used by the e-voting
application, Zeus in favor of a faster one. However, it can be used by anyone that needs a
mix-net implementation. That is, apart from e-voting, the mix-net can be used for other tasks
such as surveys and the collection of data from various 10T (Internet of Things) devices. The
implementation was based on an existing prototype of the same re-encryption mix-net discussed
in Deliverable 5.2.

The prototype implementation of the mix-net proposed by Fauzi et al., produces multiple

https://github.com/grnet/hat_shuffle
https://github.com/grnet/bg-mixnet

D5.3 - INTEGRATED SERVICE Pl

Metrics

Operation Short Description Time per 100 voters
Initialization Creates the elliptic Curve and | 364ms

private keys
Encryption Encrypts the votes 674ms
Random Permutations | Creates random numbers 1ms
Proof The shuffle 2085ms
Verification Verification of the shuffle 2738ms
Decryption Decrypts the votes 489ms

Table 4.1: Metrics

implementation difficulties. For implementations of cryptographic protocols it is typical to use
C for informal cryptographic computations. Yet the prototype is implemented using Python,
so it has to switch between Python and C for its operations. This may be a bottleneck of the
prototype and the reason some operations are slower than they should be. Another reason may
be that the underlying C cryptographic operations themselves are not efficient, and a different
C implementation might improve matters. The two reasons are not exclusive, and one might
compound the other. With our integration service at hand we managed to extensively evaluate
the implementation in a way that we describe below.

Metrics Table 4.1 contains a list of metrics for the various operations of the prototype. Most
of the time is taken by the prover and the verifier, as expected, because these have the most
computations that produce a context switch between Python and C. The time taken by each of
these operations is linear, meaning that for 200 ciphertexts the numbers on the table are doubled.

Context Switches A context switch happens when a Python program communicates with
a C program for various cryptographic computations. The reasoning behind believing that
a context switch may be the bottleneck of the application is that Python needs to create a
PyObject containing the data it wants to communicate, and C also needs to create a PyObject
to return the result of the computations.

The prover has various steps. In order to validate our theory about context switches we
measured each of these steps. Two of those steps, while having the same number of iterations,
had a significant time difference. In particular, step2a below took 100ms, while step3a took
700ms.

def step2a(sigma, Al, randoms, gl_poly_zero, glrho, gl_poly_squares):

pi_isp = []

inverted_sigma = inverse_perm(sigma)

for inv_i, ri, Ail in zip(inverted_sigma, randoms, Al):
gli_poly_sq = gl_poly_squares[inv_i]
v = (2 * ri) = (Ail + gl_poly_zero) - (ri * ri) * girho + gli_poly_sq
pi_1sp.append(v)

return pi_1sp

def step3a(sigma, ciphertexts, s_randoms, pkl, pk2):
vis_prime = []
v2s_prime = []
for perm_i, s_random in zip(sigma, s_randoms):
(vl, v2) = ciphertexts[perm_i]
vls_prime.append(tuple_add(vl, enc(pkl, s_random[0], s_random[1], 0)))

— 20 of 26 -

Pl D5.3 - INTEGRATED SERVICE

v2s_prime.append(tuple_add(v2, enc(pk2, s_random[0], s_random[1], 0)))
return list(zip(vls_prime, v2s_prime))

First we attributed the time difference to various calls to zip and to tuple creation. After remov-
ing all the calls to zip we didn’t notice any significant difference. This seemed to validate the
context switches theory, because the slower step contained more context switches per iteration.

However that is not the case. Using cProfile we identified the main reason behind this
difference. The slower step does more multiplications on elliptic curve elements. While it is
expected that multiplication will be slower than addition, the difference was enough to dismiss
the context switches theory.

Multiplication on our elliptic curve elements takes 575ms per 300 multiplications, while ad-
dition takes bms for 400 additions. If the real problem was context switches, then addition
wouldn’t have such a huge difference with multiplication, because it has more operations hence
more context switches.

Comparing bplib and libsnark The prototype implementation uses the bplib[7] Python
module. bplib implements bilinear pairings on elliptic curves while also supporting elliptic
curve operations using the openssl library. Another implementation supporting elliptic curve
computations and bilinear pairings is 1ibsnark[9]. The common characteristics of these libraries
are that they both use the Ate Pairing and they use windowed exponentiation for optimization
purposes.

A key difference of these implementations is that bplib uses the curve Fp25/BNb, while
libsnark uses bni128 which is a patch on the Fp254/BNb curve. Also, libsnark supports
vectorized exponentiation which boosts its performance.

In order to compare these two libraries and test our theory that libsnark is faster than
bplib, we created two different tests using bplib and libsnark on each one. The tests did
multiplications (the bottleneck of the prototype) on both elliptic curve groups.

The results validated our theory. Multiplying elements on the Gy group using libsnark
yielded a performance of 0.38s/1000 ciphertexts while using openssL yielded 3.22s/1000. On
G1 libsnark produced 0.13s/1000 while bplib produced 0.96s/1000 multiplications.

Wrapping libsnark with Cython Since libsnark computes multiplications faster than the
openssl implementation, the most obvious solution is to replace openssl with libsnark. The
best candidate for this job is Cython, because it offers the performance aspects of C, while
providing the functionality of Python. In order to validate that Cython, indeed will yield better
performance we created a basic Cython application that does multiplications on the Go group
of the 1libsnark elliptic curve.

The results were positive. A multiplication on the Gg group using Cython takes about 0.5ms
while on our prototype implementation, that uses bplib, a multiplication takes about 2ms. So
that’s a 4x boost in performance. Also our Cython implementation didn’t implement vectorized
multiplications, so there’s still room for optimizations.

Solutions Since the real bottleneck are the multiplications on G2 elements, the most obvious
solution is to use optimizations on the multiplication process.

As mentioned, libsnark computes multiplications faster than our current implementation.
Yet libsnark is written in C+4 and we want to use a Python module. A Python wrapper
for 1ibsnark would be useful, for our needs and the open source community. In fact, we do
not really need the full 1ibsnark library; the Elliptic curve parts have been factored out to
libff [10], so a Python wrapper for libff could be implemented.

— 21 of 26 -

D5.3 - INTEGRATED SERVICE Pl

4.2 Bayer Groth mix-net

The Bayer Groth mix-net has been a focus of many research papers (e.g. the Stadium project [13]).
In our implementation we are focusing on fine-tuning instead of starting the implementation
from scratch. In our integration, we particularly modified the mix-net’s verifiable shuffle, de-
creasing latency by more than an order of magnitude. Specifically, we optimized the shuffle by
applying the following improvements:

e We have added OpenMp directives! to optimize key operations, such as Brickell et al.’s
multi-exponentiation routines [4].

e We replaced the use of integers with Moon and Langley’s implementation of Bernstein’s
curve25519 [6] group (note that we avoid point compression and decompression in inter-
mediary operations to improve speed).

e We improved point serialization and deserialization with byte-level representations of the
data.

e Taking into account different performance profile of curve25519, we replaced some multi-
exponentiation routines with naive version and tweaked multi-exponentiation window
sizes. The bottleneck for the shuffle is currently in multi-exponentiation routines.

e Finally, we added some more small optimizations (e.g. powers of 2, reduce dynamic
memory allocations, etc.).

"https://msdn.microsoft.com/en-us/library/Oca2w8dk.aspx

— 22 of 26 -

https://msdn.microsoft.com/en-us/library/0ca2w8dk.aspx

Pl D5.3 - INTEGRATED SERVICE

5. Conclusions

In this deliverable, we discussed the integrated service developed in the context of Work Package
5. Through this service we have fulfilled all the remaining requirements regarding e-voting,
enumerated in Deliverable 5.2. To validate the service we have integrated two new mix-nets.
Notably, one of the two was designed and implemented in the context of the project, as joint work
by the University of Tartu and GRNET. Our service also lets us perform extensive evaluation
experiments on the mix-nets.

In general, our initial aim was to deliver an e-voting service supporting large scale elections
in an effective way. As we discussed in this deliverable, we have designed the integrated service
to be built on top of the mix-net infrastructure developed in Work Package 4. The whole
process is verifiable end-to-end; from the encryption of ballots on the voter’s device, through
the mix-net service, and back to the e-voting service for counting. Voters are able to verify that
their vote was counted in the results and election authorities will have access to proof for the
correctness of the process.

— 23 of 26 -

D5.3 - INTEGRATED SERVICE

— 24 of 26 -

Bibliography

1]

The European Union general data protection regulation. http://data.consilium.
europa.eu/doc/document/ST-5419-2016-INIT/en/pdf, 2016. [Online; accessed 30-
November-2017].

Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In Proceedings of the 31st Annual International Conference on Theory and Appli-
cations of Cryptographic Techniques, EUROCRYPT 92, pages 263-280, Berlin, Heidelberg,
2012. Springer-Verlag.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pages 103-112, New York, NY, USA, 1988. ACM.

Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast
exponentiation with precomputation. In Proceedings of the 11th Annual International
Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT 92,
pages 200-207, Berlin, Heidelberg, 1993. Springer-Verlag.

David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84-90, February 1981.

Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-
Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying curve25519 software. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 14, pages 299-309, New York, NY, USA, 2014. ACM.

George Danezis. A bilinear pairing library for petlib. https://github.com/gdanezis/
bplib.

Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. An efficient pairing-based shuffle argu-
ment. In Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Application of Cryptology and Information Security, 2017, 2017.

SCIPR Lab. A C++ library for zkSNARK proofs. https://github.com/scipr-lab/
libsnark.

SCIPR Lab. libff: C++ library for finite fields and elliptic curves. https://github.com/
scipr-lab/1ibff.

Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayiotis Tsanakas.
From Helios to Zeus. In 2013 Electronic Voting Technology Workshop / Workshop on
Trustworthy FElections, EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013.

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://github.com/gdanezis/bplib
https://github.com/gdanezis/bplib
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libff

D5.3 - INTEGRATED SERVICE Pl

[13] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium:
A distributed metadata-private messaging system. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 423-440, New York, NY, USA, 2017.
ACM.

— 26 of 26 -

	Executive Summary
	Introduction
	Fulfilled requirements for the e-voting use-case
	Peer Authentication
	Usable and Secure Mix-contributor Configuration and Audit-Log for Administrators
	Integration Between a Mix-net Implementation and the PANORAMIX Controller

	PANORAMIX Integration with Zeus
	Introduction
	Architecture Overview
	Public Key Infrastructure and User Management
	Workflow Integration

	Integrated mix-nets and Evaluation
	Fauzi et al. re-encryption mix-net
	Bayer Groth mix-net

	Conclusions

